Dark Septate Endophytes and Mycorrhizal Fungi of Trees Affected by Pollution

  • Matevž Likar
Part of the Forestry Sciences book series (FOSC, volume 80)


Microorganisms are involved in metal biogeochemistry through a variety of processes that promote the bioavailability and uptake of metals and minerals by plants. Among the microorganisms that have the most intimate relationships with plants are mycorrhizal fungi and other fungal endophytes, like dark septate endophytes. These microorganisms populate the rhizosphere and plant roots. Many endophytic fungi can survive in high concentrations of toxic metals, and can adapt to metal stress, resulting in tolerant genotypes. Furthermore, fungal endophytes have been shown to ameliorate metal toxicity for their plant hosts, by restricting the uptake of toxic metals and by improving the supply of essential elements. As effective metal phytoremediation strategies depend on the ability of the plant to tolerate and accumulate metals from the environment, the wide prevalence of endophytic fungi and their potential to modulate metal speciation, toxicity and mobility make them a key to any remediation efforts. Further studies of the diversity, biochemistry and interactions of fungal endophytes with plants will help to develop powerful phytoremediation applications in the future.


Mycorrhizal Fungus Endophytic Fungus Arbuscular Mycorrhiza Metal Tolerance Fungal Endophyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



arbuscular mycorrhiza


ectomycorrhizal fungi


dark septate endophytes


  1. Adriaensen K, Vralstad T, Noben JP et al (2005) Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils. Appl Environ Microbiol 71:7279–7284PubMedCrossRefGoogle Scholar
  2. Adriaensen K, Vangronsveld J, Colpaert JV (2006) Zinc-tolerant Suillus bovinus improves growth of Zn-exposed Pinus sylvestris seedlings. Mycorrhiza 16:553–558PubMedCrossRefGoogle Scholar
  3. Alloway BJ (1990) Soil processes and behaviour of metals. In: Alloway BJ (ed) Heavy metals in soils. Blackie, Glasgow, pp 7–28Google Scholar
  4. Amir H, Jasper DA, Abbott LK (2008) Tolerance and induction to Ni of arbuscular mycorrhizal fungi from new Caledonian ultramafic soils. Mycorrhiza 19:1–6PubMedCrossRefGoogle Scholar
  5. Arriagada C, Aranda E, Sampedro I et al (2009) Contribution of the saprobic fungi Trametes versicolor and Trichoderma harzianum and the arbuscular mycorrhizal fungi Glomus desrticola and G. claroideum to arsenic tolerance of Eucalyptus globulus. Bioresour Technol 100: 6250–6257PubMedCrossRefGoogle Scholar
  6. Arriagada C, Pereira G, Garcia-Romera I et al (2010) Improved zinc tolerance in Eucalyptus globulus inoculated with Glomus deserticola and Trametes versicolor or Coriolopsis rigida. Soil Biol Biochem 42:118–124CrossRefGoogle Scholar
  7. Van Assche JA, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206CrossRefGoogle Scholar
  8. Azcon-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza 6:457–464CrossRefGoogle Scholar
  9. Baker AJM, Grant CJ, Marin MH et al (1986) Induction and loss of cadmium tolerance in Holcus lantus L. and other grasses. New Phytol 143:409–418Google Scholar
  10. Barrow JR (2003) Atypical morphology of dark septate fungal root endophytes of Bouteloua in arid southwestern USA rangelands. Mycorrhiza 13:239–247PubMedCrossRefGoogle Scholar
  11. Bellion M, Courbot M, Jacob Ch et al (2006) Extracellular and cellular mechanism sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254:173–181PubMedCrossRefGoogle Scholar
  12. Bi YL, Li XL, Christie P (2003) Influence of early stages of arbuscular mycorrhiza on uptake of zinc and phosphorus by red clover from a low-phosphorus soil amended with zinc and phosphorus. Chemosphere 50:831–837PubMedCrossRefGoogle Scholar
  13. Blaudez D, Botton B, Chalot M (2000) Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus. Microbiol 146:1109–1117Google Scholar
  14. Bücking H, Shachar-Hill Y (2005) Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phytol 165:899–912PubMedCrossRefGoogle Scholar
  15. Caldwell BA, Jumpponen A, Trappe JM (2000) Utilization of major detrital substrates by dark-septate, root endophytes. Mycologia 92:230–232CrossRefGoogle Scholar
  16. Cevnik M, Jurc M, Vodnik D (2000) Filamentous fungi associated with the fine roots of Erica herbacea L. from the area influenced by the Žerjav lead smelter (Slovenia). Phyton Ann Rei Bot 40:61–64Google Scholar
  17. Colpaert JV, Van Assche JA (1993) The effects of cadmium on ectomycorrhizal Pinus sylvestris. New Phytol 123:325–333CrossRefGoogle Scholar
  18. Colpaert JV, Vanden Koornhuyse P, Adriaensen K et al (2000) Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus. New Phytol 147:367–379CrossRefGoogle Scholar
  19. Colpaert JV, Muller LAH, Labaerts M et al (2004) Evolutionary adaptation to Zn toxicity in populations of Suilloid fungi. New Phytol 162:549–559CrossRefGoogle Scholar
  20. Deram A, Languereau-Leman F, Howsam M et al (2008) Seasonal patterns of cadmium accumulation in Arrhenatherum elatius (Poaceae): influence of mycorrhizal and endophytic fungal colonization. Soil Biol Biochem 40:845–848CrossRefGoogle Scholar
  21. Diels L, Mergeay M (1990) DNA probe-mediated detection of resistant bacteria from soils highly polluted by heavy metals. Appl Environ Microbiol 56:1485–1491PubMedGoogle Scholar
  22. Dixon RK, Buschena CA (1988) Response of ectomycorrhizal Pinus banksiana and Picea glauca to heavy metals in soil. Plant Soil 105:65–271CrossRefGoogle Scholar
  23. Egerton-Warburton LM, Griffin BJ (1995) Differential responses of Pisolithus tinctorius isolates to aluminium in vitro. Can J Bot 73:1229–1233CrossRefGoogle Scholar
  24. Epelde L, Becerril JM, Barrutia O et al (2010) Interactions between plant and rhizosphere microbial communities in a metalliferous soil. Environ Pollut 158:1576–1583PubMedCrossRefGoogle Scholar
  25. Ernst WHO, Schat H, Verkleij JAC (1990) Evolutionary biology of metal resistance in Silene vulgaris. Evol Trends Plants 4:45–51Google Scholar
  26. Fernando AA, Currah RS (1996) A comparative study of the effects of the root endophytes Leptodontiudium orchidicola and Phialocephala fortinii (Fungi Imperfecti) on the growth of some subalpine plants in culture. Can J Bot 74:1071–1078CrossRefGoogle Scholar
  27. Fogarty RV, Tobin JM (1996) Fungal melanins and their interactions with metals. Enzyme Microb Technol 19:311–7PubMedCrossRefGoogle Scholar
  28. Gadd GM (1993) Tansley review no. 47. Interaction of fungi with toxic metals. New Phytol 124:25–60CrossRefGoogle Scholar
  29. Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92PubMedCrossRefGoogle Scholar
  30. Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119CrossRefGoogle Scholar
  31. Gadd GM (2010) Metal, minerals and microbes: geomicrobiology and bioremediation. Microbiol 156:609–643CrossRefGoogle Scholar
  32. Genney DR, Anderson IC, Alexander IJ (2006) Fine-scale distribution of pine ectomycorrhizas and their extramatrical mycelium. New Phytol 170:381–390PubMedCrossRefGoogle Scholar
  33. Gonçalves SC, Martins-Loucao MA, Freitas H (2009) Evidence of adaptive tolerance to nickel in isolates of Cenococcum geophilum from serpentine soils. Mycorrhiza 19:221–230PubMedCrossRefGoogle Scholar
  34. Gonçalves SC, Portugal A, Gonçalves MT et al (2007) Genetic evidence and differential in vitro responses to Ni in Cenococcum geophilum isolates from serpentine soils in Portugal. Mycorrhiza 17:667–686CrossRefGoogle Scholar
  35. Hartley J, Cairney JWG, Meharg AA (1997) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment. Plant Soil 189:303–319CrossRefGoogle Scholar
  36. Haselwandter K, Read DJ (1982) The significance of a root-fungus association in two Carex species of high-alpine plant communities. Oecologia 52:352–354CrossRefGoogle Scholar
  37. van der Heijden EW, Vosatka M (1999) Mycorrhizal associations of Salix repens L. communities in succession of dune ecosystems. II. Mycorrhizal dynamics and interactions of ectomycorrhizal and arbuscular mycorrhizal fungi. Can J Bot 77:1833–1841CrossRefGoogle Scholar
  38. Hildebrandt U, Kaldorf M, Bothe H (1999) The zinc violet and its colonization by arbuscular mycorrhizal fungi. J Plant Physiol 154:709–717Google Scholar
  39. Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhizal and heavy metal tolerance. Phytochemistry 68:139–146PubMedCrossRefGoogle Scholar
  40. Howe R, Evans RL, Ketteridge SW (1997) Copper-binding proteins in ectomycorrhizal fungi. New Phytol 135:123–131CrossRefGoogle Scholar
  41. Hrynkiewicz K, Haug I, Baum C (2008) Ectomycorrhizal community structure under willows at former ore mining sites. Eur J Soil Biol 44:37–44CrossRefGoogle Scholar
  42. Huang Y, Li T, Huang Z-J et al (2008) Ectomycorrhizal fungus-induced changes of Cu and Cd speciation in the rhizosphere of Chinese pine seedlings. Pedosphere 18:758–765CrossRefGoogle Scholar
  43. Johnson D, Leake JR, Read DJ (2002) Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of 14 C. Soil Biol Biochem 34:1521–1524CrossRefGoogle Scholar
  44. Jonsson L, Dahlberg A, Nilsson M-C et al (1999) Ectomycorrhizal fungal communities in late-successional Swedish boreal forest, and their composition following wildfire. Mol Ecol 8:205–215CrossRefGoogle Scholar
  45. Jumpponen A, Trappe JM (1998) Performance of Pinus contorta inoculatedwith two strains of root endophytic fungus Phialocephala fortinii: effects of resynthesis system and glucose concentration. Can J Bot 76:1205–1213Google Scholar
  46. Karlinski L, Rudawska M, Kieliszewska-Rokicka B et al (2010) Relationship between genotype and soil environment during colonization of poplar roots by mycorrhizal and endophytic fungi. Mycorrhiza 20:315–324PubMedCrossRefGoogle Scholar
  47. Kayama M, Choi D, Tobita H et al (2006) Comparison of growth characteristics and tolerance to serpentine soil of three ectomycorrhizal spruce seedlings in northern Japan. Trees 20:430–440CrossRefGoogle Scholar
  48. Khan AG, Kuek C, Chaudhry TM et al (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 21:197–207CrossRefGoogle Scholar
  49. Klugh KR, Cumming JR (2007) Variations in organic acid exudation and aluminium resistance among arbuscular mycorrhizal species colonizing Liriodendron tulipifera. Tree Physiol 27:1103–1112PubMedGoogle Scholar
  50. Kozdroj J, Piotrowska-Seget Z, Krupa P (2007) Mycorrhizal fungi and ectomycorrhiza associated bacteria isolated from an industrial desert soil protect pine seedlings against Cd(II) impact. Ecotoxicol 16:449–456CrossRefGoogle Scholar
  51. Krpata D, Peintner U, Langer I et al (2008) Ectomycorrhizal communities associated with Populus tremula growing on a heavy metal contaminated site. Mycol Res 112:1069–1079PubMedCrossRefGoogle Scholar
  52. Krupa P, Kozdroj J (2007) Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris L.) seedlings. Water Air Pollut 182:83–90CrossRefGoogle Scholar
  53. Krznaric E, Verbruggen N, Wevers JHL et al (2009) Cd-tolerant Suillus luteus: a fungal insurance for pines exposed to Cd. Environ Pollut 157:1581–1588PubMedCrossRefGoogle Scholar
  54. Landeweert R, Leeflang P, Smit E et al (2005) Diversity of an ectomycorrhizal fungal community studied by a root tip and total DNA approach. Mycorrhiza 15:1–6PubMedCrossRefGoogle Scholar
  55. Levinton JS, Suatoni E, Wallace W et al (2003) Rapid loss of genetically based resistance to merlas adter cleanup of a Superfund site. Proc Nat Acad Sci USA 100:9889–9891PubMedCrossRefGoogle Scholar
  56. Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7: 139–153CrossRefGoogle Scholar
  57. Li H, Smith SE, Holloway RE et al (2006) Arbuscular mycorrhizal fungi contribute to phosphorous uptake by wheat grown in a phosphorous-fixing soil even in the absence of positive growth responses. New Phytol 172:536–543PubMedCrossRefGoogle Scholar
  58. Likar M, Regvar M (2009) Application of temporal temperature gradient gel electrophoresis for characterisation of fungal endophyte communities of Salix caprea L. in a heavy metal polluted soil. Sci Total Environ 407:6179–6187PubMedCrossRefGoogle Scholar
  59. Lux HB, Cumming JR (2001) Mycorrhizae confer aluminium resistance to tulip-poplar seedlings. Can J For Res 31:694–702Google Scholar
  60. Madyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Mycol 53:173–189CrossRefGoogle Scholar
  61. Markkola AM, Ahonen JU, Roitto M et al (2002) Shift in ectomyccorhizal community composition in Scots pine (Pinus sylvestris L.) seedling roots as a response to nickel deposition and removal of lichen cover. Environ Pollut 120:797–803PubMedGoogle Scholar
  62. Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102Google Scholar
  63. Moser AM, Petersen CA, D’Allura JA et al (2005) Comparison of ectomycorrhizas of Quercus garryana (Fagaceae) on serpentine and non-serpentine soils in southwest Oregon. Am J Bot 92:224–230PubMedCrossRefGoogle Scholar
  64. Mühlmann O, Peintner U (2008) Mycobionts of Salix herbacea on a glacier forefront in the Austrian Alps. Mycorrhiza 18:171–180PubMedCrossRefGoogle Scholar
  65. Mullen RB, Schmidt SK, Jaeger CH (1998) Nitrogen uptake during snow melt by the snow buttercup, Ranunculus adoneus. Arct Alp Res 30:121–125CrossRefGoogle Scholar
  66. Muller LAH, Vangronsved J, Colpaert JV (2007) Genetic structure of Suillus luteus populations in heavy metal polluted and nonpolluted habitats. Molec Ecol 16:4728–4737CrossRefGoogle Scholar
  67. Obase K, Tamai Y, Yajima T et al (2007) Mycorrhizal associations in woody plant species at the Mt. Usu vocano, Japan. Mycorrhiza 17:209–241PubMedCrossRefGoogle Scholar
  68. Ouziad F, Hildebrandt U, Schmelzer E et al (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649PubMedCrossRefGoogle Scholar
  69. Panaccione DG, Sheets NL, Miller SP et al (2001) Diversity of Cenococcum geophilum isolates from serpentine and non-serpentine soils. Mycologia 93:645–652CrossRefGoogle Scholar
  70. Pinto E (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018CrossRefGoogle Scholar
  71. Pocsi I, Prade RA, Penninckx MJ (2004) Glutathione, altruistic metabolite in fungi. Adv Microb Physiol 49:1–76PubMedCrossRefGoogle Scholar
  72. Read DJ, Haselwandter K (1981) Observation on the mycorrhizal status of some alpine plant communities. New Phytol 88:341–353CrossRefGoogle Scholar
  73. Regvar M, Likar M, Piltaver A et al (2010) Fungal community structure under goat willows (Salix caprea L.) growing at metal polluted site: the potential of screening in a model phytostabilisation study. Plant Soil 330:345–356CrossRefGoogle Scholar
  74. Ruíz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317PubMedCrossRefGoogle Scholar
  75. Ruotsalainen AL (2003) Mycorrhizal colonization and plant performance in arcto-alpine conditions. Ph.D thesis, Department of Biology, University of Oulu, Oulu, 43 ppGoogle Scholar
  76. Ruotsalainen AL, Markkola A, Kozlov MV (2007) Root fungal colonization in Deschampsia flexuosa: effects of pollution and neighbouring trees. Environ Pollut 147:723–728PubMedCrossRefGoogle Scholar
  77. Schat H, Verkleij JAC (1998) Biological interactions: the role for non-woody plants in phytorestoration: possibilities to exploit adaptive heavy metal tolerance. In: Vangronsveld J, Cunningham SD (eds) Metal-contaminated soils: in situ inactivation and phytorestoration. Springer Verlag, Berlin, pp 51–65Google Scholar
  78. Schüssler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  79. Smit E, Veenman C, Baar J (2003) Molecular analysis of ectomycorrhizal basidiomycete communities in a Pinus sylvestris L. stand reveals long-term increased diversity after removal of litter and humus layers. FEMS Microbiol Ecol 45:49–57PubMedCrossRefGoogle Scholar
  80. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London, 787 ppGoogle Scholar
  81. Sonjak S, Udovič M, Wraber T et al (2009) Diversity of halophytes and identification of arbuscular mycorrhizal fungi colonising their roots in an abandoned and sustained part of Sečovlje salterns. Soil Biol Biochem 41:1847–1856CrossRefGoogle Scholar
  82. Strandberg GW, Shumate SE, Parrott JR (1981) Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl Environ Microbiol 41:237–245PubMedGoogle Scholar
  83. Trowbridge J, Jumpponen A (2004) Fungal colonization of shrub willow roots at the forefront of a receding glacier. Mycorrhiza 14:283–293PubMedCrossRefGoogle Scholar
  84. Turnau K, Ryszka P, Gianinazzi-Pearson V et al (2001) Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in southern Poland. Mycorrhiza 10:169–174CrossRefGoogle Scholar
  85. Turnau K, Mesjacz-Przybylowicz J (2003) Arbuscular mycorrhizal of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190PubMedCrossRefGoogle Scholar
  86. Urban A, Puschenreiter M, Strauss J et al (2008) Diversity and structure of ectomycorrhizal and co-associated fungal communities in a serpentine soil. Mycorrhiza 18:339–354PubMedCrossRefGoogle Scholar
  87. Valentine LL, Fiedler TL, Hart CA et al (2004) Diversity of ectomycorrhizas associated with Quercus garryana in southern Oregon. Can J Bot 82:123–135CrossRefGoogle Scholar
  88. Vallino M, Massa N, Lumini E et al (2006) Assessments of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in Northern Italy. Environ Microbiol 8:971–983PubMedCrossRefGoogle Scholar
  89. Vogel-Mikuš K, Pongrac P, Kump P et al (2006) Colonisation of a Zn, Cd and Pb hyperaccumator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Eviron Pollut 139:362–371CrossRefGoogle Scholar
  90. Whitfield L, Richards AJ, Rimmer DL (2004) Relationship between soil heavy metal concentration and mycorrhizal colonisation in Thymus polytrichus in northern England. Mycorrhiza 14:55–62PubMedCrossRefGoogle Scholar
  91. Zarei M, Kenig S, Hempel S et al (2008) Community structure of arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region. Environ Pollut 156:1277–1283PubMedCrossRefGoogle Scholar
  92. Zarei M, Hempel S, Wubet T et al (2010) Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environ Pollut 158: 2757–2765PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations