Advertisement

Characterization of a Least Effort User-Centered Trajectory for Sit-to-Stand Assistance

  • Viviane Pasqui
  • Ludovic Saint-Bauzel
  • Olivier Sigaud
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 30)

Abstract

Sit-to-stand transfer is a prerequisite for locomotion and induces a lot of effort from elderly or disabled people. In the context of a project based on a locomotion and sit-to-stand assistance robotics device, we present a methodology to tune the trajectory of active handles so that the verticalisation effort of the user is minimised. The methodology is user-centered in the sense that the robot will generate a specific trajectory for each particular user.

Keywords

Disable People Trajectory Generation Robotic Device Transfer Trajectory Anticipatory Postural Adjustement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chuy, O., Hirata, Y., Wang, Z., Kosuge, K.: Approach in assisting a sit-to-stand movement using robotic walking support system. In: International conference on intelligent robots and systems, Beijing, China, pp. 4343–4348 (2006)Google Scholar
  2. 2.
    Lacey, G., Dawson-Howe, K.M.: The Application of Robotics to a Mobility Aid for the Elderly Blind. In: Robotics and Auton. Systems, vol. 23, pp. 245–252 (1998)Google Scholar
  3. 3.
    Alwan, M., Rajendran, P.J., Ledoux, A., Huang, C., Wasson, G., Sheth, P.: Stability Margin Monitoring in Steering-Controlled Intelligent Walkers for the Elderly. In: AAAI Fall 2005 Symposium (EMBC). AAAI Press, Menlo Park (2005)Google Scholar
  4. 4.
    Graf, B., Hans, M., Rolf, D.S.: Care-O-Bot II- Development of a next generation robotic home assistant. In: Autonomous Robots, vol. 16, pp. 193–205 (2004)Google Scholar
  5. 5.
    Dubowsky, S., Genot, F., Godding, S., Kozono, H., Skwersky, A., Yu, H., Yu, L.S.: PAMM- A robotic aid to the elderly for mobility assistance and monitoring: a ”‘helping-hand’” for the elderly. In: IEEE International Conference on Robotics and Automation, pp. 570–576 (2000)Google Scholar
  6. 6.
    Wolfe, R.R., Jordan, D., Wolfe, M.L.: The WalkAbout: A new solution for preventing falls in the elderly and disabled. Arch. Phys. Med. Rehabil. 85(12), 2067–2069 (2004)CrossRefGoogle Scholar
  7. 7.
    Lee, C.Y., Seo, K.H., Kim, C.H., Oh, S.K., Lee. J.J.: A system for gait rehabilitation: mobile manipulator approach. In: Proc.of IEEE of Int. Conf. on Robotics and Automation, pp. 3254–3259 (2002)Google Scholar
  8. 8.
    Nemoto, Y., Egawa, S., Fujie, M.: Power Assist Control Developed for Walking Support. Journal of Robotics and Mechatronics 11(6), 473–476 (1999)Google Scholar
  9. 9.
    Kuzelicki, J., Zefran, M., Burger, H., Bajdand, T.: Synthesis of standing-up trajectories using dynamic optimization, gait and posture (2005)Google Scholar
  10. 10.
    Wisneski, K., Johnson, M.: Quantifying kinematics of purposeful movements to real, imagined, or absent functional objects: Implications for modelling trajectories for robot-assisted ADL tasks. Journal of NeuroEngineering and Rehabilitation 4(7) (2007)Google Scholar
  11. 11.
    Médéric, P., Lozada, J., Pasqui, V., Plumet, F., Bidaud, P., Guinot, J.C.: An optimized design for an intelligent walking aid. In: CLAWAR 2003, Catania, Italy, pp. 53–60 (2003)Google Scholar
  12. 12.
    Médéric, P.: Conception et commande d’un système robotique d’assistance à la verticalisation et à la déambulation. PhD thesis, Université Paris (December 6, 2006)Google Scholar
  13. 13.
    Médéric, P., Pasqui, V., Plumet, F., Bidaud, P.: Design of a walking-aid and sit to stand transfer assisting device for Elderly people. In: 15th CISM-IFToMM Symposium on robotic design, Dynamic and control, St Hubert, Canada (2004)Google Scholar
  14. 14.
    Médéric, P., Pasqui, V., Plumet, F., Bidaud, P.: Elderly people sit-to-stand transfert experimental analysis. In: 8th Conference on climbing and walking robots, CLAWAR, Madrid, Spain (2005)Google Scholar
  15. 15.
    Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. The journal of Neuroscience 5(7), 1688–1703 (1985)Google Scholar
  16. 16.
    Saint-Bauzel, L., Monteil, I., Pasqui, V.: A reactive robotized interface for lower limb Rehabilitation: Clinical results. In: IEEE Int. Conference on Robotics and Automation, pp. 283–295 (2007)Google Scholar
  17. 17.
    Pasqui, V., Bidaud, P.: Bio-mimetic trajectory generation for guided arm movement during assisted sit-to-stand transfer. In: 9th International Symposium on Climbing and walking Robots and Associated Technologies, September 11–14, Royal Military Academy, Brussels (2006)Google Scholar
  18. 18.
    Khalil, W., Dombre, E.: Modélisation identification et commande des robots. In: Khalil, W., Dombre, E. (eds.) Commande en effort, 2nd edn., Janvier, pp. 397–415 (1999)Google Scholar

Copyright information

© Springer Dordrecht Heidelberg London New York 2011

Authors and Affiliations

  • Viviane Pasqui
    • 1
  • Ludovic Saint-Bauzel
    • 1
  • Olivier Sigaud
    • 1
  1. 1.Institut des Systèmes Intelligents et de Robotique - CNRS UMR 7222Université Pierre et Marie Curie, Pyramide Tour 55Paris CEDEX 5France

Personalised recommendations