Skip to main content

The Materiome

  • Chapter
Biomateriomics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 165))

  • 1776 Accesses

Abstract

The goal of materiomics is the complete understanding of the materiome—a holistic characterization of a complex material system. The balance of form and function throughout Nature is well recognized, but the materiome must enhance a basic characterization of complex biological phenomena, to enable the prediction and design of new technologies. Analogous to genomics and other “-omic” fields, there is an obvious difference in scope between a gene or genetic sequence, and the human genome. Here, we establish the scope of the materiome beyond the assembly of material components (e.g., architecture or structure), the fundamental difference between application and function, the concept of material behavior scaling, as well as the challenges (and benefits) imposed by material hierarchies and complexity. Material and structure are no longer distinct, and the assembly of building blocks ranges across all scales from the nano to the macro level.

The structure of tissues and their functions are two aspects of the same thing. One cannot consider them separately. Each structural detail possesses its functional expression. It is through physiological aptitudes of their anatomical parts that the life of the higher animals is rendered possible… Tissues are endowed with potentialities far greater than those which are apparent.

Alexis Carrel, Science, Vol. 73, No. 1890, pp. 297–303 (1931)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “…the totality is not, as it were, a mere heap, but the whole is something besides the parts.”, Aristotle, Metaphysics, Book H, 1045a:8–10.

  2. 2.

    That is not to say, however, that we cannot improve on the properties of current widely used materials such as copper. Recent approaches have successfully enhanced the yield strength and ductility copper nanowires and films through a process of nanotwinning [4345], exploiting the behavior of grain boundaries at the molecular scale. Improvements are possible, but such improvements can only enhance the intrinsic properties—new applications for copper may indeed emerge in electronics, biochips, NEMS, and many others, but if and only if the “new” enhanced properties satisfy the requirements of the chosen application.

  3. 3.

    Actin is a type of globular protein found in all eukaryotic cells in species as diverse as algae and humans, and is one of the three major components of the cytoskeleton. Actin participates in many important cellular processes including muscle contraction, cell motility, cell division and cytokinesis, vesicle and organelle movement, cell signaling, and the establishment and maintenance of cell junctions and cell shape.

  4. 4.

    Keratin refers to a family of fibrous structural proteins, the key structural material making up the outer layer of human skin and the key structural component of hair and nails. It is part of the family of intermediate filament proteins.

  5. 5.

    The butterfly effect is the sensitive dependence on initial conditions where a small change at one point in a nonlinear system can result in large differences to a later state. The effect is coined after a thought experiment, where a butterfly flapping its wings in Japan can directly lead to creation of a hurricane in Florida.

References

  1. D.W. Thompson, On Growth and Form (Dover, New York, 1992)

    Book  Google Scholar 

  2. S. Vogel, Life in Moving Fluids: The Physical Biology of Flow (W. Grant Press, Boston, 1981)

    Google Scholar 

  3. S. Vogel, Life’s Devices: The Physical World of Animals and Plants (Princeton University Press, Princeton, 1988)

    Google Scholar 

  4. S. Vogel, J.G. Vogel, Copying life’s devices. Curr. Sci. 78(12), 1424–1430 (2000)

    Google Scholar 

  5. S. Vogel, Comparative Biomechanics: Life’s Physical World (Princeton University Press, Princeton, 2003)

    Google Scholar 

  6. S. Vogel, The emergence of comparative biomechanics. Integr. Comp. Biol. 47(1), 13–15 (2007)

    Article  Google Scholar 

  7. J.C. Venter, et al., The sequence of the human genome. Science 291(5507), 1304–1351 (2001)

    Article  CAS  Google Scholar 

  8. F.S. Collins, M. Morgan, A. Patrinos, The human genome project: lessons from large-scale biology. Science 300(5617), 286–290 (2003)

    Article  CAS  Google Scholar 

  9. J. Lederberg, A. McCray, ‘ome sweet’ omics—a genealogical treasury of words. The Scientist 15(7), 8–9 (2001)

    Google Scholar 

  10. E. Kolker, Editorial. OMICS: J. Integr. Biol. 6(1), 1 (2002)

    Article  CAS  Google Scholar 

  11. J. Goldstein, Emergence as a construct: history and issues. Emergence: Complexity and Organization 1(1), 49–72 (1999)

    Article  Google Scholar 

  12. E.J. Alm, B.J. Shapiro, Comparing patterns of natural selection across species using selective signatures. PLoS Genet. 4(2) (2008)

    Google Scholar 

  13. C. Fraser, E.J. Alm, M.F. Polz, B.G. Spratt, W.P. Hanage, The bacterial species challenge: making sense of genetic and ecological diversity. Science 323(5915), 741–746 (2009)

    Article  CAS  Google Scholar 

  14. D. Greenbaum, N.M. Luscombe, R. Jansen, J. Qian, M. Gerstein, Interrelating different types of genomic data, from proteome to secretome: ’oming in on function. Genome Res. 11(9), 1463–1468 (2001)

    Article  CAS  Google Scholar 

  15. P. Fratzel, Collagen: Structure and Mechanics (Springer, New York, 2008)

    Book  Google Scholar 

  16. A. Gautieri, S. Vesentini, A. Redaelli, M.J. Buehler, Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 11(2), 757–766 (2011)

    Article  CAS  Google Scholar 

  17. J.D. Currey, Bones: Structure and Mechanics (Princeton University Press, Princeton, 2002)

    Google Scholar 

  18. M.J. Buehler, Atomistic and continuum modeling of mechanical properties of collagen: elasticity, fracture and self-assembly. J. Mater. Res. 21(8), 1947–1961 (2006)

    Article  CAS  Google Scholar 

  19. S.C. Cowin, A.M. Sadegh, G.M. Luo, An evolutionary Wolff law for trabecular architecture. J. Biomech. Eng. Trans. ASME 114(1), 129–136 (1992)

    Article  CAS  Google Scholar 

  20. S.C. Cowin, Bone poroelasticity. J. Biomech. 32(3), 217–238 (1999)

    Article  CAS  Google Scholar 

  21. N. Sasaki, S. Odajima, Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J. Biomech. 29(9), 1131–1136 (1996)

    Article  CAS  Google Scholar 

  22. S.J. Eppell, B.N. Smith, H. Kahn, R. Ballarini, Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils. J. R. Soc. Interface 3(6), 117–121 (2006)

    Article  CAS  Google Scholar 

  23. J.A.J. van der Rijt, K.O. van der Werf, M.L. Bennick, P.J. Dijkstra, J. Feijen, Micromechanical testing of individual collagen fibrils. Macromol. Biosci. 6, 697–702 (2006)

    Article  Google Scholar 

  24. M.J. Buehler, Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. J. Mech. Behav. Biomed. Mater. 1, 59–67 (2008)

    Article  Google Scholar 

  25. H.-C. Spatz, E.J. O’Leary, J.F.V. Vincent, Young’s moduli and shear moduli in cortical bone. Proc. Biol. Sci. 263(1368), 287–294 (1996)

    Article  CAS  Google Scholar 

  26. E. Fedorova, D. Zink, Nuclear genome organization: common themes and individual patterns. Curr. Opin. Genet. Dev. 19(2), 166–171 (2009)

    Article  CAS  Google Scholar 

  27. N. Kepper, D. Foethke, R. Stehr, G. Wedemann, K. Rippe, Nucleosome geometry and internucleosomal interactions control the chromatin fiber conformation. Biophys. J. 95, 3692–3705 (2008)

    Article  CAS  Google Scholar 

  28. N.C. Seeman, An overview of structural DNA nanotechnology. Mol. Biotechnol. 37(3), 246–257 (2007)

    Article  CAS  Google Scholar 

  29. E.S. Andersen, M. Dong, M.M. Nielsen, K. Jahn, R. Subramani, W. Mamdouh, M.M. Golas, B. Sander, H. Stark, C.L.P. Oliveira, J.S. Pedersen, V. Birkedal, F. Besenbacher, K.V. Gothelf, J. Kjems, Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459(7243), 73–75 (2009)

    Article  CAS  Google Scholar 

  30. C. Lin, Y. Liu, H. Yan, Designer DNA nanoarchitectures. Biochemistry 48(8), 1663–1674 (2009)

    Article  CAS  Google Scholar 

  31. M.J. Buehler, Y.C. Yung, Deformation and failure of protein materials in physiologically extreme conditions and disease. Nat. Mater. 8(3), 175–188 (2009)

    Article  CAS  Google Scholar 

  32. B.L. Smith, T.E. Schaffer, M. Viani, J.B. Thompson, N.A. Frederick, J. Kindt, A. Belcher, G.D. Stucky, D.E. Morse, P.K. Hansma, Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761–763 (1999)

    Article  CAS  Google Scholar 

  33. R.Z. Wang, Z. Suo, A.G. Evans, N. Yao, I.A. Aksay, Deformation mechanisms in nacre. J. Mater. Res. 16(9), 2485–2493 (2001)

    Article  CAS  Google Scholar 

  34. F. Barthelat, C.-M. Li, C. Comi, H.D. Espinosa, Mechanical properties of nacre constituents and their impact on mechanical performance. J. Mater. Res. 21(8), 1977–1986 (2006)

    Article  CAS  Google Scholar 

  35. S. Nikolov, M. Petrov, L. Lymperakis, M. Frik, C. Sachs, H.-O. Fabritius, D. Raabe, J. Neugebauer, Revealing the design principles of high-performance biological composites using ab initio and multiscale simulations: the example of lobster cuticle. Adv. Mater. 22(4), 519–526 (2010)

    Article  CAS  Google Scholar 

  36. E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P. Tomsia, R.O. Ritchie, Tough, bio-inspired hybrid materials. Science 322, 1516–1520 (2008)

    Article  CAS  Google Scholar 

  37. C. Ortiz, M.C. Boyce, Bioinspired structural materials. Science 319(5866), 1053–1054 (2008)

    Article  CAS  Google Scholar 

  38. H. Yao, M. Dao, T. Imholt, J. Huang, K. Wheeler, A. Bonilla, S. Suresh, C. Ortiz, Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod. Proc. Natl. Acad. Sci. USA 107(3), 987–992 (2010)

    Article  CAS  Google Scholar 

  39. M.A. Meyers, A.Y.M. Lin, P.Y. Chen, J. Muyco, Mechanical strength of abalone nacre: role of the soft organic layer. J. Mech. Behav. Biomed. Mater. 1(1), 76–85 (2008)

    Article  Google Scholar 

  40. F. Song, A.K. Soh, Y.L. Bai, Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 24, 3623–3631 (2009)

    Article  Google Scholar 

  41. N. Yao, A.K. Epstein, W.W. Liu, F. Sauer, N. Yang, Organic-inorganic interfaces and spiral growth in nacre. J. R. Soc. Interface 6, 367–376 (2009)

    Article  CAS  Google Scholar 

  42. Z. Tang, N.A. Kotov, S. Magono, B. Ozturk, Nanostructured artificial nacre. Nat. Mater. 2, 413–418 (2003)

    Article  CAS  Google Scholar 

  43. L. Lu, X. Chen, X. Huang, K. Lu, Revealing the maximum strength in nanotwinned copper. Science 323(5914), 607–610 (2009)

    Article  CAS  Google Scholar 

  44. L. Li, N.M. Ghoniem, Twin-size effects on the deformation of nanotwinned copper. Phys. Rev. B 79, 075444 (2009)

    Article  Google Scholar 

  45. D. Xu, W.L. Kwan, K. Chen, X. Zhang, V. Ozolins, K.N. Tu, Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition. Appl. Phys. Lett. 91, 254105 (2007)

    Article  Google Scholar 

  46. S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Article  CAS  Google Scholar 

  47. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002)

    Article  CAS  Google Scholar 

  48. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)

    Article  CAS  Google Scholar 

  49. M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000)

    Article  CAS  Google Scholar 

  50. F. Li, H.M. Cheng, S. Bai, G. Su, M.S. Dresselhaus, Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl. Phys. Lett. 77(20), 3161–3163 (2000)

    Article  CAS  Google Scholar 

  51. R.H. Baughman, M. Zhang, S.L. Fang, A.A. Zakhidov, S.B. Lee, A.E. Aliev, C.D. Williams, K.R. Atkinson, Strong, transparent, multifunctional, carbon nanotube sheets. Science 309(5738), 1215–1219 (2005)

    Article  Google Scholar 

  52. T.C. Chang, W.L. Guo, X.M. Guo, Buckling of multiwalled carbon nanotubes under axial compression and bending via a molecular mechanics model. Phys. Rev. B 72(6) (2005)

    Google Scholar 

  53. A. Sears, R.C. Batra, Buckling of multiwalled carbon nanotubes under axial compression. Phys. Rev. B 73(8) (2006)

    Google Scholar 

  54. T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391(6662), 62–64 (1998)

    Article  CAS  Google Scholar 

  55. L.C. Venema, V. Meunier, P. Lambin, C. Dekker, Atomic structure of carbon nanotubes from scanning tunneling microscopy. Phys. Rev. B 61(4), 2991–2996 (2000)

    Article  CAS  Google Scholar 

  56. N. Mingo, D.A. Stewart, D.A. Broido, D. Srivastava, Phonon transmission through defects in carbon nanotubes from first principles. Phys. Rev. B 77(3) (2008)

    Google Scholar 

  57. N.M. Pugno, On the strength of the carbon nanotube-based space elevator cable: from nanomechanics to megamechanics. J. Phys., Condens. Matter 18(33), S1971–S1990 (2006)

    Article  CAS  Google Scholar 

  58. B.C. Edwards, Design and deployment of a space elevator. Acta Astronaut. 47(10), 735–744 (2000)

    Article  Google Scholar 

  59. R.S. Ruoff, M.F. Yu, B.S. Files, S. Arepalli, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 (2000)

    Article  Google Scholar 

  60. R.S. Ruoff, M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000)

    Article  Google Scholar 

  61. N.M. Pugno, The role of defects in the design of space elevator cable: from nanotube to megatube. Acta Mater. 55(15), 5269–5279 (2007)

    Article  CAS  Google Scholar 

  62. N.M. Pugno, Space elevator: out of order? Nano Today 2(6), 44–47 (2007)

    Article  Google Scholar 

  63. J.M. Gosline, P.A. Guerette, C.S. Ortlepp, K.N. Savage, The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Biol. 202(23), 3295–3303 (1999)

    CAS  Google Scholar 

  64. S. Keten, M.J. Buehler, Nanostructure and molecular mechanics of spider dragline silk protein assemblies. J. R. Soc. Interface (2010)

    Google Scholar 

  65. N. Du, X.Y. Liu, J. Narayanan, L.A. Li, M.L.M. Lim, D.Q. Li, Design of superior spider silk: from nanostructure to mechanical properties. Biophys. J. 91(12), 4528–4535 (2006)

    Article  CAS  Google Scholar 

  66. E. Nieuwenhuys, How thick should a spider silk thread be to stop a Boeing-747 in full flight? (online). http://ednieuw.home.xs4all.nl/Spiders/Info/SilkBoeing.html (2007)

  67. J.H. Weiner, Hellmann-Feynman theorem, elastic moduli, and the Cauchy relations. Phys. Rev. B 24(2), 845–848 (1981)

    Article  CAS  Google Scholar 

  68. E.B. Tadmor, M. Ortiz, R. Phillips, Quasicontinuum analysis of defects in solids. Philos. Mag. A 73(6), 1529–1563 (1996)

    Article  Google Scholar 

  69. P.M. Morse, Diatomic molecules according to the wave mechanics. ii. vibrational levels. Phys. Rev. 34(1) (1929)

    Article  CAS  Google Scholar 

  70. M.J. Buehler, Atomistic Modeling of Materials Failure (Springer, Berlin, 2008)

    Book  Google Scholar 

  71. K.C. Holmes, D. Popp, W. Gebhard, W. Kabsch, Atomic model of the actin filament. Nature 347(6288), 44–49 (1990)

    Article  CAS  Google Scholar 

  72. T.D. Pollard, G.G. Borisy, Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4), 453–465 (2003)

    Article  CAS  Google Scholar 

  73. E. Frixione, Recurring views on the structure and function of the cytoskeleton: a 300-year epic. Cell Motil. Cytoskelet. 46(2), 73–94 (2000)

    Article  CAS  Google Scholar 

  74. A.K. Mohanty, M. Misra, L.T. Drzal, Natural Fibers, Biopolymers, and Biocomposites (Taylor & Francis, Boca Raton, 2005)

    Book  Google Scholar 

  75. R.P. Wool, X.S. Sun, Bio-Based Polymers and Composites (Elsevier/Academic Press, Amsterdam/Boston, 2005)

    Google Scholar 

  76. D.L. Kaplan, Biopolymers from Renewable Resources (Springer, New York, 1998)

    Book  Google Scholar 

  77. S. Thomas, M.J. John, Biofibres and biocomposites. Carbohydr. Polym. 71(3), 343–364 (2008)

    Article  Google Scholar 

  78. G. Hinrichsen, A.K. Mohanty, M. Misra, Biofibres, biodegradable polymers and biocomposites: an overview. Macromol. Mater. Eng. 276(3–4), 1–24 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cranford, S.W., Buehler, M.J. (2012). The Materiome. In: Biomateriomics. Springer Series in Materials Science, vol 165. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1611-7_2

Download citation

Publish with us

Policies and ethics