Skip to main content

Mueller-matrix characterization of biological tissues

  • Conference paper
  • First Online:
Polarimetric Detection, Characterization and Remote Sensing

Abstract

Various kinds of abnormalities and pathologies result in changes of the structural properties of collagen and other fibrous biological tissues, thereby leading to significant alterations of their morphological and anisotropic properties. The Mueller matrix contains all the optical information that one can obtain from light scattered by a medium and, therefore, shows great promise for the efficient use of polarization parameters in the characterization of sizes, shapes, and orientations of tissue structural elements as well as the birefringence, dichroism, depolarization, etc. of biological tissues. The extraction of this information via the interpretation of experimental results of Mueller-matrix measurements represents an important challenge, especially when the various tissue properties must be characterized simultaneously. The purpose of this chapter is to (i) present, in a systematic way, the main properties of Mueller and Jones matrices that can be experimentally or numerically derived, and (ii) provide a review of the information content of Mueller matrices for biological tissues in the framework of models according to which a tissue is a discrete ensemble of scatterers or a continuous distribution of optical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abhyankar, K. D., and A. L. Fymat, 1969: Relations between the elements of the phase matrix for scattering. J. Math. Phys. 10, 1935–1938.

    Google Scholar 

  • Anderson, D. G. M., and R. Barakat, 1994: Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix. J. Opt. Soc. Am. A. 11, 2305–2319.

    Google Scholar 

  • Antonelli, M.-R., A. Pierangelo, T. Novikova, et al., 2010: Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data. Opt. Express 18, 10200–10208.

    Google Scholar 

  • Applequist, J., 1987: Optical activity: Biot’s bequest. Am. Sci. 75, 59–67.

    Google Scholar 

  • Azzam, R. M., and N. M. Bashara, 1987: Ellipsometry and Polarized Light (North-Holland,New York).

    Google Scholar 

  • Barakat, R., 1963: Theory of the coherency matrix for light of arbitrary spectral bandwidth. J. Opt. Soc. Am. 53, 317–322.

    Google Scholar 

  • Barakat, R., 1987: Conditions for the physical realizability of polarization matrices characterizing passive systems. J. Mod. Opt. 34, 1535–1544.

    Google Scholar 

  • Barron, L. D., 1982: Molecular Light Scattering and Optical Activity (Cambridge University Press, Cambridge, UK).

    Google Scholar 

  • Benoit, A.-M., O. K. Naoun, V. Louis-Dorr, et al., 2001: Linear dichroism of the retinal nerve fiber layer expressed with Mueller matrices. Appl. Opt. 40, 565–569.

    Google Scholar 

  • Berry, M. V., and M. R. Dennis, 2003: The optical singularities of birefringent dichroic chiral crystals. Proc. R. Soc. London, Ser. A. 459, 1261–1292.

    Google Scholar 

  • Bickel, W. S., and M. E. Stafford, 1980: Biological particles as irregularly shaped particles. In D. Schuerman, Ed., Light Scattering by Irregularly Shaped Particles (Plenum, New York), pp. 299–305.

    Google Scholar 

  • Bickel, W. S., J. F. Davidson, D. R. Huffman, and R. Kilkson, 1976: Application of polarization effects in light scattering: a new biophysical tool. Proc. Natl. Acad. Sci. USA 73,486–490.

    Google Scholar 

  • Bicout, D., Ch. Brosseau, A. S. Martinez, and J. M. Schmitt, 1994: Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter. Phys. Rev. E. 49, 1767–1770.

    Google Scholar 

  • Boerner, W.-M., 1992: Direct and Inverse Methods in Radar Polarimetry (Kluwer,Dordrecht).

    Google Scholar 

  • Bohren, C. F., and E. R. Huffman, 1983: Absorption and Scattering of Light by Small Particles (Wiley, New York).

    Google Scholar 

  • Bronk, B. V., S. D. Druger, J. Czege, and W. P. van de Merwe, 1995: Measuring diameters of rod-shaped bacteria in vivo with polarized light scattering. Biophys. J. 69, 1170–1177.

    Google Scholar 

  • Brosseau, Ch., 1990: Analysis of experimental data for Mueller polarization matrices. Optik 85, 83–86.

    Google Scholar 

  • Brosseau, Ch., 1998: Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, New York).

    Google Scholar 

  • Brosseau, Ch., C. R. Givens, and A. B. Kostinski, 1993: Generalized trace condition on the Mueller–Jones polarization matrix. J. Opt. Soc. Am. A. 10, 2248–1151.

    Google Scholar 

  • Bueno, J. M., 2001: Indices of linear polarization for an optical system. J. Opt. A: Pure Appl. Opt. 3, 470–476.

    Google Scholar 

  • Bustamante, C., M. F. Maestre, D. Keller, and I. Tinoco, Jr., 1984: Differential scattering (CIDS) of circularly polarized light by dense particles. J. Chem. Phys. 80, 4817–4823.

    Google Scholar 

  • Chipman, R. A., 1995: Polarimetry. In Handbook of Optics, Vol. II (McGraw Hill, New York).

    Google Scholar 

  • Chipman, R. A., 1999: Depolarization. Proc. SPIE 3754, 14–20.

    Google Scholar 

  • Chipman, R. A., 2005: Depolarization index and the average degree of polarization. Appl. Opt. 44, 2490–2495.

    Google Scholar 

  • Chung, J., W. Jung, M. J. Hammer-Wilson, et al., 2007: Use of polar decomposition for the diagnosis of oral precancer. Appl. Opt. 46, 3038–3045.

    Google Scholar 

  • Cloude, S. R., 1986: Group theory and polarization algebra. Optik 7, 26–36.

    Google Scholar 

  • Cloude, S. R., and E. Pottier, 1995: Concept of polarization entropy in optical scattering. Opt. Eng. 34, 1599–1610.

    Google Scholar 

  • Collett, E., 1993: Polarized Light: Fundamentals and Applications (Marcel Decker, New York).

    Google Scholar 

  • de Boer, J. F., and T. E. Milner, 2002: Review of polarization sensitive optical coherence tomography and Stokes vector determination. J. Biomed. Opt. 7, 359–371.

    Google Scholar 

  • de Boer, J. F., T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, 1997: Two dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt. Lett. 22, 934–936.

    Google Scholar 

  • Deibler, L. L., and M. H. Smith, 2001: Measurement of the complex refractive index of isotropic materials with Mueller matrix polarimetry. Appl. Opt. 40, 3659–3667.

    Google Scholar 

  • Dorman, B. P., and M. F. Maestre, 1973: Experimental differential light scattering corrections to the circular dichroism of T2 bacteriophage. Proc. Natl. Acad. Sci. USA 70, 255–259.

    Google Scholar 

  • Espinosa-Luna, R., and E. Bernabeu, 2007: On the Q(M) depolarization metric. Opt. Commun. 277, 256–258.

    Google Scholar 

  • Everett, M. J., K. Schoenerberger, B. W. Colston, Jr., and L. B. Da Silva, 1998: Birefringence characterization of biological tissue by use of optical coherence tomography. Opt. Lett. 23, 228–230.

    Google Scholar 

  • Fanjul-Vélez, F., and J. L. Arce-Diego, 2010: Polarimetry of birefringent biological tissues with arbitrary fibril orientation and variable incidence angle. Opt. Lett. 35, 1163–1165.

    Google Scholar 

  • Fry, E. S., and G. W. Kattawar, 1981: Relationships between elements of the Stokes matrix. Appl. Opt. 20, 2811–2814.

    Google Scholar 

  • Gerrard, A, and J. M. Burch, 1975: Introduction to Matrix Methods in Optics (Wiley, New York).

    Google Scholar 

  • Ghosh, N., H. S. Patel, and P. K. Gupta, 2003: Depolarization of light in tissue phantoms—effect of a distribution in the size of scatterers. Opt. Express 11, 2198–2205.

    Google Scholar 

  • Ghosh, N., M. F. G. Wood, and I. A. Vitkin, 2008: Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence. J. Biomed. Opt. 13, 044036.

    Google Scholar 

  • Ghosh, N., M. F. G. Wood, Sh.-h. Li, et al., 2009a: Mueller matrix decomposition for polarized light assessment of biological tissues. J. Biophoton. 2, 145–156.

    Google Scholar 

  • Ghosh, N., M. F. G. Wood, and I. A. Vitkin, 2009b: Polarimetry in turbid, birefringent, optically active media: a Monte Carlo study of Mueller matrix decomposition in the backscattering geometry. J. Appl. Phys. 105, 102023.

    Google Scholar 

  • Ghosh, N., M. F. G. Wood, and I. A. Vitkin, 2010: Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues. Opt. Commun. 283, 1200–1208.

    Google Scholar 

  • Gil, J. J., 2000: Characteristic properties of Mueller matrices. J. Opt. Soc. Am. A. 17,328–334.

    Google Scholar 

  • Gil, J. J., 2007: Polarimetric characterization of light and media. Eur. Phys. J. Appl. Phys. 40, 1–47.

    Google Scholar 

  • Gil, J. J., and E. Bernabeu, 1985: A depolarization criterion in Mueller matrices. Opt. Acta 32, 259–261.

    Google Scholar 

  • Gil, J. J., and E. Bernabeu, 1986: Depolarization and polarization indexes of an optical system. Opt. Acta 33, 185–189.

    Google Scholar 

  • Gil, J. J., and E. Bernabeu, 1987: Obtainment of the polarizing and retardation parameters of a non-depolarizing optical system from the polar decomposition of its Mueller matrix. Optik 76, 67–71.

    Google Scholar 

  • Givens, C. R., and A. B. Kostinski, 1993: A simple necessary and sufficient condition on physically realizable Mueller matrices. J. Mod. Opt. 40, 471–481.

    Google Scholar 

  • Gopala Rao, A. V., K. S. Mallesh, and Sudha, 1998a: On the algebraic characterization of a Mueller matrix in polarization optics. I. Identifying a Mueller matrix from its N matrix. J. Mod. Opt. 45, 955–987.

    Google Scholar 

  • Gopala Rao, A. V., K. S. Mallesh, and Sudha, 1998b: On the algebraic characterization of a Mueller matrix in polarization optics. II. Necessary and sufficient conditions for Jonesderived Mueller matrices. J. Mod. Opt. 45, 989–999.

    Google Scholar 

  • Gross, C. T., H. Salamon, A. J. Hunt, et al., 1991: Hemoglobin polymerization in sicklecells studied by circular polarized light scattering. Biochim. Biophys. Acta 1079, 152–160.

    Google Scholar 

  • Hadley, K. C., and I. A. Vitkin, 2002: Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media. J. Biomed. Opt. 7, 291–299.

    Google Scholar 

  • He, H., N. Zeng, R. Liao, et al., 2010: Application of sphere–cylinder scattering model to skeletal muscle. Opt. Express 18, 15104–15112.

    Google Scholar 

  • Hielscher, A. H., A. A. Eick, J. R. Mourant, et al., 1997: Diffuse backscattering Mueller matrices of highly scattering media. Opt. Express 1, 441–453.

    Google Scholar 

  • Hoekstra, A. G., and P. M. A. Sloot, 1993: Dipolar unit size in coupled-dipole calculations of the scattering matrix elements. Appl. Opt. 18, 1211–1213.

    Google Scholar 

  • Hoekstra, A. G., and P. M. A. Sloot, 2000: Biophysicaland biomedical applications of nonspherical scattering. In M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Eds., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic Press, San Diego), pp. 585–602.

    Google Scholar 

  • Hovenier, J. W., 1969: Symmetry relations for scattering of polarized light in a slab of randomly oriented particles. J. Atmos. Sci. 26, 488–499.

    Google Scholar 

  • Hovenier, J. W., 1970: Principles of symmetry for polarization studies of planets. Astron. Astrophys. 7, 86–90.

    Google Scholar 

  • Hovenier, J. W., 1994: Structure of a general pure Mueller matrix. Appl. Opt. 33, 8318–8324.

    Google Scholar 

  • Hovenier, J. W., and D. W. Mackowski, 1998: Symmetry relations for forward and backward scattering by randomly oriented particles. J. Quant. Spectrosc. Radiat. Transfer 60, 483–492.

    Google Scholar 

  • Hovenier, J. W., and C. V. M. van der Mee, 2000: Basic relationships for matrices describing scattering by small particles. In M. I. Mishchenko, J. W. Hovenier, and L. D.

    Google Scholar 

  • Travis, Eds., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic Press, San Diego), pp. 61–85.

    Google Scholar 

  • Hovenier, J. W., H. C. van de Hulst, and C. V. M. van der Mee, 1986: Conditions for the elements of the scattering matrix. Astron. Astrophys. 157, 301–310.

    Google Scholar 

  • Hu, Ch.-R., G. W. Kattawar, M. E. Parkin, and P. Herb, 1987: Symmetry theorems on the forward and backward scattering Mueller matrices for light scattering from a nonspherical dielectric scatterer. Appl. Opt. 26, 4159–4173.

    Google Scholar 

  • Hunter, D. G., J. C. Sandruck, S. Sau, et al, 1999: Mathematical modeling of retinal birefringence scanning. J. Opt. Soc. Am. A. 16, 2103–2111.

    Google Scholar 

  • Hurwitz, H., and C. R. Jones, 1941: A new calculus for the treatment of optical systems. II. Proof of three general equivalence theorems. J. Opt. Soc. Am. 31, 493–499.

    Google Scholar 

  • Johnston, R. G., S. B. Singham, and G. C. Salzman, 1988: Polarized light scattering. Comments Mol. Cell. Biophys. 5, 171–192.

    Google Scholar 

  • Jones, R. C., 1941: A new calculus for the treatment of optical systems. I. Description and discussion of the calculus. J. Opt. Soc. Am. 31, 488–493.

    Google Scholar 

  • Jones, R. C., 1942: A new calculus for the treatment of optical systems. IV. J. Opt. Soc. Am. 32, 486–493.

    Google Scholar 

  • Jones, R. C., 1947: A new calculus for the treatment of optical systems. V. A more general formulation and description of another calculus. J. Opt. Soc. Am. 37, 107–110.

    Google Scholar 

  • Jones, R. C., 1948: A new calculus for the treatment of optical systems. VII. Properties of the N-matrices. J. Opt. Soc. Am. 38, 671–685.

    Google Scholar 

  • Jones, R.C., 1956: A new calculus for the treatment of optical systems. VIII. Electromagnetic theory. J. Opt. Soc. Am. 46, 126–131.

    Google Scholar 

  • Kaplan, B., and B. Drevillon, 2002: Mueller matrix measurements of small spherical particles deposited on a c-Si wafer. Appl. Opt. 41, 3911–3918.

    Google Scholar 

  • Kaplan, B., G. Ledanois, and B. Drevillon, 2001: Mueller matrix of dense polystyrene latex sphere suspensions: measurements and Monte Carlo simulation. Appl. Opt. 40, 2769–2777.

    Google Scholar 

  • Kim, K., L. Mandel, and E. Wolf, 1987: Relationship between Jones and Mueller matrices for random media. J. Opt. Soc. Am. A. 4, 433–437.

    Google Scholar 

  • Kim, Y. L., P. Pradhan, M. H. Kim, and V. Backman, 2006: Circular polarization memory effect in low-coherence enhanced backscattering of light. Opt. Lett. 31, 2744–2746.

    Google Scholar 

  • Kliger, D. S., J. W. Lewis, and C. E. Randall, 1990: Polarized Light in Optics and Spectroscopy (Academic Press, New York).

    Google Scholar 

  • Kokhanovsky, A. A., 2001: Light Scattering Media Optics: Problems and Solutions (Praxis, Chichester, UK).

    Google Scholar 

  • Kokhanovsky, A. A., 2003a: Parameterization of the Mueller matrix of oceanic waters. J. Geophys. Res. 108, 3175.

    Google Scholar 

  • Kokhanovsky, A. A., 2003b: Polarization Optics of Random Media (Praxis, Chichester,UK).

    Google Scholar 

  • Kokhanovsky, A. A., 2003c: Optical properties of irregularly shaped particles. J. Phys. D: Appl. Phys. 36, 915–923.

    Google Scholar 

  • Kostinski, A. B., 1992: Depolarization criterion for incoherent scattering. Appl. Opt. 31,3506–3508.

    Google Scholar 

  • Kostinski, A. B., C. R. Givens, and J. M. Kwiatkowski, 1993: Constraints on Mueller matrices of polarization optics. Appl. Opt. 32, 1646–1651.

    Google Scholar 

  • Landau, L. D., E. M. Lifshitz, and L. P. Pitaevskii, 1984: Electrodynamics of Continuous Media (Pergamon Press, Oxford).

    Google Scholar 

  • Lankaster, P., and M. Tismenetsky, 1985: The Theory of Matrices (Academic Press, San Diego).

    Google Scholar 

  • Lawless, R., Y. Xie, P. Yang, et al., 2006: Polarization and effective Mueller matrix for multiple scattering of light by nonspherical ice crystals. Opt. Express 14, 6381–6393.

    Google Scholar 

  • Li, X., and G. Yao, 2009: Mueller matrix decomposition of diffuse reflectance imaging in skeletal muscle. Appl. Opt. 48, 2625–2631.

    Google Scholar 

  • Li, X., J. C. Ranasinghesagara, and G. Yao, 2008: Polarization-sensitive reflectance imaging in skeletal muscle. Opt. Express 16, 9927–9935.

    Google Scholar 

  • Lofftus, K. D., M. S. Quinby-Hunt, A. J. Hunt, et al., 1992: Light scattering by Prorocentrum micans: a new method and results. Appl. Opt. 31, 2924–2931.

    Google Scholar 

  • Lopatin, V. N., A. V. Priezzhev, A. D. Apanasenko, et al.. Methods of Light Scattering in the Analysis of Dispersed Biological Media (Fizmatlit, Moscow) (in Russian).

    Google Scholar 

  • Louis-Dorr, V., K. Naoun, P. Allé, et al., 2004: Linear dichroism of the cornea. Appl. Opt. 43, 1515–1521.

    Google Scholar 

  • Lu, S.-Y., and R. A. Chipman, 1994: Homogeneous and inhomogeneous Jones matrices. J. Opt. Soc. Am. A. 11, 766–773.

    Google Scholar 

  • Lu, S.-Y., and R. A. Chipman. 1996: Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A. 13, 1106–1113.

    Google Scholar 

  • Maestre, M. F., C. Bustamante, T. L. Hayes, et al., 1982: Differential scattering of circularly polarized light by the helical sperm head from the octopus Eledone cirrhosa. Nature 298, 773–774.

    Google Scholar 

  • Maitland, D. J., and J. T. Walsh, 1997: Quantitative measurements of linear birefringence during heating of native collagen. Laser Surg. Med. 20, 310–318.

    Google Scholar 

  • Maksimova, I. L., S. N. Tatarintsev, and L. P. Shubochkin, 1992: Multiple scattering effects inlaser diagnostics of bioobjects. Opt. Spectrosc. 72, 1171–1177.

    Google Scholar 

  • Manhas, S., M. K. Swami, P. Buddhiwant, et al., 2006: Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry. Opt. Express 14, 190–202.

    Google Scholar 

  • Manickavasagam, S., and M. P. Mengüç, 1998: Scattering-matrix elements of coated infinite-length cylinders. Appl. Opt. 37, 2473–2482.

    Google Scholar 

  • Mar’enko, V. V., and S. N. Savenkov, 1994: Representation of arbitrary Mueller matrix in the basis of matrices of circular and linear anisotropy. Opt. Spectrosc. 76, 94–96.

    Google Scholar 

  • Mishchenko, M. I., and J. W. Hovenier, 1995: Depolarization of light backscattered by randomly oriented nonspherical particles. Opt. Lett. 20, 1356–1358.

    Google Scholar 

  • Mishchenko, M. I., and L. D. Travis, 2000: Polarization and depolarization of light. In F. Moreno, and F. González, Eds., Light Scattering from Microstructures (Springer,Berlin), pp. 159–175.

    Google Scholar 

  • Mishchenko, M. I., J. W. Hovenier, and L. D. Travis, Eds., 2000: Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic Press, San Diego).

    Google Scholar 

  • Mishchenko, M. I., L. D. Travis, and A. A. Lacis, 2002: Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, UK).

    Google Scholar 

  • Mishchenko, M. I., L. D. Travis, and A. A. Lacis, 2006: Multiple Scattering of Light by Particles. Radiative Transfer and Coherent Backscattering (Cambridge University Press, Cambridge, UK).

    Google Scholar 

  • Morio, J., and F. Goudail, 2004: Influence of the order of diattenuator, retarder, and polarizer in polar decomposition of Mueller matrices. Opt. Lett. 29, 2234–2236.

    Google Scholar 

  • Mueller, H., 1948: The foundation of optics. J. Opt. Soc. Am. 38, 661.

    Google Scholar 

  • Muttiah, R. S., Ed., 2002: From Laboratory Spectroscopy to Remotely Sensed Spectra of Terrestrial Ecosystems (Kluwer, Dordrecht).

    Google Scholar 

  • Nagirner, D. I., 1993: Constrains on matrices transforming Stokes vectors. Astron. Astrophys. 275, 318–324.

    Google Scholar 

  • Naoun, O. K., V. Louis-Dorr, P. Allé, et al., 2005: Exploration of the retinal nerve fiber layer thickness by measurement of the linear dichroism. Appl. Opt. 44, 7074–7082.

    Google Scholar 

  • Ossikovski, R., 2008: Interpretation of nondepolarizing Mueller matrices based on singularvalue decomposition. J. Opt. Soc. Am. A. 25, 473–482.

    Google Scholar 

  • Ossikovski, R., 2009: Analysis of depolarizing Mueller matrices through a symmetric decomposition. J. Opt. Soc. Am. A. 26, 1109–1118.

    Google Scholar 

  • Ossikovski, R., A. De Martino, and S. Guyot, 2007: Forward and reverse product decompositions of depolarizing Mueller matrices. Opt. Lett. 32, 689–691.

    Google Scholar 

  • Parke III, N. G., 1948: Matrix optics. PhD thesis (Massachusetts Institute of Technolody,Cambidge, MA).

    Google Scholar 

  • Parke III, N. G., 1949: Optical algebra. J. Math. Phys. 28, 131–139.

    Google Scholar 

  • Perrin, F., 1942: Polarization of light scattering by isotropic opalescent media. J. Chem. Phys. 10, 415–427.

    Google Scholar 

  • Potton, R. J., 2004: Reciprocity in optics. Rep. Prog. Phys. 67, 717–754.

    Google Scholar 

  • Priezzhev, A. V., V. V. Tuchin, and L. P. Shubochkin, 1989: Laser Diagnostics in Biology and Medicine (Nauka, Moscow) (in Russian).

    Google Scholar 

  • Quinby-Hunt, M. S., P. G. Hull, and A. J. Hunt, 2000: Polarized light scattering in the marine environment. In M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Eds., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic Press, San Diego), pp. 525–554.

    Google Scholar 

  • Ranasinghesagara, J. C., and G. Yao, 2007: Imaging 2D optical diffuse reflectance in skeletal muscle. Opt. Express 15, 3998–4007.

    Google Scholar 

  • Rojas-Ochoa, L. F., D. Lacoste, R. Lenke, et al., 2004: Depolarization of backscattered linearly polarized light. J. Opt. Soc. Am. A. 21, 1799–1804.

    Google Scholar 

  • Salzmann, G. C., S. B. Singham, R. G. Johnston, and C. F. Bohren, 1990: Light scattering and cytometry. In M. R. Melamed, T. Lindmo, and M. L. Mendelsohn, Eds., Flow Cytometry and Sorting (Wiley, New York), pp. 81–107.

    Google Scholar 

  • Sankaran, V., J. T. Walsh, Jr., and D. J. Maitland, 2002: Comparative study of polarized light propagation in biologic tissues. J. Biomed. Opt. 7, 300–306.

    Google Scholar 

  • Savenkov, S. N., and K. E. Yushtin, 2000: New classes of objects in polarimetry including the isotropic depolarization. Radiotechnika 116, 3–11 (in Russian).

    Google Scholar 

  • Savenkov, S. N., O. I. Sydoruk, and R. S. Muttiah, 2005: The conditions for polarization elements to be dichroic and birefringent. J. Opt. Soc. Am. A. 22, 1447–1452.

    Google Scholar 

  • Savenkov, S. N., V. V. Marienko, E. A. Oberemok, and O. I. Sydoruk, 2006: Generalized matrix equivalence theorem for polarization theory. Phys. Rev. E. 74, 056607.

    Google Scholar 

  • Savenkov, S. N., R. S. Muttiah, K. E. Yushtin, and S. A. Volchkov, 2007a: Mueller-matrix model of an inhomogeneous, linear, birefringent medium: single scattering case. J. Quant. Spectrosc. Radiat. Transfer 106, 475–486.

    Google Scholar 

  • Savenkov, S. N., O. I. Sydoruk, and R. S. Muttiah, 2007b: Eigenanalysis of dichroic, birefringent,and degenerate polarization elements: a Jones-calculus study. Appl. Opt. 46,6700–6709.

    Google Scholar 

  • Saxon, D. S., 1955: Tensor scattering matrix for electromagnetic fields. Phys. Rev. 100,1771–1775.

    Google Scholar 

  • Schmitt, J. M., and G. Kumar, 1996: Turbulent nature of refractive-index variations in biological

    Google Scholar 

  • tissue. Opt. Lett. 21, 1310–1312.

    Google Scholar 

  • Sekera, Z., 1966: Scattering matrices and reciprocity relationships for various representations of the state of polarization. J. Opt. Soc. Am. 56, 1732–1740.

    Google Scholar 

  • Shapiro, D. B., P. G. Hull, A. J. Hunt, and J. E. Hearst, 1994a: Calculations of the Mueller scattering matrix for a DNA plectonemic helix. J. Chem. Phys. 101, 4214–4221.

    Google Scholar 

  • Shapiro, D. B., M. F. Maestre, W. M. McClain, et al., 1994b: Determination of the average orientation of DNA in the octopus sperm Eledone cirrhossa through polarized light scattering. Appl. Opt 33, 5733–5744.

    Google Scholar 

  • Shindo, Y., 1995: Applications of polarized modulator technique in polymer science. Opt. Eng. 34, 3369–3384.

    Google Scholar 

  • Shurcliff, W. A., 1962: Polarized Light: Production and Use (Harvard University Press,Harvard, MA).

    Google Scholar 

  • Simon, R., 1982: The connection between Mueller and Jones matrices of polarization optics. Opt. Commun. 42, 293–297.

    Google Scholar 

  • Simon, R., 1987: Mueller matrices and depolarization criteria. J. Mod. Opt. 34, 569–575.

    Google Scholar 

  • Simonenko, G. V., T. P. Denisova, N. A. Lakodina, and V. V. Tuchin, 2000: Measurement of an optical anisotropy of biotissues. Proc. SPIE. 3915, 152–157.

    Google Scholar 

  • Smith, M. H., 2001: Interpreting Mueller matrix images of tissues. Proc. SPIE. 4257, 82–89.

    Google Scholar 

  • Solleillet, P., 1929: Sur les paramètres caractérisant la polarisation partielle de la lumière dans les phénomènes de fluorescence. Ann. Phys. Biol. Med. 12, 23–97.

    Google Scholar 

  • Sridhar, R., and R. Simon, 1994: Normal form for Mueller matrices in polarization optics. J. Mod. Opt. 41, 1903–1915.

    Google Scholar 

  • Studinski, R. C. N., and I. A. Vitkin, 2000: Methodology for examining polarized light interactions with tissues and tissue-like media in the exact backscattering direction. J. Biomed. Opt. 5, 330–337.

    Google Scholar 

  • Tuchin, V. V., 1993: Lasers light scattering in biomedical diagnostics and therapy. J. Laser Appl. 5, 43–60.

    Google Scholar 

  • Tuchin, V. V., Ed., 1994: Selected Papers on Tissue Optics Applications in Medical Diagnostics and Therapy (SPIE Press, Bellingham, WA).

    Google Scholar 

  • Tuchin, V. V., Ed., 2002: Handbook of Optical Biomedical Diagnostics (SPIE Press, Bellingham,WA).

    Google Scholar 

  • Tuchin, V. V., L. V. Wang, and D. A. Zimnyakov, 2006: Optical Polarization in Biomedical Applications (Springer, Berlin).

    Google Scholar 

  • Twietmeyer, K. M., R. A. Chipman, A. E. Elsner, et al., 2008: Mueller matrix retinal imager with optimized polarization conditions. Opt. Express 16, 21 339–21 354.

    Google Scholar 

  • van de Hulst, H. C., 1957: Light Scattering by Small Particles (Wiley, New York).

    Google Scholar 

  • van de Merwe, W. P., D. R. Huffman, and B. V. Bronk, 1989: Reproducibility and sensitivity of polarized light scattering for identifying bacterial suspensions. Appl. Opt. 28,5052–5057.

    Google Scholar 

  • van de Merwe, W. P., Z.-Z. Li, B. V. Bronk, and J. Czege, 1997: Polarized light scattering for rapid observation of bacterial size changes. Biophys. J. 73, 500–506.

    Google Scholar 

  • van der Mee, C. V. M., 1993: An eigenvalue criterion for matrices transforming Stokes parameters. J. Math. Phys. 34, 5072–5088.

    Google Scholar 

  • van der Mee, C. V. M., and J. W. Hovenier, 1992: Structure of matrices transforming Stokes parameters. J. Math. Phys. 33, 3574–3584.

    Google Scholar 

  • Vansteenkiste, N., P. Nignolo, and A. Aspect, 1993: Optical reversibility theorems for polarization: application to remote control of polarization. J. Opt. Soc. Am. A. 10,2240–2245.

    Google Scholar 

  • Voss, K. J., and E. S. Fry, 1984: Measurement of the Mueller matrix for ocean water. Appl. Opt. 23, 4427–4436.

    Google Scholar 

  • Wang, L. V., G. L. Coté, and S. L. Jacques, Eds., 2002: Special Section on Tissue Polarimetry. J. Biomed. Opt. 7, 278–397.

    Google Scholar 

  • Whitney, C., 1971: Pauli-algebraic operators in polarization optics. J. Opt. Soc. Am. 61,1207–1213.

    Google Scholar 

  • Wood, M. F. G., X. Guo, and I. A. Vitkin, 2007: Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology. J. Biomed. Opt. 12, 014029.

    Google Scholar 

  • Wood, M. F. G., N. Ghosh, E. H. Moriyama, et al., 2009: Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo. J. Biomed. Opt. 14, 014029.

    Google Scholar 

  • Xing, Z.-F., 1992: On the deterministic and nondeterministic Mueller matrix. J. Mod. Opt. 39, 461–484.

    Google Scholar 

  • Xu, L., J. Ding, and A. Y. S. Cheng, 2002: Scattering matrix of infrared radiation by ice finite circular cylinders. Appl. Opt. 41, 2333–2348.

    Google Scholar 

  • Zietz, S., A. Belmont, and C. Nicolini, 1983: Differential scattering of circularly polarized light as an unique probe of polynucleosome superstructures. Cell Biophys. 5, 163–187.

    Google Scholar 

  • Zubko, E., Y. G. Shkuratov, and G. Videen, 2004: Coherent backscattering effect for nonzero elements of Mueller matrix of discrete media at different illumination-observation geometries. J. Quant. Spectrosc. Radiat. Transfer 89, 443–452.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey N. Savenkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Savenkov, S.N. (2011). Mueller-matrix characterization of biological tissues. In: Mishchenko, M., Yatskiv, Y., Rosenbush, V., Videen, G. (eds) Polarimetric Detection, Characterization and Remote Sensing. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1636-0_17

Download citation

Publish with us

Policies and ethics