Improved Phytoremediation of Organic Contaminants Through Engineering of Bacterial Endophytes of Trees

  • Safiyh Taghavi
  • Nele Weyens
  • Jaco Vangronsveld
  • Daniel van der Lelie
Part of the Forestry Sciences book series (FOSC, volume 80)


This chapter describes the possibilities of using engineered plant- associated endophytic bacteria to improve phytoremediation of organic contaminants by complementing the metabolic properties of their host plant. Analysis of the endophytic communities isolated from trees grown on groundwater contaminated with benzene, toluene, ethylbenzene, and xylene (BTEX) or trichloroethylene (TCE) revealed the presence of many strains able to degrade BTEX compounds or resist TCE. One would therefore expect that natural communities of endophytic bacteria can significantly contribute to the efficiency of the phytoremediation process. However, especially for the phytoremediation of TCE, in situ evapotranspiration measurements revealed that a significant amount of the contaminant and its metabolites evaporated to the atmosphere, pointing to a far from optimal situation.

An alternative proactive approach to natural enrichment is to inoculate plants with endophytic bacteria that are engineered to optimally metabolize the contaminant of interest, thereby improving the overall phytoremediation process. Examples of successful bioaugmentation to improve the phytoremediation of BTEX and TCE under greenhouse and field conditions are presented, and the possibilities to extend this concept to other contaminants are discussed.


Horizontal Gene Transfer Organic Contaminant Endophytic Bacterium Yellow Lupine Endophytic Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.







benzene, toluene, ethylbenzene and xylene


Generally Recognized as Safe


  1. Asghar HN, Zahir ZA, Arshad M (2004) Screening rhizobacteria for improving the growth, yield, and oil content of canola (Brassica napus L.). Aust J Agric Res 55:187–194CrossRefGoogle Scholar
  2. Bacon CW, Hinton DM (2007) Bacterial endophytes. In: Gnanamanickam S (ed) The endophytic niche, its occupants, and its utility. Novozymes Biologicals, Salem and formerly at University of Madras, Chennai, India, 56 pGoogle Scholar
  3. Barac T, Taghavi S, Borremans B et al (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588PubMedCrossRefGoogle Scholar
  4. Barac T, Weyens N, Oeyen L et al (2009) Field note: hydraulic containment of a BTEX plume using poplar trees. Int J Phytoremediation 11:416–424PubMedCrossRefGoogle Scholar
  5. Beattie GA (2007) Plant associated bacteria: survey, molecular phylogeny, genomics and recent advances. In: Gnanamanickam S (ed) The endophytic niche, its occupants, and its utility. Novozymes Biologicals, Salem and formerly at University of Madras, Chennai, 56 pGoogle Scholar
  6. Belimov AA, Hontzeas N, Safronova VI et al (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250CrossRefGoogle Scholar
  7. Bent E, Tuzun S, Chanway CP et al (2001) Alterations in plant growth and root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol 47:793–800PubMedCrossRefGoogle Scholar
  8. Burken JG, Schnoor JL (1996) Hybrid poplar tree phytoremediation of volatile organic compounds. Abstr Pap Am Chem Soc 212: 106–AGROGoogle Scholar
  9. Burken JG, Schnoor JL (1999) Distribution and volatilization of organic compounds following uptake by hybrid poplar trees. Int J Phytoremediation 1:139–151CrossRefGoogle Scholar
  10. de Salamone IEG, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411CrossRefGoogle Scholar
  11. Dell'Amico E, Cavalca L, Andreoni V (2005) Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol Ecol 52:153–162PubMedCrossRefGoogle Scholar
  12. Devers M, Henry S, Hartmann A et al (2005) Horizontal gene transfer of atrazine-degrading genes (atz) from Agrobacterium tumefaciens St96–4 pADP1: Tn5 to bacteria of maize-cultivated soil. Pest Manag Sci 61:870–880PubMedCrossRefGoogle Scholar
  13. Dong QH, Springeal D, Schoeters J et al (1998) Horizontal transfer of bacterial heavy metal resistance genes and its applications in activated sludge systems. Water Sci Technol 37:465–468CrossRefGoogle Scholar
  14. Dos Santos VA, Heim S, Moore ER et al (2004) Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ Microbiol 6:1264–1286PubMedCrossRefGoogle Scholar
  15. Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333PubMedCrossRefGoogle Scholar
  16. Germaine KJ, Liu XM, Cabellos GG et al (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310PubMedCrossRefGoogle Scholar
  17. Germaine KJ, Keogh E, Ryan D et al (2009) Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296:226–234PubMedCrossRefGoogle Scholar
  18. Glick BR (2004) Bacterial ACC deaminase and the alleviation of plant stress. Adv Appl Microbiol 56:291–312PubMedCrossRefGoogle Scholar
  19. Glick BR, Penrose DM, Li JP (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68PubMedCrossRefGoogle Scholar
  20. Glick BR, Todorovic B, Czarny J et al (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242CrossRefGoogle Scholar
  21. Hallmann J, Berg G (2006) Spectrum and population dynamics of bacterial root endophytes. In: Schulz B, Boyle C, Sieber T (eds) Microbial root endophytes. Springer, Berlin, pp 15–32CrossRefGoogle Scholar
  22. James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res 65:197–209CrossRefGoogle Scholar
  23. Kloepper JW, Ryu CM, Zhang SA (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266PubMedCrossRefGoogle Scholar
  24. Lodewyckx C, Taghavi S, Mergeay M et al (2001) The effect of recombinant heavy metal resistant endophytic bacteria in heavy metal uptake by their host plant. Int J Phytoremediation 3:173–187CrossRefGoogle Scholar
  25. Lodewyckx C, Vangronsveld J, Porteous F et al (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606CrossRefGoogle Scholar
  26. Ma XM, Burken JG (2003) TCE diffusion to the atmosphere in phytoremediation applications. Environ Sci Technol 37:2534–2539PubMedCrossRefGoogle Scholar
  27. Ma WB, Penrose DM, Glick BR (2002) Strategies used by rhizobia to lower plant ethylene levels and increase nodulation. Can J Microbiol 48:947–954PubMedCrossRefGoogle Scholar
  28. Mastretta C, Barac T, Vangronsveld J et al (2006) Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnol Genet Eng Rev 23:175–207Google Scholar
  29. McCrady JC, Farlane MC, Lindstrom F (1987) The transport and affinity of substituted benzenes in soybean stems. J Exp Bot 38:1875–1890CrossRefGoogle Scholar
  30. McGuinness M, Dowling D (2009) Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 6:2226–2247PubMedCrossRefGoogle Scholar
  31. Misaghi IJ, Donndelinger CR (1990) Endophytic bacteria in symptom free cotton plants. Phytopathology 80:808–811CrossRefGoogle Scholar
  32. Newman LA, Reynolds CM (2005) Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23:6–8, discussion 8–9PubMedCrossRefGoogle Scholar
  33. Porteous Moore F, Barac T, Borremans B et al (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterization of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556CrossRefGoogle Scholar
  34. Reinhold-Hurek B, Hurek T (1998a) Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: Identification, localization, and perspectives to study their function. Crit Rev Plant Sci 17:29–54CrossRefGoogle Scholar
  35. Reinhold-Hurek B, Hurek T (1998b) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144PubMedCrossRefGoogle Scholar
  36. Ronchel MC, Ramos-Diaz MA, Ramos JL (2000) Retrotransfer of DNA in the rhizosphere. Environ Microbiol 2:319–323PubMedCrossRefGoogle Scholar
  37. Ryan RP, Monchy S, Cardinale M et al (2009) The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7:514–525PubMedCrossRefGoogle Scholar
  38. Schnoor JL, Licht LA, Mccutcheon SC et al (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:A318–A323CrossRefGoogle Scholar
  39. Schwitzguebel J-P, van der Lelie D, Glass DJ et al (2002) Phytoremediation: European and American trends, successes, obstacles and needs. J Soil Sed 2:91–99CrossRefGoogle Scholar
  40. Sharma A, Johri BN, Sharma AK et al (2003) Plant growth-promoting bacterium Pseudomonas sp strain GRP(3) influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol Biochem 35:887–894CrossRefGoogle Scholar
  41. Shields MS, Reagin MJ (1992) Selection of a Pseudomonas cepacia strain constitutive for the degradation of trichloroethylene. Appl Environ Microbiol 58:3977–3983PubMedGoogle Scholar
  42. Shields MS, Reagin MJ, Gerger RR et al (1995) TOM, a new aromatic degradative plasmid from Burkholderia (Pseudomonas) cepacia G4. Appl Environ Microbiol 61:1352–1356PubMedGoogle Scholar
  43. Siciliano SD, Fortin N, Mihoc A et al (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475PubMedCrossRefGoogle Scholar
  44. Sturz AV (1995) The role of endophytic bacteria during seed piece decay and tomato tuberization. Plant Soil 175:257–263CrossRefGoogle Scholar
  45. Taghavi S, Barac T, Greenberg B et al (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505PubMedCrossRefGoogle Scholar
  46. Taghavi S, Garafola C, Monchy S et al (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757PubMedCrossRefGoogle Scholar
  47. Taghavi S, van der Lelie D, Hoffman A et al (2010) Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp 638. PLoS Genet 6:e1000943PubMedCrossRefGoogle Scholar
  48. Timmis KN (2002) Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ Microbiol 4:779–781PubMedCrossRefGoogle Scholar
  49. Trapp S, Zambrano KC, Kusk KO, Karlson U (2000) A phytotoxicity test using transpiration of willows. Arch Environ Contam Toxicol 39:154–160PubMedCrossRefGoogle Scholar
  50. Tuskan GA, DiFazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604PubMedCrossRefGoogle Scholar
  51. Valvano MA (2006) Infections by Burkholderia spp.: the psychodramatic life of an opportunistic pathogen. Future Microbiol 1:145–149PubMedCrossRefGoogle Scholar
  52. van der Lelie D, Schwitzguebel JP, Glass DJ et al (2001) Assessing phytoremediation’s progress in the United States and Europe. Environ Sci Technol 35:446A–452APubMedCrossRefGoogle Scholar
  53. van der Lelie D, Barac T, Taghavi S et al (2005) Response to Newman: new uses of endophytic bacteria to improve phytoremediation. Trends Biotechnol 23:8–9CrossRefGoogle Scholar
  54. van der Lelie D, Taghavi S, Monchy S et al (2009) Poplar and its bacterial endophytes: coexistence and harmony. Crit Rev Plant Sci 28:346–358CrossRefGoogle Scholar
  55. van Elsas JD, Gardener BBM, Wolters AC et al (1998) Isolation, characterization, and transfer of cryptic gene-mobilizing plasmids in the wheat rhizosphere. Appl Environ Microbiol 64: 880–889PubMedGoogle Scholar
  56. Vangronsveld J, Herzig R, Weyens N et al (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794CrossRefGoogle Scholar
  57. Weyens N, van der Lelie D, Taghavi S et al (2009a) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254PubMedCrossRefGoogle Scholar
  58. Weyens N, van der Lelie D, Taghavi S et al (2009b) Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598PubMedCrossRefGoogle Scholar
  59. Weyens N, Taghavi S, Barac T et al (2009c) Bacteria associated with oak and ash on a TCE-contaminated site: characterization of isolates with potential to avoid evapotranspiration of TCE. Environ Sci Pollut Res 16:830–843CrossRefGoogle Scholar
  60. Weyens N, Van Der Lelie D, Artois T et al (2009d) Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation. Environ Sci Technol 43:9413–9418PubMedCrossRefGoogle Scholar
  61. Weyens N, Truyens S, Dupae J et al (2010) Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. Environ Pollut 158:2915–2919PubMedCrossRefGoogle Scholar
  62. Wu X, Monchy S, Taghavi S et al (2011) Comparative genomics and functional analysis of niche specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35(2):299–323PubMedCrossRefGoogle Scholar
  63. Yrjälä K, Mancano G, Fortelius C et al (2010) The incidence of Burkholderia in epiphytic and endophytic bacterial cenoses in hybrid aspen grown on sandy peat. Boreal Environ Res 15: 81–96Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Safiyh Taghavi
    • 1
  • Nele Weyens
    • 2
  • Jaco Vangronsveld
    • 2
  • Daniel van der Lelie
    • 3
  1. 1.Biology DepartmentBrookhaven National Laboratory (BNL)UptonUSA
  2. 2.Department of Environmental BiologyHasselt University, CMKDiepenbeekBelgium
  3. 3.Center for Agricultural and Environmental BiotechnologyRTI International ResearchTriangle parkUSA

Personalised recommendations