Antimicrobial Compounds from Tree Endophytes

Chapter
Part of the Forestry Sciences book series (FOSC, volume 80)

Abstract

Endophytes are organisms that live at least parts of their life cycle asymptomatically within the plant tissue. Endophytic fungi include new species as well as latent pathogens and dormant saprophytes. The estimated high species diversity of endophytes and their adaptation to various plant habitats presumes a rich and almost untapped source of new secondary metabolites, some of which might become useful leads for pharmaceutical or agricultural applications. Forests are large reservoirs for fungal diversity, covering 30.3% of the land area in the world. This chapter focuses on bioactive natural compounds, which were isolated from tree endophytes described from 2007 on. Furthermore, an overview is given on research efforts of pharmaceutically significant plant compounds produced by endophytic fungi, namely: taxol, camptothecin, as well as podophyllotoxin and derivatives. In addition, recent literature on endophytes and the biological activity of their extracts is cited.

Abbreviations

ITS

internal transcribed spacer

MIC

minimal inhibitory concentration

IC50

half maximal inhibitory concentration

HIV

human immunodeficiency virus

VOC

volatile organic compound

References

  1. Aly A, Debbab A, Kjer J et al (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16CrossRefGoogle Scholar
  2. Ananda K, Sridhar KR (2002) Diversity of endophytic fungi in the roots of mangrove species on the west coast of India. Can J Microbiol 48:871–878PubMedCrossRefGoogle Scholar
  3. Arnold AE, Mejía LC, Kyllo D et al (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654PubMedCrossRefGoogle Scholar
  4. Arnstein HR, Cook AH (1947) Production of antibiotics by fungi; javanicin; an antibacterial pigment from Fusarium javanicum. J Chem Soc 1021–1028 doi:10.1039/JR9470001021Google Scholar
  5. Arora R, Singh S, Sharma RK (2008) Neem leaves: Indian herbal medicine. In: Watson RR, Preedy VR (eds) Botanical medicine in clinical practise. CAB International, Wallingford, pp 85–98Google Scholar
  6. Banerjee D, Strobel G, Geary B et al (2010) Muscodor albus strain GBA, an endophytic fungus of Ginkgo biloba from United States of America, produces volatile antimicrobials. Mycology 1:179–186CrossRefGoogle Scholar
  7. Barceloux DG (2008) Medical toxicology of natural substances: foods, fungi, medicinal herbs, plants, and venomous Animals. Wiley, HobokenGoogle Scholar
  8. Bashyal B, Li JY, Strobel G et al (1999) Seimatoantlerium nepalense, an endophytic taxol producing coelomycete from Himalayan yew (Taxus wallachiana). Mycotaxon 72:33–42Google Scholar
  9. Bills GF, Polishook JD (1991) Microfungi from Carpinus caroliniana. Can J Bot 69:1477–1482CrossRefGoogle Scholar
  10. Boonphong S, Kittakoop P, Isaka M et al (2001) Multiplolides A and B, new antifungal 10-membered lactones from Xylaria multiplex. J Nat Prod 64:965–967PubMedCrossRefGoogle Scholar
  11. Brady SF, Wagenaar MM, Singh MP et al (2000) The cytosporones, new octaketide antibiotics isolated from an endophytic fungus. Org Lett 2:4043–4046PubMedCrossRefGoogle Scholar
  12. Breen J, Dacre JC, Raistrick H et al (1955) Studies in the biochemistry of microorganisms. 95. Rugulosin, a crystalline coloring matter of Penicillium rugulosum Thom. Biochem J 60: 618–626PubMedGoogle Scholar
  13. Brenan JPM (1955) Notes on Mimosoideae: I. Kew Bull 10:161–192CrossRefGoogle Scholar
  14. Calhoun LA, Findlay JA, Miller JD et al (1992) Metabolites toxic to spruce budworm from balsam fir needle endophytes. Mycol Res 96:281–286CrossRefGoogle Scholar
  15. Camarda L, Merlini L, Nasini G (1976) Metabolites of Cercospora. Taiwapyrone, an [alpha]-pyrone of unusual structure from Cercospora taiwanensis. Phytochemistry 15:537–539CrossRefGoogle Scholar
  16. Campos FF, Rosa LH, Cota BB et al (2008) Leishmanicidal Metabolites from Cochliobolus sp., an endophytic fungus isolated from Piptadenia adiantoides (Fabaceae). PLoS Negl Trop Dis. doi:101371/annotation/49748d99-fe4d-4c28-b77a-306d0cf7062ePubMedGoogle Scholar
  17. Campos FF, Johann S, Cota BB et al (2010) Antifungal activity of trichothecenes from Fusarium sp. against clinical isolates of Paracoccidioides brasiliensis. Mycoses. doi:10.1111/j.1439-0507.2009.01854.xPubMedGoogle Scholar
  18. Canel C, Moraes RM, Dayan FE et al (2000) Podophyllotoxin. Phytochemistry 54:115–120PubMedCrossRefGoogle Scholar
  19. Carroll G (1995) Forest endophytes – pattern and process. Can J Bot 73:1316–1324CrossRefGoogle Scholar
  20. Carruthers JR, Cerrini S, Fedeli W et al (1971) Structures of cochlioquinones A and B, new metabolites of Cochliobolus miyabeanus: chemical and X-ray crystallographic determination. J Chem Soc D 164–166 doi:10.1039/C29710000164Google Scholar
  21. Che Y, Gloer JB, Wicklow DT (2002) Phomadecalins A-D and Phomapentenone A: new bioactive metabolites from Phoma sp. NRRL 25697, a fungal colonist of Hypoxylon stromata. J Nat Prod 65:399–402PubMedCrossRefGoogle Scholar
  22. Cheng Z-S, Pan J-H, Tang W-C et al (2009) Biodiversity and biotechnological potential of mangrove-associated fungi. J For Res 20:63–72CrossRefGoogle Scholar
  23. Daferner M, Mensch S, Anke T et al (1999) Hypoxysordarin, a new sordarin derivative from Hypoxylon croceum. Z Naturforsch C 54:474–480PubMedGoogle Scholar
  24. Daisy BH, Strobel G, Castillo U et al (2002) Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148:3737–3741PubMedGoogle Scholar
  25. Daniel M (2006) Medicinal plants: chemistry and properties. Science Publishers, EnfieldGoogle Scholar
  26. Danishefsky SJ, Masters JJ, Young WB et al (1996) Total synthesis of baccatin III and taxol. J Am Chem Soc 118:2843–2859CrossRefGoogle Scholar
  27. Dhar TK, Siddiqui KAI, Ali E (1982) Structure of phaseolinone, a novel phytotoxin from Macrophomina phaseolina. Tetrahedron Lett 23:5459–5462Google Scholar
  28. Dreyfuss MM, Chapela IH (1994) Potential of fungi in the discovery of novel, low molecular weight pharmaceuticals. In: Gullo VP (ed) Discovery of natural products with therapeutic potential. Butterworth-Heinemann, Boston, pp 49–80Google Scholar
  29. Eckenwalder JE (2009) Conifers of the world: the complete reference. Timber Press, PortlandGoogle Scholar
  30. Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124PubMedCrossRefGoogle Scholar
  31. FAO – Food and Agriculture Organization of the United Nations (2006) Forestry Paper 147. Global Forest Resources Assessment 2005 – Progress towards sustainable forest management. FAO, RomeGoogle Scholar
  32. FAO – Food and Agriculture Organization of the United Nations (2008) The world’s mangroves, 1980–2005: a thematic study in the framework of the Global Forest Resources Assessment 2005. FAO, RomeGoogle Scholar
  33. Fernandes MDRV, Silva TAC, Pfenning LH et al (2009) Biological activities of the fermentation extract of the endophytic fungus Alternaria alternata isolated from Coffea arabica L. Braz J Pharm Sci 45:677–685CrossRefGoogle Scholar
  34. Filip P, Weber RWS, Sterner O et al (2003) Hormonemate, a new cytotoxic and apoptosis-inducing compound from the endophytic fungus Hormonema dematioides. I. Identification of the producing strain, and isolation and biological properties of hormonemate. Z Naturforsch C 58:547–552PubMedGoogle Scholar
  35. Firáková S, Šturdíková M, Múčková M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia 62:251–257CrossRefGoogle Scholar
  36. Flores-Bustamante ZR, Rivera-Orduna FN, Martinez-Cardenas A et al (2010) Microbial paclitaxel: advances and perspectives. J Antibiot 63:460–467PubMedCrossRefGoogle Scholar
  37. Frense D (2007) Taxanes: perspectives for biotechnological production. Appl Microbiol Biotechnol 73:1233–1240PubMedCrossRefGoogle Scholar
  38. Gallo MBC, Guimarães DO, Momesso LDS et al (2008) Natural products from endophytic fungi. In: Saikia R (ed) Microbial biotechnology. New India Publishing Agency, New Delhi, pp 139–168Google Scholar
  39. Gangadevi V, Muthumary J (2008) Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. World J Microbiol Biotechnol 24:717–724CrossRefGoogle Scholar
  40. Ge HM, Shen Y, Zhu CH et al (2008) Penicidones A-C, three cytotoxic alkaloidal metabolites of an endophytic Penicillium sp. Phytochemistry 69:571–576PubMedCrossRefGoogle Scholar
  41. Gomez-Lorenzo MG, García-Bustos JF (1998) Ribosomal P-protein stalk function is targeted by sordarin. J Biol Chem 273:25041–25044PubMedCrossRefGoogle Scholar
  42. Gonzalez MC, Anaya A, Glenn AE et al (2009) Muscodor yucatanensis, a new endophytic ascomycete from Mexican chakah, Bursera simaruba. Mycotaxon 110:363–372CrossRefGoogle Scholar
  43. Gordaliza M, García PA, Miguel JM et al (2004) Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon 44:441–459PubMedCrossRefGoogle Scholar
  44. Govindachari TR, Viswanathan N (1972) Alkaloids of Mappia foetida. Phytochemistry 11: 3529–3531CrossRefGoogle Scholar
  45. Gu W, Ding H (2008) Two new tetralone derivatives from the culture of Xylaria hypoxylon AT-028. Chin Chem Lett 19:1323–1326CrossRefGoogle Scholar
  46. Guenard D, Gueritte-Voegelein F, Potier P (1993) Taxol and taxotere: discovery, chemistry, and structure-activity relationships. Acc Chem Res 26:160–16CrossRefGoogle Scholar
  47. Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526PubMedCrossRefGoogle Scholar
  48. Guo B, Wang Y, Sun X et al (2008) Bioactive natural products from endophytes: a review. Appl Biochem Microbiol 44:136–142CrossRefGoogle Scholar
  49. Hatakeyama T, Koseki T, Murayama T et al (2010) Eremophilane sesquiterpenes from the endophyte Microdiplodia sp. KS 75–1 and revision of the stereochemistries of phomadecalins C and D. Phytochem Lett 3:148–151CrossRefGoogle Scholar
  50. Hauser D, Sigg HP (1971) Isolierung und Abbau von Sordarin. Helv Chim Acta 54:1187–1190CrossRefGoogle Scholar
  51. Hawksworth DL (2001) The magnitude of fungal diversity: the 15 million species estimate revisited. Mycol Res 105:1422–1432CrossRefGoogle Scholar
  52. Hazalin NAMN, Ramasamy K, Lim SM et al (2009) Cytotoxic and antibacterial activities of endophytic fungi isolated from plants at the National Park, Pahang, Malaysia. BMC Complement Altern Med. doi:10.1186/1472-6882-9-46PubMedGoogle Scholar
  53. Herre EA, Meíja LC, Kyllo DA et al (2007) Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology 88:550–558PubMedCrossRefGoogle Scholar
  54. Hu Z-Y, Li Y-Y, Huang Y-J et al (2008) Three new sesquiterpenoids from Xylaria sp. NCY2. Helvetica Chim Acta 91:46–52CrossRefGoogle Scholar
  55. Hu Z-Y, Li Y-Y, Lu C-H et al (2010) Seven novel linear polyketides from Xylaria sp. NCY2. Helvetica Chim Acta 93:925–933CrossRefGoogle Scholar
  56. Huang KC (1999) The pharmacology of Chinese herbs, 2nd edn. CRC Press LLC, Boca RatonGoogle Scholar
  57. Huang Z, Cai X, Shao C et al (2008) Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76. Phytochemistry 69: 1604–1608PubMedCrossRefGoogle Scholar
  58. Hussain H, Akhtar N, Draeger S et al (2009) New bioactive 2,3-epoxycyclohexenes and isocoumarins from the endophytic fungus Phomopsis sp. from Laurus azorica. Eur J Org Chem 2009:749–756CrossRefGoogle Scholar
  59. Isaka M, Jaturapat A, Kladwang W et al (2000) Antiplasmodial compounds from the wood-decayed fungus Xylaria sp. BCC 1067. Planta Med 66:473–475PubMedCrossRefGoogle Scholar
  60. Janeš D, Kreft S, Jurc M et al (2007) Antibacterial activity in higher fungi (mushrooms) and endophytic fungi from Slovenia. Pharm Biol 45:700–706CrossRefGoogle Scholar
  61. Janick J, Pauli RE (2008) The encyclopedia of fruit & nuts. CAB International, WallingfordGoogle Scholar
  62. Jennewein S, Croteau R (2001) Taxol: biosynthesis, molecular genetics and biotechnological applications. Appl Microbiol Biotechnol 57:13–19PubMedCrossRefGoogle Scholar
  63. Justice CJ, Hsu M, Tse B et al (1998) Elongation factor 2 as a novel target for selective inhibition of fungal protein synthesis. J Biol Chem 273:3148–3151PubMedCrossRefGoogle Scholar
  64. Kharwar RN, Verma VC, Kumar A et al (2009) Javanicin, an antibacterial naphthaquinone from an endophytic fungus of neem, Chloridium sp. Curr Microbiol 58:233–238PubMedCrossRefGoogle Scholar
  65. Kour A, Shawl A, Rehman S et al (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol 24:1115–1121CrossRefGoogle Scholar
  66. Kumaran RS, Muthumary J, Hur BK (2008) Production of taxol from Phyllosticta spinarum, an endophytic fungus of Cupressus sp. Eng Life Sci 8:438–446CrossRefGoogle Scholar
  67. Kumaran RS, Kim HJ, Hur B-K (2010) Taxol promising fungal endophyte, Pestalotiopsis species isolated from Taxus cuspidata. J Biosci Bioeng 110:541–546PubMedCrossRefGoogle Scholar
  68. Kumaresan V, Suryanarayanan TS (2001) Occurrence and distribution of endophytic fungi in a mangrove community. Mycol Res 105:1388–1391CrossRefGoogle Scholar
  69. Kusari S, Lamshöft M, Spiteller M (2009a) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107:1019–1030PubMedCrossRefGoogle Scholar
  70. Kusari S, Zühlke S, Spiteller M (2009b) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7PubMedCrossRefGoogle Scholar
  71. Lacey LA, Horton DR, Jones DC et al (2009) Efficacy of the biofumigant fungus Muscodor albus (Ascomycota: Xylariales) for control of codling moth (Lepidoptera: Tortricidae) in simulated storage conditions. J Econ Entomol 102:43–49PubMedCrossRefGoogle Scholar
  72. Li TSC (2008) Vegetables and fruits – nutritional and therapeutic values. CRC, Taylor & Francis, Boca RatonCrossRefGoogle Scholar
  73. Li JY, Sidhu RS, Ford EJ et al (1998) The induction of taxol production in the endophytic fungus Periconia sp. from Torreya grandifolia. J Ind Microbiol Biotechnol 20:259–264CrossRefGoogle Scholar
  74. Li S, Zhang Z, Cain A et al (2005) Antifungal activity of camptothecin, trifolin, and hyperoside isolated from Camptotheca acuminata. J Agric Food Chem 53:32–37PubMedCrossRefGoogle Scholar
  75. Li QY, Zu YG, Shi RZ et al (2006) Review camptothecin: current perspectives. Curr Med Chem 13:2021–2039PubMedCrossRefGoogle Scholar
  76. Li E, Tian R, Liu S et al (2008) Pestalotheols A-D, bioactive metabolites from the plant endophytic fungus Pestalotiopsis theae. J Nat Prod 71:664–668PubMedCrossRefGoogle Scholar
  77. Lim CH, Ueno H, Miyoshi H et al (1996) Phytotoxic compounds cochlioquinones are inhibitors of mitochondrial NADH-ubiquinone reductase. Nippon Noyaku Gakkaishi 21:213–215Google Scholar
  78. Liu Y-Q, Yang L, Tian X (2007) Podophyllotoxin: current perspectives. Curr Bioact Compd 3: 37–66CrossRefGoogle Scholar
  79. Liu X, Dong M, Chen X et al (2008a) Antimicrobial activity of an endophytic Xylaria sp.YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl Microbiol Biotechnol 78:241–247PubMedCrossRefGoogle Scholar
  80. Liu L, Tian R, Liu S, Chen X et al (2008b) Pestaloficiols A-E, bioactive cyclopropane derivatives from the plant endophytic fungus Pestalotiopsis fici. Bioorg Med Chem 16:6021–6026PubMedCrossRefGoogle Scholar
  81. Liu K, Ding X, Deng B et al (2009) Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. J Ind Microbiol Biotechnol 36:1171–1177PubMedCrossRefGoogle Scholar
  82. Liu F, Cai X-L, Yang H et al (2010a) The bioactive metabolites of the mangrove endophytic fungus Talaromyces sp. ZH-154 isolated from Kandelia candel (L) Druce. Planta Med 76:185–189PubMedCrossRefGoogle Scholar
  83. Liu K, Ding X, Deng B et al (2010b) 10-Hydroxycamptothecin produced by a new endophytic Xylaria sp., M20, from Camptotheca acuminata. Biotechnol Lett 32:689–693PubMedCrossRefGoogle Scholar
  84. Macías-Rubalcava ML, Hernández-Bautista BE, Oropeza F et al (2010) Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba. J Chem Ecol 36:1122–1131PubMedCrossRefGoogle Scholar
  85. Mahapatra S, Banerjee D (2010) Diversity and screening for antimicrobial activity of endophytic fungi from Alstonia scholaris. Acta Microbiol Immunol Hung 57:215–23PubMedCrossRefGoogle Scholar
  86. Miller JD, Sumarah MW, Adams GW (2008) Effect of a rugulosin-producing endophyte in Picea glauca on Choristoneura fumiferana. J Chem Ecol 34:362–368PubMedCrossRefGoogle Scholar
  87. Nicolaou KC, Yang Z, Liu JJ et al (1994) Total synthesis of taxol. Nature 367:630–634PubMedCrossRefGoogle Scholar
  88. Ogawara H, Higashi K, Machida T et al (1994) Inhibitors of diacylglycerol kinase from Drechslera sacchari. J Antibiot 47:499–501PubMedGoogle Scholar
  89. Ojima I, Habus I, Zhao M et al (1992) New and efficient approaches to the semisynthesis of taxol and its C-13 side chain analogs by means of [beta]-lactam synthon method. Tetrahedron 48:6985–7012CrossRefGoogle Scholar
  90. Osono T (2006) Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can J Microbiol 52:701–716PubMedCrossRefGoogle Scholar
  91. Petersen M, Alfermann AW (2001) The production of cytotoxic lignans by plant cell cultures. Appl Microbiol Biotechnol 55:135–142PubMedCrossRefGoogle Scholar
  92. Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JA, Hirano SS (eds) Microbial ecology of leaves. Springer Verlag, New York, pp 179–197Google Scholar
  93. Phongpaichit S, Nikom J, Rungjindamai N et al (2007) Biological activities of extracts from endophytic fungi isolated from Garcinia plants. FEMS Immun Med Microbiol 51:517–525CrossRefGoogle Scholar
  94. Pimentel MR, Molina G, Dionísio AP et al (2011) The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int. doi:104061/2011/576286PubMedGoogle Scholar
  95. Pongcharoen W, Rukachaisirikul V, Phongpaichit S et al (2008) Metabolites from the endophytic fungus Xylaria sp. PSU-D14. Phytochemistry 69:1900–1902PubMedCrossRefGoogle Scholar
  96. Powell RG, Petroski RJ (1992) Alkaloid toxins in endophyte-infected grasses. Nat Toxins 1: 163–170PubMedCrossRefGoogle Scholar
  97. Puri SC, Verma V, Amna T et al (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719PubMedCrossRefGoogle Scholar
  98. Puri SC, Nazir A, Chawla R et al (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122: 494–510PubMedCrossRefGoogle Scholar
  99. Qin JC, Zhang YM, Gao JM et al (2009) Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorg Med Chem Lett 19: 1572–1574PubMedCrossRefGoogle Scholar
  100. Rehman S, Shawl AS, Verma V et al (2008) An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Prikl Biokhim Mikrobiol 44:225–231PubMedGoogle Scholar
  101. Riche C, Pascard-Billy C, Devys M et al (1974) Crystal and molecular structure of phomenone, phytotoxin from the mushroom Phoma exigua. Tetrahedron Lett 15:2765–2766CrossRefGoogle Scholar
  102. Rodriguez RJ, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114PubMedCrossRefGoogle Scholar
  103. Rodriguez RJ, White JF, Arnold AE et al (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330PubMedCrossRefGoogle Scholar
  104. Rosa LH, Gonçalves VN, Caligiorne RB et al (2010) Leishmanicidal, trypanocidal, and cytotoxic activities of endophytic fungi associated with bioactive plants in Brazil. Braz J Microbiol 41:420–430CrossRefGoogle Scholar
  105. Saikkonen K, Faeth SH, Helander ML et al (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343CrossRefGoogle Scholar
  106. Sayers EW, Barrett T, Benson DA et al (2009) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 37 Database issue: D5–15Google Scholar
  107. Schaeffer JM, Frazier EG, Bergstrom AR et al (1990) Cochlioquinone A, a nematocidal agent which competes for specific [3H]ivermectin binding sites. J Antibiot 43:1179–1182PubMedGoogle Scholar
  108. Scherlach K, Boettger D, Remme N et al (2010) The chemistry and biology of cytochalasans. Nat Prod Rep 27:869–886PubMedCrossRefGoogle Scholar
  109. Schmit JP, Mueller GM (2007) An estimate of the lower limit of global fungal diversity. Biodivers Conserv 16:99–111CrossRefGoogle Scholar
  110. Schneider G, Anke H, Sterner O (1995) Xylarin, an antifungal xylaria metabolite with an unusual tricyclic uronic acid moiety. Nat Prod Res 7:309–316, formerly Nat Prod Lett 7: 1478–6427CrossRefGoogle Scholar
  111. Sekita S, Yoshihira K, Natori S et al (1973) Structures of chaetoglobosin A and B, cytotoxic metabolites of Chaetomium globosum. Tetrahedron Lett 23:2109–2112CrossRefGoogle Scholar
  112. Shweta S, Zuehlke S, Ramesha BT et al (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E Mey ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122PubMedCrossRefGoogle Scholar
  113. Sieber-Canavesi F, Sieber TN (1987) Endophytische Pilze in Tanne (Abies alba Mill)-Vergleich zweier Standorte im Schweizer Mittelland (Naturwald-Aufforstung). Sydowia 40:250–273Google Scholar
  114. Sieber-Canavesi F, Sieber TN (1993) Successional patterns of fungal communities in needles of European silver fir (Abies alba Mill). New Phytol 125:149–161CrossRefGoogle Scholar
  115. Siges TH, Hartemink AE, Hebinck P et al (2005) The invasive shrub Piper aduncum and rural livelihoods in the Finschhafen area of Papua New Guinea. Hum Ecol 33:875–893CrossRefGoogle Scholar
  116. Silva GH, de Oliveira CM, Teles HL et al (2010) Sesquiterpenes from Xylaria sp., an endophytic fungus associated with Piper aduncum (Piperaceae). Phytochem Lett 3:164–167CrossRefGoogle Scholar
  117. Staniek A, Woerdenbag HJ, Kayser O (2009) Taxomyces andreanae: a presumed paclitaxel producer demystified? Planta Medica 75:1561–1566PubMedCrossRefGoogle Scholar
  118. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216PubMedCrossRefGoogle Scholar
  119. Stone JK, Polishook JD, White JF (2004) Endophytic fungi. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi – inventory and monitoring methods. Elsevier Academic Press, San Diego, pp 241–270Google Scholar
  120. Strobel G (2010) Muscodor species – endophytes with biological promise. Phytochem Rev. doi:10.1007/s11101-010-9163-3Google Scholar
  121. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502PubMedCrossRefGoogle Scholar
  122. Strobel G, Hess W, Li J et al (1997) Pestalotiopsis guepinii, a taxol-producing endophyte of the Wollemi pine, Wollemia nobilis. Aust J Bot 45:1073–1082CrossRefGoogle Scholar
  123. Strobel G, Dirkse E, Sears J et al (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiol 147:2943–2950Google Scholar
  124. Strobel G, Daisy B, Castillo U et al (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268PubMedCrossRefGoogle Scholar
  125. Sumarah MW, Adams GW, Berghout J et al (2008a) Spread and persistence of a rugulosin-producing endophyte in Picea glauca seedlings. Mycol Res 112:731–736PubMedCrossRefGoogle Scholar
  126. Sumarah MW, Puniani E, Blackwell BA et al (2008b) Characterization of polyketide metabolites from foliar endophytes of Picea glauca. J Nat Prod 71:1393–1398PubMedCrossRefGoogle Scholar
  127. Sumarah MW, Puniani E, Sørensen D et al (2010) Secondary metabolites from anti-insect extracts of endophytic fungi isolated from Picea rubens. Phytochem 71:760–765CrossRefGoogle Scholar
  128. Sutjaritvorakul T, Whalley AJS, Sihanonth P et al (2010) Antimicrobial activity from endophytic fungi isolated from plant leaves in Dipterocarpous forest at Viengsa district Nan province, Thailand. J Agric Technol 6:309–315Google Scholar
  129. Swaminathan C, Raguraman S (2008) Silviculture of neem and its role in agroforestry and social forestry. In: Singh KK, Phogat S, Tomar A, Dhillon RS (eds) Neem: a treatise. I.K. International Publishing House Pvt. Ltd., New DelhiGoogle Scholar
  130. Tabata H (2004) Paclitaxel production by plant-cell-culture technology. Adv Biochem Eng Biotechnol 87:1–23PubMedGoogle Scholar
  131. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459PubMedCrossRefGoogle Scholar
  132. Tansuwan S, Pornpakakul S, Roengsumran S et al (2007) Antimalarial benzoquinones from an endophytic fungus, Xylaria sp. J Nat Prod 70:1620–1623PubMedCrossRefGoogle Scholar
  133. Thomas A, Packham JR (2007) Ecology of woodlands and forests – description, dynamics and diversity. Cambridge University Press, CambridgeGoogle Scholar
  134. Tredici PD (2000) The evolution, ecology, and cultivation of Ginkgo biloba. In: van Beek TA (ed) Ginkgo biloba medicinal and aromatic plants – industrial profiles. CRC, Boca RatonGoogle Scholar
  135. Umeda M, Ohtsubo K, Saito M et al (1975) Cytotoxicity of new cytochalasans from Chaetomium globosum. Experientia 31:435–438PubMedCrossRefGoogle Scholar
  136. Wall ME, Wani MC, Cook CE et al (1966) Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88:3888–3890CrossRefGoogle Scholar
  137. Wang J, Li G, Lu H et al (2000) Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiol Lett 193:249–253PubMedCrossRefGoogle Scholar
  138. Wang C, Wu J, Mei X (2001) Enhancement of taxol production and excretion in Taxus chinensis cell culture by fungal elicitation and medium renewal. Appl Microbiol Biotechnol 55:404–410PubMedCrossRefGoogle Scholar
  139. Wani MC, Taylor HL, Wall ME et al (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327PubMedCrossRefGoogle Scholar
  140. Weber D (2009) Endophytic fungi, occurrence and metabolites. In: Anke T, Weber D (eds) The mycota XV – physiology and genetics: selected basic and applied aspects. Springer, Berlin, pp 153–196Google Scholar
  141. Wu S-H, Chen Y-W, Shao S-C et al (2008) Ten-membered lactones from Phomopsis sp., an endophytic fungus of Azadirachta indica. J Nat Prod 71:731–734PubMedCrossRefGoogle Scholar
  142. Xu S, Ge H, Song Y et al (2009a) Cytotoxic cytochalasin metabolites of endophytic Endothia gyrosa. Chem Biodivers 6:739–745PubMedCrossRefGoogle Scholar
  143. Xu F, Pang J, Lu B et al (2009b) Two metabolites with DNA-binding affinity from the mangrove fungus Xylaria sp. (nr 2508) from the South China Sea Coast. Chin J Chem 27:365–368CrossRefGoogle Scholar
  144. Yamada T, Doi M, Shigeta H et al (2008) Absolute stereostructures of cytotoxic metabolites, chaetomugilins A-C, produced by a Chaetomium species separated from a marine fish. Tetrahedron Lett 49:4192–4195CrossRefGoogle Scholar
  145. Yee WL, Lacey LA, Bishop BJ (2009) Pupal mortality and adult emergence of western cherry fruit fly (Diptera: Tephritidae) exposed to the fungus Muscodor albus (Xylariales: Xylariaceae). J Econ Entomol 102:2041–2047PubMedCrossRefGoogle Scholar
  146. Yoganathan K, Yang L-K, Rossant C et al (2004) Cochlioquinones and epi-cochlioquinones: antagonists of the human chemokine receptor CCR5 from Bipolaris brizae and Stachybotrys chartarum. J Antibiot 57:59–63PubMedGoogle Scholar
  147. Young DH, Michelotti EL, Swindell CS et al (1992) Antifungal properties of taxol and various analogues. Cell Mol Life Sci 48:882–885CrossRefGoogle Scholar
  148. Yu H, Zhang L, Li L et al (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165:437–449PubMedCrossRefGoogle Scholar
  149. Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23: 753–771PubMedCrossRefGoogle Scholar
  150. Zhang P, Zhou P-P, Jiang C et al (2008) Screening of Taxol-producing fungi based on PCR amplification from Taxus. Biotechnol Lett 30:2119–2123PubMedCrossRefGoogle Scholar
  151. Zhang C-L, Wang G-P, Mao L-J et al (2010) Muscodor fengyangensis sp. nov from southeast China: morphology, physiology and production of volatile compounds. Fungal Biol 114: 797–808PubMedCrossRefGoogle Scholar
  152. Zhong J-J (2002) Plant cell culture for production of paclitaxel and other taxanes. J Biosci Bioeng 94:591–599PubMedGoogle Scholar
  153. Zhou X, Zhu H, Liu L et al (2010) A review: recent advances and future prospects of taxol-producing endophytic fungi. Appl Microbiol Biotechnol 86:1707–1717PubMedCrossRefGoogle Scholar
  154. Zhu F, Chen X, Yuan Y et al (2009) The chemical investigations of the mangrove plant Avicennia marina and its endophytes. Open Nat Prod J. doi:102174/18748481009020100241Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institut für Biotechnologie und Wirkstoff-Forschung e.V. (Institute for Biotechnology and Drug Research)KaiserslauternGermany

Personalised recommendations