From the age of prokaryotes to the emergence of eukaryotes

Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 20)

Abstract

Our subsequent discussion is based on the idea that evolution has taken place on Earth. Darwin’s major thesis was that evolutionary change is due to the production of variation in a population and the survival and reproductive success of some of these variants. In this chapter we shall concentrate on the first stages of the story of life on Earth guided by Darwin’s ideas. We pick up the story once the earliest and simplest living cell has already formed. As we saw in Chapter 4, it is sometimes called the progenote or, alternatively, the “cenancestor”.

Keywords

Solar System Atmospheric Oxygen Paracoccus Denitrificans Cyanidium Caldarium Great Oxidation Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary Reading

  1. Attenborough, D. (1981) Life on Earth. Fontana, London. Coyne, J. A. (2009) Why evolution is true. Oxford, Oxford University Press, London.Google Scholar
  2. Margulis, L. and Fester, R. (eds.), (1991) Symbiosis as a Source of Evolutionary Innovation. The MIT Press, Cambridge, Mass.Google Scholar
  3. Margulis, L. and Sagan, D. (1987) Microcosm- Allen & Unwin, London.Google Scholar

References

  1. Allen, M.B. (1959) “Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte,” Arch. Mikrobiol. (Berlin, Heidelberg) 32, 270–277.Google Scholar
  2. Arahal, D. R., Marquex, M. C., Volcani, B. E., Schleifer K. H. and Ventosa, A. (1999) Bacillus marismortui sp. nov., a new moderately halophilic species from the Dead Sea,” Int. J. Syst. Evol. Microbiol. 49,521-530.Google Scholar
  3. Amabile-Cuevas, C. F. and Chicurel, M. E. (1993) Horizontal Gene Transfer, American Scientist 81, 332-341.ADSGoogle Scholar
  4. Ballard, J. W O., Olsen, G. J., Faith, D. P., Odgers, W. A., Rowell, D. M., and Atkinson, P. W. (1992) Evidence from 12S ribosomal RNA sequences that onychophorans are modified arthropods, Science 258, 1345-1348.ADSCrossRefGoogle Scholar
  5. Bekker, A., Holland, H. D., Wang, P.-L., Rumble, III, D., Stein, H. J., Hannah, J. L., Coetzee, L. L. and Beukes, N. J. (2004) Dating the rise of atmospheric oxygen. Nature 427, 117–120.ADSCrossRefGoogle Scholar
  6. Bertolani, R., Guidetti, R., Jönsson, K.I., Altiero, T., Boschini, D., and Rebecchi, L. (2004) Experiences with dormancy in tardigrades, Journal of Limnology 63 (Suppl 1),16-25.Google Scholar
  7. Bonen, L and Doolittle, W. F. (1976) Partial sequences of 16S rRNA and the phylogeny of bluegreen algae and chloroplasts, Nature 261, 669-673.ADSCrossRefGoogle Scholar
  8. Brenner, S. (1994) The ancient molecule, Nature 367, 228-229.ADSCrossRefGoogle Scholar
  9. Cavalier-Smith, T. (1987) Eukaryotes with no mitochondria. Nature 326, 332-333.ADSCrossRefGoogle Scholar
  10. Chela-Flores, J. (1995) Molecular relics from chemical evolution and the origin of life in J.Google Scholar
  11. Chela-Flores, M. Chadha, A. Negron-Mendoza, and T. Oshima (eds.), Chemical Evolution: Self-Organization of the Macromolecules of Life (A Cyril Ponnamperuma Festschrift), A. Deepak Publishing, Hampton, Virginia, pp. 185-200.Google Scholar
  12. Conway-Morris, S. (1993) The fossil record and the early evolution of the Metazoa, Nature 361, 219-225.ADSCrossRefGoogle Scholar
  13. Cortial, F., Gauthier-Lafaye, F., Lacrampe-Couloume, G., Oberlin, A. and Weber, F. (1990) Characterization of organic matter associated with uranium deposits in the Francevillian formation of Gabon (lower proterozoic). Org. Geochem. 15, 73–85.CrossRefGoogle Scholar
  14. De Duve, C. (1995) Vital Dust. Life as a Cosmic Imperative, Basic Books, New York, pp. 294- 296.Google Scholar
  15. Desmond, A. and Moore, J. (1991) Darwin. Michael Joseph, London, pp. 412-413.Google Scholar
  16. Douglas, S. E., Murphy, C. A., Spenser, D. F., and Gray, M. W. (1991) Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes, Nature 350, 148-151.ADSCrossRefGoogle Scholar
  17. Dutkiewicz, A., George, S. C., Mossman, D. J., Ridley, J. & Volk, H. (2007) Oil and its biomarkers associated with the Palaeoproterozoic Oklo natural fission reactors, Gabon. Chem. Geol. 244, 130–154.CrossRefGoogle Scholar
  18. Goldstein B. and Blaxter, M. (2002) Quick Guide: Tardigrades. Current Biology 12, R475. El Albani, A., Bengtson, S., Canfield, D. E., Bekker, A., Macchiarelli, R., Mazurier, A. E., Hammarlund, U., Boulvais, P., Dupuy, J.-J., Fontaine, C., Fürsich, F. T., Gauthier-Lafaye, F., Janvier, P, Javaux, E., Ossa Ossa, F., Pierson-Wickmann, A.-C., Riboulleau, A., Sardini, P., Vachard, D, Whitehouse, M. and Meunier, A. (2010) Signs of evolution in the Archean rock formations. Nature 466, 100-104.Google Scholar
  19. Hall, D. T., Strobel, D. F., Feldman, P. D., McGrath, M. A. and Weaver, H. A. (1995) Detection of an oxygen atmosphere on Jupiter’s moon Europa, Nature 373, 677-679.ADSCrossRefGoogle Scholar
  20. Halliday, A.N. (2001) In the beginning…, Nature 409, 144-145.ADSCrossRefGoogle Scholar
  21. Han, T.-M. and Runnegar, B. (1992) Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee iron-formation, Michigan, Science 257, 232-235.ADSCrossRefGoogle Scholar
  22. Holland, H. D. (2006) The oxygenation of the atmosphere and oceans. Phil. Trans. R. Soc. B 361, 903–915.CrossRefGoogle Scholar
  23. Horikawa, D. D. (2008) The Tradigrade Ramazzottium varieornatus as a model animal for astrobiological studies, Biol. Sci. in Space 22(3), 93-98.CrossRefGoogle Scholar
  24. John, P. and Whatley, F. R. (1975) Paracoccus denitrificans and the evolutionary origin of the mitochondrion, Nature 254, 495-498.ADSCrossRefGoogle Scholar
  25. Jönsson, K. I., Rabbow, E., Schill, R. O., Harms-Ringdahl. M. and Rettberg, P. (2008) Tardigrades survive exposure to space in low Earth orbit, Current Biology: R729-R731.Google Scholar
  26. Knoll, A. H. (1994) Proterozoic and Early Cambrian protists: Evidence for accelerating evolutionary tempo, Proc. Natl. Acad. Sci. USA 91, 6743-6750.ADSCrossRefGoogle Scholar
  27. Margulis, L. (1993) Symbiosis in Cell Evolution, W.H. Freeman & Co., San Francisco.Google Scholar
  28. Margulis, L. and Guerrero, R. (1991) Kingdoms in turmoil, New Scientist 23 March, 46-50.Google Scholar
  29. Maynard Smith, J. (1993) The theory of evolution, Canto Edition, Cambridge University Press, London, p. 122.Google Scholar
  30. Maynard Smith, J. and Szathmary, E. (1993) The origin of chromosomes I. Selection for linkage, J. Theor. Biol. 164, 437-446.CrossRefGoogle Scholar
  31. McKay, C.P. (1996) Oxygen and the rapid evolution of life on Mars, in Chela-Flores, J. and Raulin, F. (eds.), (1996) Chemical Evolution: Physics of the Origin and Evolution of Life, Kluwer Academic Publishers, Dordrecht, pp. 177-184.Google Scholar
  32. Mojzsis, S. J., Harrison, T.M. and Pidgeon, R.T. (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,3000 Myr ago, Nature 409, 178-181ADSCrossRefGoogle Scholar
  33. Mossman, D. J., Gauthier-Lafaye, F. and Jackson, S. (2001) Carbonaceous substances associated with the Paleoproterozoic natural nuclear fission reactors of Oklo, Gabon: paragenesis, thermal maturation and carbon isotopic and trace element composition. Precambr. Res. 106, 135–148.CrossRefGoogle Scholar
  34. Noll, K. S., Johnson, R. E., Lane, A. L., Domingue, D. and Weaver, H. A. (1996) Detection of ozone on Ganymede, Science 273, 341-343.ADSCrossRefGoogle Scholar
  35. Noll, K. S., Roush, T. L., Cruikshank, D. P., Johnson, R. E. and Pendleton, Y. J. (1997) Detection of ozone on Saturn’s satellites Rhea and Dione, Nature 388, 45-47.ADSCrossRefGoogle Scholar
  36. Olsen, G. J. and Woese, C. R. (1993) Ribosomal RNA: a key to phylogeny, The FASEB Journal 7, 113-123.Google Scholar
  37. Oren, A. (1988) The microbial ecology of the Dead Sea, in: K. C. Marshall (ed.) Advances in microbial ecology (Plenum Publishing Company, New York, 10, 193-229.Google Scholar
  38. Prieur, D. Ercuso, G. and Jeanthon, C. (1995) Hyperthermophilic life at deep-sea hydrothermal vents, Planet. Space Sci. 43, 115-122.ADSCrossRefGoogle Scholar
  39. Rizzotti, M. (2000) Early Evolution, Birkhauser Verlag, Basel, Chapter 3, pp. 24-52.Google Scholar
  40. Romero, A. B. and Thiemens, M. (2002) Mass-independent sulfur isotopic compositions in sulfate aerosols and surface sulfates derived from atmospheric deposition: Possible sources of the MI anomaly and implications for atmospheric chemistry. Eos 83 (Fall Meet. Suppl.), B71A−0731.Google Scholar
  41. Runnegar, B. (1992) Origin and Diversification of the Metazoa, in Schopf, J. W. and Klein, C. (1992) The Proterozoic Biosphere, Cambridge University Press, New York, p. 485.Google Scholar
  42. Schopf, J. W. (1993) Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life, Science 260, 640-646.ADSCrossRefGoogle Scholar
  43. Seckbach, J. (1972) On the fine structure of the acidophilic hot-spring alga Cyanidium caldarium: a taxonomic approach, Microbios 5, 133-142.Google Scholar
  44. Seckbach, J. and Chela-Flores, J. (2011) Astrobiology: From extremophiles in the Solar System to extraterrestrial Civilizations. In: Tymieniecka, A.-T., Grandpierre, A. (eds.) Astronomy and Civilization in the New Enlightenment. Series: Analecta Husserliana, Vol. 107; 1st Edition, 2011, Springer Science and Business Media, pp. 237-246.Google Scholar
  45. Woese, C. R. (1983) The primary lines of descent, in D. S. Bendall (ed.), Evolution form molecules to man, CUP, London, pp. 209-233.Google Scholar
  46. Woese, C. R. (1998) The universal ancestor, Proc. Natl. Acad. Sci. USA 95, 6854-6859.ADSCrossRefGoogle Scholar
  47. Zukerkandl, E. and Pauling, L. (1965) Molecules as documents of evolutionary history, J. Theor. Biol. 8, 357-366.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.The Abdus Salam International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations