Skip to main content

Isolation and Characterization of Rhizobacteria Antagonistic to Macrophomina phaseolina (Tassi) Goid., Causal Agent of Alfalfa Damping-Off

  • Chapter
  • First Online:
Environmental Protection Strategies for Sustainable Development

Part of the book series: Strategies for Sustainability ((STSU))

Abstract

Alfalfa (Medicago sativa L.) is affected by several pathogens; however, those that attack crown and roots, such as Macrophomina phaseolina , directly define the longevity or productive period of the plant. Use of microorganisms with biological control capacity constitutes an alternative to chemical products. In this chapter, we have gathered some studies on this subject; in addition, we contribute data from our own researches on in vitro and in vivo antifungal activity of rhizobacteria isolated from alfalfa rhizosphere against the causal agent of damping-off, M. phaseolina. In vitro tests consisted in culturing a bacterium and the pathogen on Potato Dextrose Agar (PDA) medium. In vivo tests were carried out in pots containing soil infested with M. phaseolina sclerotia. Alfalfa seeds were inoculated with each selected isolate (single inoculation treatments) or co-inoculated with Sinorhizobium meliloti strain B399 (mixed inoculation treatment); also, non-inoculated seeds were sown in infested soil (control treatment). Experiments were conducted in a growth chamber for 30 days and the evaluated parameters were: germination percentage, damping-off at 5 and 8 days, number of surviving plants at 15 and 30 days, and number of nodules.

The pathogen incidence was high in the control treatment, with a low germination rate, high occurrence of damping-off and death of all of the plants at the end of the experiment. Pseudomonas sp. Ch2 performed the best, since singly inoculated seeds reached a germination percentage of 83.3%; in addition, there was no damping-off incidence after 5 and 8 days neither in single inoculation nor in mixed inoculation treatments. The number of surviving plants at 15 days was 9/18 for the Pseudomonas sp. Ch2 treatment and 15/18 for the Pseudomonas sp. Ch2-S. meliloti B399 treatment. At 30 days, the number of surviving plants was 9/18 for both treatments. Pseudomonas sp. Ch2 showed antifungal activity against the alfalfa pathogen M. phaseolina in the in vitro as well as in the in vivo assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abawi GS, Pastor MAC (1990) Root rots of beans in Latin America and Africa: Diagnosis, research methodologies, and management strategies. Cali, Colombia. Centro Internacional de Agricultura Tropical (CIAT). pp 114

    Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  • Bakker PAHM, Van Peer R, Schippers B,(1991) Suppression of soil-borne plant pathogens by fluorescent Pseudomonas: mechanisms and prospects. In: Beemster, ABR, Bollen M, Gerirch M, Ruissen MA, Schippers B, Tempel A (eds) Biotic interactions and soil-borne diseases. Elsevier, Amsterdam, pp 221–230

    Google Scholar 

  • Barnes DK, Ostazeski SA, Schillinger JA, Hanson CH (1969) Effects of anthracnose (Colletotrichum trifolii) infection on yield, stand, and vigor of alfalfa. Crop Sci 9:344–346

    Article  Google Scholar 

  • Bhattacharya M, Samaddar KR (1976) Epidemiological studies on jute diseases, survival of Macrophomina phaseoli (Maubl.) Ashby in soil. Plant Soil 44:27–36

    Article  Google Scholar 

  • Bickoff EM (1979) En Alfalfa Science and Technology. Agron No 15. Cap.12

    Google Scholar 

  • Chimicz J (1988) Los sistemas de producción de leche en Argentina Revista. Argentina de Producción Animal 8:155–168

    Google Scholar 

  • Churchill A, Baker C, O’Neill N, Elgin J (1988) Development of Colletotrichum trifolii race 1 and 2 on alfalfa clones resistant and susceptible to anthracnose. Can J Bot 66:75–81

    Article  Google Scholar 

  • Dashti N, Zhang F, Hynes R, Smith DL (1998) Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions. Plant Soil 200:205–213

    Article  CAS  Google Scholar 

  • De La Fuente L, Quagliotto L, Bajsa N, Fabiano E, Altier N, Arias A (2002) Inoculation with Pseudomonas fluorescens biocontrol strains does not affect the symbiosis between rhizobia and forage legumes. Soil Biol Biochem 34:545–548

    Article  CAS  Google Scholar 

  • Dhingra OD, Sinclair JB (1977) An annotated bibliography of Macrophomina phaseolina, 1905–1975. Universidade Federal de Viçosa, M.G. Brasil, p 277

    Google Scholar 

  • Díaz Polanco C, Salas de Díaz G (1980) Lista de patógenos de las plantas cultivadas en Venezuela. 2da. Edición. Boletín Técnico No. 20. CIARCO, p 62

    Google Scholar 

  • Duffy B, Défago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens Biocontrol strains. Appl Environ Microbiol 65:2429–2438

    CAS  Google Scholar 

  • Duffy BK, Simon A, Weller DM (1996) Combination of Trichoderma koningii with fluorescent pseudomonads for control of take-all on wheat. Phytopathology 75:774–777

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Guiñazú LB, Andrés JA, Del Papa MF, Pistorio M, Rosas SB (2010) Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilizing bacteria and Sinorhizobium meliloti. Biol Fertil Soil 46:185–190

    Article  Google Scholar 

  • Gunta Smits B, Noguera R (1988) Ontogenia y morfogenesis de esclerocios y picnidios de Macrophomina phaseolina. Agronomía Tropical 38:69–78

    Google Scholar 

  • Gupta CP, Dubey RC, Kang SC, Maheshwari DK (2001) Antibiosis-mediated necrotrophic effect of Pseudomonas GRC2 against two fungal plant pathogens. Curr Sci 81: 91–94

    Google Scholar 

  • Hayes WJ, Laws ER (1991) Handbook of pesticide toxicology, vol 1. Academic Press Inc., New Delhi

    Google Scholar 

  • Hirnyck R, Downey L (2004) Pre-Plant/Establishment. In: O’Neal Coates S (ed) Summary of pest management strategic plan for western u.s. alfalfa and clover seed production

    Google Scholar 

  • Howarth RE (1988) En alfalfa and alfalfa improvement. Agronomy No 29, Cap.15

    Google Scholar 

  • INTA-FAO (1986) Principios de manejo de praderas naturales. Técnicas para medir vegetación. Edit. INTA. pp 151–162

    Google Scholar 

  • Jimenez Díaz RM, Blanco López MA, Sackston WE (1983) Incidence and distribution of charcoal rot of sunflower caused by Macrophomina phaseoli in Spain. Plant Dis 67:1033–1036

    Article  Google Scholar 

  • Kata J (2000) Physical and cultural methods for the management of soil borne pathogens. Crop Prot 19:725–731

    Article  Google Scholar 

  • Kendig SR, Rupe JC, Scott HD (2000) Effect of irrigation and soil water stress on densities of Macrophomina phaseolina in soil and roots of two soybean cultivars. Plant Dis 84:895–900

    Article  Google Scholar 

  • Knight TJ, Langston-Unkefer PJ (1988) Enhancement of symbiotic dinitrogen fixation by a toxin-releasing plan pathogen. Sci 241:951–954

    Article  CAS  Google Scholar 

  • Kun X, Kinkel L, Samac DA (2002) Biological Control of Phytophthora Root Rots on Alfalfa and Soybean with Streptomyces. Biol Control 23:285–295

    Article  Google Scholar 

  • Mihail JD (1982) Methods for research on soilborne phytopathogenic fungi. In: Singleton LL, Mihail JD, Rush CM (eds) Macrophomina. American Phytopathological Society, St. Paul, pp 34–136

    Google Scholar 

  • Musiera Pardo E, Ratera García C (1984) La alfalfa. En: Praderas y forrajes Ed. Mundiprensa. Madrid España, pp 625–694

    Google Scholar 

  • Nishijima F, Evans WR, Vesper SJ (1988) Enhanced nodulation of soybean by Bradyrhizobium in the presence of Pseudomonas fluorescens. Plant Soil 111:149–150

    Article  Google Scholar 

  • Papavizas GC (1977) Some factors affecting survival of sclerotia of Macrophomina phaseolina in soil. Soil Biochem 9:337–341

    Article  CAS  Google Scholar 

  • Park BH, Kim SA, Kim TH et al (2005) Tchosaryo Zaweonhag (Science of Forage Crop Resources). Hyangmun Publishing, Seoul, 17–257 (in Korean.)

    Google Scholar 

  • Partridge D (2000) Macrophomina phaseolina. NC State university. Department of plant pathology. Cited 24 June 2010 http://www.cals.ncsu.edu/course/pp728/Macrophomina/macrophominia_phaseolinia.HTM

    Google Scholar 

  • Plazinski J, Rolfe BG (1985) Influence of Azospirillum strains on the nodulation of clovers by Rhizobium strains. Appl Environ Microbiol 49:984–989

    CAS  Google Scholar 

  • Polonenko DR, Scher FM, Kloepper JW, Singleton CA, Laliberte M, Zaleska I (1987) Effects of root colonizing bacteria on nodulation of soybean roots by Bradyrhizobium japonicum. Can J Microbiol 33:498–503

    Article  Google Scholar 

  • Pratt RG, Rowe DE (1991) Differential responses of alfalfa genotypes to stem inoculations with Sclerotinia sclerotiorum and S. trifoliorum. Plant Dis 75:188–191

    Article  Google Scholar 

  • Ramezani H (2008) Biological Control of Root-Rot of Eggplant Caused by Macrophomina phaseolina. American-Eurasian J Agric Environ Sci 4:218–220

    Google Scholar 

  • Reed R, Sanderson M, Read J (1994) Harvest management of switchgrass grown for biomass. In Forage Res. In TX. TAES P.R

    Google Scholar 

  • Roberto ZE, Viglizzo EF (1993) Análisis del impacto de los recursos forrajeros en agrosistemas de la pampa semiárida. Revista Argentina de Producción Animal 10:47–54

    Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Advan 17:319–339

    Article  Google Scholar 

  • Rovera M (2004) Caracterización del pigmento antifúngico de Pseudomonas aurantiaca utilizada como agente de biocontrol. Tesis Doctoral. UNRC

    Google Scholar 

  • Rovera M, Andrés J, Carlier E, Pasluosta C, Rosas S (2008) Pseudomonas aurantiaca: Plant growth promoting traits, secondary metabolites and inoculation response. In: Ahmad I, Pichtel J, Hayat S (eds) Plant-Bacteria Interactions. Strategies and Techniques to promote Plant growth. Wiley-VCH, Germany, pp 255–264. (ISBN: 978-3-527-31901-5. Chapter 8)

    Google Scholar 

  • Sharma PD (1996) Plant pathology. Rastogi Publication Meerut, India

    Google Scholar 

  • Short GE, Wyllie TD, Bristow PR (1980) Survival of Macrophomina phaseolina in soil in residue of soybean. Phytopatol 70:13–17

    Article  Google Scholar 

  • Sinclair JB (1982) Compendium of soybean diseases. American Phytopathology Society. 2nd edn, p 104

    Google Scholar 

  • Singh CS, Subba Rao NS (1979) Associative effect of Azospirillum brasilense with Rhizobium japonicum on nodulation and yield of soybean (Glycine max). Plant Soil 53:387–392

    Article  Google Scholar 

  • Smith D (1981) Forage Management in the North, 4th edn. Kendall/Hunt Publishing, Dubuque, pp 5–99

    Google Scholar 

  • Spil G, Salgado L (1992) Forrajeras en el oeste arenoso Revista CREA No 153, pp 26–31

    Google Scholar 

  • Thomashow LS, Weller DM, Bonsall RF, Pierson IS (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 56:908–912

    Google Scholar 

  • Tomes G A (1947) La alfalfa en al Argentina. Anales Soc Rural Arg 81:82–90

    Google Scholar 

  • Viglizzo EF (1982) Los potenciales de producción de carne en la región pampeana semiárida. Actas de las Primeras Jornadas de Producción Animal en la Región Pampeana Semiárida, pp 223–269

    Google Scholar 

  • Weller DM (1988) Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Ann Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosfere. J Experimen Bot 52:487–511

    Article  CAS  Google Scholar 

  • Wilberger JJ (1984) Tecnología disponible para mejorar la producción lechera en la región oeste de Buenos Aires y La Pampa. I simposio sobre la Integración Producción- Industria en la lechería Argentina. Santa Rosa La Pampa Arg

    Google Scholar 

  • Wyllie TD (1989) Charcoal rot. In: Sinclair JB, Backman PA (eds) Compendium of Soybean Diseases, 3rd edn. American Phytopathological Society, St Paul, pp 30–33

    Google Scholar 

  • Young PA (1949) Charcoal rot of plants in east Texas. Bull. 712, Texas Agr Exp Sta 33 p 4

    Google Scholar 

  • Zubizarreta J (1992) Producción lechera en EE. UU. revista CREA No 156, pp 80–84

    Google Scholar 

Download references

Acknowledgements

This research was supported by Secretaría de Ciencia y Técnica of Universidad Nacional de Río Cuarto, Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Guiñazú .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Guiñazú, L., Andrés, J., Rovera, M., Rosas, S. (2012). Isolation and Characterization of Rhizobacteria Antagonistic to Macrophomina phaseolina (Tassi) Goid., Causal Agent of Alfalfa Damping-Off. In: Malik, A., Grohmann, E. (eds) Environmental Protection Strategies for Sustainable Development. Strategies for Sustainability. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1591-2_10

Download citation

Publish with us

Policies and ethics