Photosynthesis pp 191-216 | Cite as

Role of the Envelope Membranes in Chloroplast Glycerolipid Biosynthesis

  • Maryse A. Block
  • Juliette Jouhet
  • Eric Maréchal
  • Olivier Bastien
  • Jacques Joyard
Chapter
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 34)

Summary

All plastid membranes are characterized by the presence of large amounts of galactolipids. The galactolipid content of thylakoids is especially high since galactolipids represent up to 80% of the membrane glycerolipids, out of which monogalactosyldiacylglycerol (MGDG) constitutes the main part (50%). In its first part, this chapter describes the structure of the main glycerolipids present in plastids, particularly of galactolipids and details their subcellular localization. Functional analysis of mutants deleted of specific lipids and structural data obtained from Photosystem I and Photosystem II crystallization are presented to characterize the specific role of each glycerolipid. In the second part, this chapter summarizes our current understanding of the role of the chloroplast envelope in glycerolipid biogenesis and points out the emerging lipid trafficking mechanisms that envelope membranes take part in. The building up of eukaryotic and prokaryotic lipid structures proceeds from at least two distinct pathways requiring different trafficking of lipids. Whereas synthesis of prokaryotic glycerolipids is entirely realized in the envelope, synthesis of eukaryotic glycerolipids relies on the transfer of precursors from the endoplasmic reticulum to the envelope. The final assembly of glycerolipids is made in the envelope membranes prior to transfer to thylakoids membranes. A special focus is given to current results concerning MGDG and digalactosyldiacylglycerol (DGDG) synthesis in plants grown in phosphate-deficient conditions.

Keywords

Phosphatidic Acid Phosphatidic Acid Acyl Carrier Protein Chloroplast Membrane Envelope Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations:

ACCase

– Acetyl CoA carboxylase;

ACP

– Acyl carrier protein;

DAG

– Diacylglycerol;

DGD

– DGDG synthase;

DGDG

– Digalactosyldiacylglycerol;

ER

– Endoplasmic reticulum;

GGGT

– Galactolipid-galactolipid galactosyltransferase;

Km

– Michaelis-Menton constant;

LHCII

– Light-harvesting complex of photosystem II;

LysoPC

– Lysophosphatidylcholine;

MCS

– Membrane contact sites;

MGD

– MGDG synthase;

MGDG

– Monogalactosyldiacylglycerol;

MurG

– UDP-N-acetylglucosamine-N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase;

PA

– Phosphatidic acid;

PC

– Phosphatidylcholine;

PE

– Phosphatidylethanolamine;

PG

– Phosphatidylglycerol;

PI

– Phosphatidylinositol;

PS I

– Photosystem I;

PS II

– Photosystem II;

SQD

– Enzyme involved in sulfolipid synthesis;

SQDG

– Sulfoquinovosyldiacylglycerol;

UDP-gal

– Uridine diphosphate galactose

Notes

Acknowledgements

Research in the authors laboratory was funded by Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique (CEA), Institut National de la Recherche Agronomique (INRA) and Université Joseph Fourier.

References

  1. Alban C, Joyard J and Douce R (1989) Comparison of glycerolipid biosynthesis in non-green plastids from sycamore (Acer pseudoplatanus) cells and cauliflower (Brassica oleracea) buds. Biochem J 259: 775–83PubMedGoogle Scholar
  2. Andersson MX and AS Sandelius (2004) A chloroplast-localized vesicular transport system: a bio-informatics approach. BMC Genomics 5: 40–40PubMedCrossRefGoogle Scholar
  3. Andersson MX, Stridh MH, Larsson KE, Liljenberg C and Sandelius AS (2003) Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol. FEBS Lett 537: 128–32PubMedCrossRefGoogle Scholar
  4. Andersson MX, Kjellberg JM and Sandelius AS (2004) The involvement of cytosolic lipases in converting phosphatidyl choline to substrate for galactolipid synthesis in the chloroplast envelope. Biochim Biophys Acta 1684: 46–53PubMedCrossRefGoogle Scholar
  5. Andersson MX, Larsson KE, Tjellstrom H, Liljenberg C and Sandelius AS (2005) Phosphate-limited oat. The plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. J Biol Chem 280: 27578–27586PubMedCrossRefGoogle Scholar
  6. Andersson MX, Goksor M and Sandelius AS (2007) Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts. J Biol Chem 282: 1170–1174PubMedCrossRefGoogle Scholar
  7. Andrews J and Mudd JB (1985) Phosphatidylglycerol synthesis in pea chloroplasts. Pathways and localization. Plant Physiol 79: 259–265PubMedCrossRefGoogle Scholar
  8. Andrews J, Ohlrogge JB and Keegstra K (1985) Final step of phosphatidic acid synthesis in pea chloroplasts occurs in the inner envelope membrane. Plant Physiol 78: 459–465PubMedCrossRefGoogle Scholar
  9. Andrews J, Schmidt H and Heinz E (1989) Interference of electron inhibitors with desaturation of monogalactosyldiacylglycerol in intact chloroplasts. Arch Biochem Biophys 270: 611–622PubMedCrossRefGoogle Scholar
  10. Awai K, Maréchal E, Block MA, Brun D, Masuda T, Shimada H, Takamiya K, Ohta H and Joyard J (2001) Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc Natl Acad Sci USA 98: 10960–10965PubMedCrossRefGoogle Scholar
  11. Awai K, Xu C, Lu B and Benning C (2006) Lipid trafficking between the endoplasmic reticulum and the chloroplast. Biochem Soc Trans 34: 395–398PubMedCrossRefGoogle Scholar
  12. Babiychuk E., Muller F, Eubel H, Braun HP, Frentzen M and Kushnir S (2003) Arabidopsis phosphatidylglycerophosphate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function. Plant J 33: 899–909PubMedCrossRefGoogle Scholar
  13. Beisson F, Koo AJ, Ruuska S, Schwender J, Pollard M, Thelen JJ, Paddock T, Salas JJ, Savage L, Milcamps A, Mhaske VB, Cho Y and Ohlrogge JB (2003) Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 132: 681–697PubMedCrossRefGoogle Scholar
  14. Benning C and Ohta H (2005) Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J Biol Chem 280: 2397–2400PubMedCrossRefGoogle Scholar
  15. Bessoule JJ, Testet E and Cassagne C (1995) Synthesis of phosphatidylcholine in the chloroplast envelope after import of lysophosphatidylcholine from endoplasmic reticulum membranes. Eur J Biochem 228: 490–497PubMedCrossRefGoogle Scholar
  16. Billecocq A, Douce R and Faure M (1972) Structure des membranes biologiques : Localisation des galactosyldiglycérides dans les chloroplastes au moyen des anticorps spécifiques. C R Acad Sci Paris 275: 1135–1137Google Scholar
  17. Bishop DG, Sparace SA and Mudd JB (1985) Biosynthesis of sulfoquinovosyldiacylglycerol in higher plants: the origin of the diacylglycerol moiety. Arch Biochem Biophys 240: 851–858PubMedCrossRefGoogle Scholar
  18. Blée E (2002) Impact of phyto-oxylipins in plant defense. Trends Plant Sci 7: 315–22PubMedCrossRefGoogle Scholar
  19. Blée E and Joyard J (1996) Envelope membranes from spinach chloroplasts are a site of metabolism of fatty acid hydroperoxides. Plant Physiol 110: 445–454PubMedGoogle Scholar
  20. Bligny R and Douce R (1980) A precise localization of cardiolipin in plant cells. Biochim Biophys Acta 617: 254–263PubMedCrossRefGoogle Scholar
  21. Block MA, Dorne AJ, Joyard J and Douce R (1983a) The acyl-CoA synthetase and the acyl-CoA thioesterase are located respectively on the outer and on the inner membrane of the chloroplast envelope. FEBS Lett 153 : 377–381CrossRefGoogle Scholar
  22. Block MA, Dorne AJ, Joyard J and Douce R (1983b) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II. Biochemical characterization. J Biol Chem 258: 13281–13286PubMedGoogle Scholar
  23. Botté C, Jeanneau C, Snajdrova L, Bastien O, Imberty A, Breton C, Maréchal E (2005) Molecular modelling and site directed mutagenesis of plant chloroplast MGDG synthase reveal critical residues for activity. J Biol Chem 280: 34691–34701PubMedCrossRefGoogle Scholar
  24. Bourgis F, Kader JC, Barret P, Renard M, Robinson D, Robinson C, Delseny M and Roscoe TJ (1999) A plastidial lysophosphatidic acid acyltransferase from oilseed rape. Plant Physiol 120: 913–922PubMedCrossRefGoogle Scholar
  25. Carde JP, Joyard J and Douce R (1982) Electron microscopic studies of envelope membranes from spinach plastids. Biol Cell 44: 315–324Google Scholar
  26. Carter HE, McCluer RH and Slifer ED (1956) Lipids of wheat flour. I. Characterization of galactosylglycerol components. J Am Chem Soc 78: 3735–3738CrossRefGoogle Scholar
  27. Chen LJ and Li HM (1998) A mutant deficient in the plastid lipid DGD is defective in protein import into chloroplasts. Plant J 16: 33–39PubMedCrossRefGoogle Scholar
  28. Cruz Ramirez A, Oropeza Aburto A, Razo Hernandez F, Ramirez Chavez E and Herrera Estrella L (2006) Phos­pholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. Proc Natl Acad Sci USA 103: 6765–6770PubMedCrossRefGoogle Scholar
  29. Daleke DL (2003) Regulation of transbilayer plasma membrane phospholipid asymmetry. J Lipid Res 44: 233–242PubMedCrossRefGoogle Scholar
  30. Domonkos I, Malec P, Sallai A, Kovacs L, Itoh K, Shen G, Ughy B, Bogos B, Sakurai I, Kis M, Strzalka K, Wada H, Itoh S, Farkas T and Gombos Z (2004) Phosphatidylglycerol is essential for oligomerization of photosystem I reaction center. Plant Physiol 134: 1471–1478PubMedCrossRefGoogle Scholar
  31. Dörmann P, Hoffmann-Benning S, Balbo I and Benning C (1995) Isolation and characterization of an Arabidopsis mutant deficient in the thylakoid lipid digalactosyl diacylglycerol. Plant Cell 7: 1801–1810PubMedGoogle Scholar
  32. Dörmann P, Balbo I and Benning C (1999) Arabidopsis galactolipid biosynthesis and lipid trafficking mediated by DGD1. Science 284: 2181–2184PubMedCrossRefGoogle Scholar
  33. Dorne AJ, Block MA, Joyard J and Douce R (1982) The galactolipid: galactolipid galactosyltransferase is located on the outer surface of the outer chloroplast envelope. FEBS Lett 145: 30–34CrossRefGoogle Scholar
  34. Dorne AJ, Joyard J, Block MA and Douce R (1985) Localization of phosphatidylcholine in outer envelope membrane of spinach chloroplasts. J Cell Biol 100: 1690–1697PubMedCrossRefGoogle Scholar
  35. Dorne AJ, Joyard J and Douce R (1990) Do thylakoids really contain phosphatidylcholine? Proc Natl Acad Sci USA 87: 71–74PubMedCrossRefGoogle Scholar
  36. Douce R (1974) Site of galactolipid synthesis in spinach chloroplasts. Science 183: 852–853PubMedCrossRefGoogle Scholar
  37. Douce R and Joyard J (1996) Biosynthesis of thylakoid membrane lipids. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, Advances in Photosynthesis, Vol 4, pp 69–101. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  38. Dubacq JP and Trémolières A (1983) Occurrence and function of phosphatidyl glycerol containing 3-trans-hexadecenoic acid in photosynthetic lamellae. Physiol Veg 2: 293–312Google Scholar
  39. Emanuelsson O, Nielsen H, Brunak S and von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300: 1005–1016PubMedCrossRefGoogle Scholar
  40. Essigmann B, Güler S, Narang RA, Linke D and Benning C (1998) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 95: 1950–1955PubMedCrossRefGoogle Scholar
  41. Essigmann B, Hespenheide BM, Kuhn LA and Benning C (1999) Prediction of the active-site structure and NAD+ binding in SQD1, a protein essential for sulfolipid biosynthesis in Arabidopsis. Arch Biochem Biophys 369: 30–41PubMedCrossRefGoogle Scholar
  42. Ferro M, Salvi D, Riviere-Rolland H, Vermat T, Seigneurin-Berny D, Grunwald D, Garin J, Joyard J and Rolland N (2002) Integral membrane proteins of the chloroplast envelope: identification and subcellular localization of new transporters. Proc Natl Acad Sci USA 99: 11487–11492PubMedCrossRefGoogle Scholar
  43. Ferro M, Salvi D, Brugiere S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J and Rolland N (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2: 325–345PubMedGoogle Scholar
  44. Flachmann R and Kuhlbrandt W (1996). Crystallization and identification of an assembly defect of recombinant antenna complexes produced in transgenic tobacco plants. Proc Natl Acad Sci USA 93: 14966–14971PubMedCrossRefGoogle Scholar
  45. Frentzen M (2004) Phosphatidylglycerol and sulfoquinovosyldiacylglycerol: anionic membrane lipids and phosphate regulation. Curr Opin Plant Biol 7: 270–276PubMedCrossRefGoogle Scholar
  46. Frentzen M., Heinz E, McKeon TA and Stumpf PK (1983) Specificities and selectivities of glycerol-3-phosphate acyltransferase and monoacylglycerol-3-phosphate acyltransferase from pea and spinach chloroplasts. Eur J Biochem 129: 629–636PubMedCrossRefGoogle Scholar
  47. Fritz M, Lokstein H, Hackenberg D, Welti R, Roth M, Zahringer U, Fulda M, Hellmeyer W, Ott C, Wolter FP and Heinz E (2007) Channeling of eukaryotic diacylglycerol into the biosynthesis of plastidial phosphatidylglycerol. J Biol Chem 282: 4613–4625PubMedCrossRefGoogle Scholar
  48. Froehlich JE, Benning C and Dörmann P (2001) The digalactosyldiacylglycerol (DGDG) synthase DGD1 is inserted into the outer envelope membrane of chloroplasts in a manner independent of the general import pathway and does not depend on direct interaction with monogalactosyldiacylglycerol synthase for DGDG biosynthesis. J Biol Chem 276: 31806–31812PubMedCrossRefGoogle Scholar
  49. Gounaris K and Barber J (1983) Monogalactosyldiacylglycerol: the most abundant polar lipid in nature. Trends Biochem Sc 8: 378–381CrossRefGoogle Scholar
  50. Gounaris K, Whitford D and Barber J (1983) The effect of thylakoid lipids on an oxygen-evolving Photosystem II preparation. FEBS Lett 163: 230–234CrossRefGoogle Scholar
  51. Gueguen V, Macherel D, Jaquinod M, Douce R and Bourguignon J (2000) Fatty acid and lipoic acid biosynthesis in higher plant mitochondria. J Biol Chem 275: 5016–5025PubMedCrossRefGoogle Scholar
  52. Hagio M, Sakurai I, Sato S, Kato T, Tabata S and Wada H (2002) Phosphatidylglycerol is essential for the development of thylakoid membranes in Arabidopsis thaliana. Plant Cell Physiol 43: 1456–1464PubMedCrossRefGoogle Scholar
  53. Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M, Fukasawa M and Nishijima M (2003) Molecular machinery for non-vesicular trafficking of ceramide. Nature 426: 803–809PubMedCrossRefGoogle Scholar
  54. Härtel H and Benning C (2000) Can digalactosyldiacylglycerol substitute for phosphatidylcholine upon phosphate deprivation in leaves and roots of Arabidopsis? Biochem Soc Trans 28: 729–732PubMedCrossRefGoogle Scholar
  55. Härtel H, Lokstein H, Dörmann P, Grimm B and Benning C (1997) Changes in the composition of the photosynthetic apparatus in the galactolipid-deficient dgd1 mutant of Arabidopsis thaliana. Plant Physiol 115: 1175–1184PubMedCrossRefGoogle Scholar
  56. Härtel H, Essigmann B, Lokstein H, Hoffmann-Benning S, Peters-Kottig M and Benning C (1998) The phospholipid-deficient pho1 mutant of Arabidopsis thaliana is affected in the organization, but not in the light acclimation, of the thylakoid membrane. Biochim Biophys Acta 1415: 205–218PubMedCrossRefGoogle Scholar
  57. Härtel H, Dörmann P and Benning C (2000) DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proc Natl Acad Sci USA 97: 10649–10654PubMedCrossRefGoogle Scholar
  58. Härtel H, Dörmann P and Benning C (2001) Galactolipids not associated with the photosynthetic apparatus in phosphate-deprived plants. J Photochem Photobiol 61: 46–51CrossRefGoogle Scholar
  59. Heazlewood JL, Tonti-Filippini JS, Gout AM, Day DA, Whelan J and Millar AH (2004) Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16: 241–256PubMedCrossRefGoogle Scholar
  60. Heinz E (1977) Enzymatic reactions in galactolipid biosynthesis. In: Tevini M and Lichtenthaler HK (eds) Lipids and Lipid Polymers, pp 102–120. Springer Verlag, BerlinCrossRefGoogle Scholar
  61. Heinz E and Roughan PG (1983) Similarities and differences in lipid metabolism of chloroplasts isolated from 18:3 and 16:3 plants. Plant Physiol 72: 273–279PubMedCrossRefGoogle Scholar
  62. Holzl G, Witt S, Kelly AA, Zahringer U, Warnecke D, Dörmann P and Heinz E (2006) Functional differences between galactolipids and glucolipids revealed in photosynthesis of higher plants. Proc Natl Acad Sci USA 103: 7512–7517PubMedCrossRefGoogle Scholar
  63. Hu Y, Chen L, Ha S, Gross B, Falcone B, Walker D, Mokhtarzadeh M and Walker S (2003) Crystal structure of the MurG:UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases. Proc Natl Acad Sci USA 100: 845–849PubMedCrossRefGoogle Scholar
  64. Hugueney P, Bouvier F, Badillo A, d’Harlingue A, Kuntz M and Camara B (1995) Identification of a plastid protein involved in vesicle fusion and/or membrane protein translocation. Proc Natl Acad Sci USA 92: 5630–5634PubMedCrossRefGoogle Scholar
  65. Jäger-Vottero P, Dorne AJ, Jordanov J, Douce R and Joyard J (1997) Redox chains in chloroplast envelope membranes: Spectroscopic evidence for the presence of electron carriers, including iron-sulfur centers. Proc Natl Acad Sci USA 94: 1597–1602PubMedCrossRefGoogle Scholar
  66. Jarvis P, Dörmann P, Peto CA, Lutes J, Benning C and Chory J (2000) Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. Proc Natl Acad Sci USA 97: 8175–8179PubMedCrossRefGoogle Scholar
  67. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature 411: 909–917PubMedCrossRefGoogle Scholar
  68. Jouhet J, Maréchal E, Baldan B, Bligny R, Joyard J and Block MA (2004) Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. J Cell Biol 167: 863–874PubMedCrossRefGoogle Scholar
  69. Jouhet J, Maréchal E, Bligny R, Joyard J and Block MA (2003) Transient increase of phosphatidylcholine in plant cells in response to phosphate deprivation. FEBS Lett 544: 63–68PubMedCrossRefGoogle Scholar
  70. Joyard J and Douce R (1977) Site of synthesis of phosphatidic acid and DAG in spinach chloroplasts. Biochim Biophys Acta 486: 273–285PubMedCrossRefGoogle Scholar
  71. Joyard J and Douce R (1979) Characterization of phosphatidate phosphohydrolase activity associated with chloroplast envelope membranes. FEBS Lett 102: 147–150PubMedCrossRefGoogle Scholar
  72. Joyard J, Blée E and Douce R (1986) Sulfolipid synthesis from 35SO42− and [1-14C]-acetate in isolated intact spinach chloroplasts. Biochim Biophys Acta 879: 78–87CrossRefGoogle Scholar
  73. Kader JC (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 627–654PubMedCrossRefGoogle Scholar
  74. Kelly AA and Dörmann P (2002) DGD2, an Arabidopsis gene encoding a UDP-galactose-dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate-limiting conditions. J Biol Chem 277: 1166–1173PubMedCrossRefGoogle Scholar
  75. Kelly AA, Froehlich JE and Dörmann P (2003) Disruption of the two digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell 15: 2694–2706PubMedCrossRefGoogle Scholar
  76. Kern J and Guskov A (2011) Lipids in photosystem II: Multifunctional cofactors. J Photochem Photobiol B: Biol 104: 19–34Google Scholar
  77. Klaus D, Härtel H, Fitzpatrick LM, Froehlich JE, Hubert J, Benning C and Dörmann P (2002) Digalactosyldiacylglycerol synthesis in chloroplasts of the Arabidopsis dgd1 mutant. Plant Physiol 128: 885–895PubMedCrossRefGoogle Scholar
  78. Kobayashi K, Awai K, Takamiya K and Ohta H (2004) Arabidopsis type B monogalactosyldiacylglycerol synthase genes are expressed during pollen tube growth and induced by phosphate starvation. Plant Physiol 134: 640–648PubMedCrossRefGoogle Scholar
  79. Kobayashi K, Kondo M, Fukuda H, Nishimura M and Ohta H (2007) Galactolipid synthesis in chloroplast inner envelope is essential for proper thylakoid biogenesis, photosynthesis, and embryogenesis. Proc Natl Acad Sci USA 104: 17216–17221PubMedCrossRefGoogle Scholar
  80. Kojima M, Seki K, Ohnishi M, Ito S and Fujino Y (1989) Structure of novel glycerolipids in Adzuki bean (Vigna angularis) seeds. Biochem Cell Biol 68: 59–64Google Scholar
  81. Koo AJK, Ohlrogge JB and Pollard M (2004) On the export of fatty acids from the chloroplast. J Biol Chem 279: 16101–16110PubMedCrossRefGoogle Scholar
  82. Kroll D, Meierhoff K, Bechtold N, Kinoshita M, Westphal S, Vothknecht UC, Soll J and Westhoff P (2001) VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. Proc Natl Acad Sci USA 98: 4238–4242PubMedCrossRefGoogle Scholar
  83. Kruse O, Hankamer B, Konczak C, Gerle C, Morris E, Radunz A, Schmid GH and Barber J (2000). Phosphatidylglycerol is involved in the dimerization of photosystem II. J Biol Chem 275: 6509–6514PubMedCrossRefGoogle Scholar
  84. Kubis SE, Pike MJ, Hill LM and Rawsthorne S (2004) The import of phosphoenolpyruvate by plastids from developing embryos of oilseed rape, Brassica napus (L.), and its potential as a substrate for fatty acid synthesis. J Exp Botany 55: 1455–1462CrossRefGoogle Scholar
  85. Kunst L and Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42: 51–80PubMedCrossRefGoogle Scholar
  86. Kunst L, Browse J and Somerville CR (1988) Altered regulation of lipid biosynthesis in a mutant of Arabidopsis deficient in chloroplast glycerol-3-phosphate acyltransferase activity. Proc Natl Acad Sci USA 85: 4143–4147PubMedCrossRefGoogle Scholar
  87. Leegood RC, Walker DA and Foyer CH (1985) Regulation of the Benson Calvin cycle. In: Barber J and Barber NR (eds), Photosynthetic mechanism and the environment, pp 190–258 Elsevier Science Publishers, AmsterdamGoogle Scholar
  88. Levine T (2004) Short-range intracellular trafficking of small molecules across endoplasmic reticulum junctions. Trends Cell Biol 14: 483–490PubMedCrossRefGoogle Scholar
  89. Li MY, Welti R and Wang XM (2006) Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of Phospholipases D zeta 1 and D zeta 2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants. Plant Physiol 142: 750–761PubMedCrossRefGoogle Scholar
  90. Lightner J, Wu J and Browse J (1994) A mutant of Arabidopsis with increased levels of stearic acid. Plant Physiol 106: 1443–1451PubMedGoogle Scholar
  91. Lu B, Xu C, Awai K, Jones AD and Benning C (2007) A small ATPase protein of Arabidopsis, TGD3, involved in chloroplast lipid import. J Biol Chem 282: 35945–35953PubMedCrossRefGoogle Scholar
  92. Malherbe A, Block MA, Joyard J and Douce R (1992) Feedback inhibition of phosphatidate phosphatase from spinach chloroplast envelope membranes by diacylglycerol. J Biol Chem 267: 23546–23553PubMedGoogle Scholar
  93. Maréchal E, Block MA, Joyard J and Douce R (1994a) Kinetic properties of monogalactosyldiacylglycerol synthase from spinach chloroplast envelope membranes. J Biol Chem 269: 5788–5798PubMedGoogle Scholar
  94. Maréchal E, Block MA, Joyard J and Douce R (1994b) Comparison of the kinetic properties of MGDG synthase in mixed micelles and in envelope membranes from spinach chloroplast. FEBS Lett 352: 307–310PubMedCrossRefGoogle Scholar
  95. Maréchal E, Miège C, Block MA, Douce R and Joyard J (1995) The catalytic site of monogalactosyldiacylglycerol synthase from spinach chloroplast envelope membranes. Biochemical analysis of the structure and of the metal content. J Biol Chem 270: 5714–5722PubMedCrossRefGoogle Scholar
  96. McConn M and Browse J (1998) Polyunsaturated membranes are required for photosynthetic competence in a mutant of Arabidopsis. Plant J 15: 521–530PubMedCrossRefGoogle Scholar
  97. Merigout P, Kepes F, Perret AM, Satiat-Jeunemaitre B and Moreau P (2002) Effects of brefeldin A and nordihydroguaiaretic acid on endomembrane dynamics and lipid synthesis in plant cells. FEBS Lett 518: 88–92PubMedCrossRefGoogle Scholar
  98. Miège C, Maréchal E, Shimojima M, Awai K, Block MA, Ohta H, Takamiya K, Douce R and Joyard J (1999) Biochemical and topological properties of type A MGDG synthase, a spinach chloroplast envelope enzyme catalyzing the synthesis of both prokaryotic and eukaryotic MGDG. Eur J Biochem 265: 990–1001PubMedCrossRefGoogle Scholar
  99. Miras S, Salvi D, Ferro M, Grunwald D, Garin J, Joyard J and Rolland N (2002) Non-canonical transit peptide for import into the chloroplast. J Biol Chem 277: 47770–47778PubMedCrossRefGoogle Scholar
  100. Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R,Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L and Thibaud MC (2005) A wide transcriptional analysis using the Arabidopsis thaliana whole genome Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA 102: 11934–11939PubMedCrossRefGoogle Scholar
  101. Mizusawa N and Wada H (2011) The role of lipids in photosystem II. Biochim Biophys Acta doi:10.1016/j.bbabio.2011.04.008Google Scholar
  102. Moellering ER and Benning C (2011) Galactoglycerolipid metabolism under stress: a time for remodeling. Trends Plant Sci 16: 98–107Google Scholar
  103. Mongrand S, Bessoule JJ, Cabantous F and Cassagne C (1998) The C16:3/C18:3 fatty acid balance in photosynthetic tissues from 468 plant species. Phytochem 49: 1049–1064CrossRefGoogle Scholar
  104. Moon BY, Higashi S, Gombos Z and Murata N (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA 92: 6219–6223PubMedCrossRefGoogle Scholar
  105. Morré DJ, Seldén G, Sundqvist S and Sandelius AS (1991a) Stromal low temperature compartment derived from the inner membrane of the envelope. Plant Physiol 97: 1558–1564PubMedCrossRefGoogle Scholar
  106. Morré DJ, Morre JT, Morre SR, Sundqvist C and Sandelius AS (1991b) Chloroplast biogenesis. Cell-free transfer of envelope monogalactosylglycerides to thylakoids. Biochim Biophys Acta 1070: 437–445PubMedCrossRefGoogle Scholar
  107. Mulichak AM, Theisen MJ, Essigmann B, Benning C and Garavito RM (1999) Crystal structure of SQD1, an enzyme involved in the biosynthesis of the plant sulfolipid headgroup donor UDP-sulfoquinovose. Proc Natl Acad Sci USA 96: 13097–13102PubMedCrossRefGoogle Scholar
  108. Muller F and Frentzen M (2001) Phosphatidylglycero­phosphate synthases from Arabidopsis thaliana. FEBS Lett 509: 298–302PubMedCrossRefGoogle Scholar
  109. Murata N, Higashi S-I and Fujimura Y (1990) Glycerolipids in various preparations of photosystem II from spinach chloroplasts. Biochim Biophys Acta 1019: 261–268CrossRefGoogle Scholar
  110. Nakamura Y, Awai K, Masuda T, Yoshioka Y, Takamiya K and Ohta H (2005) A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J Biol Chem 280: 7469–7476PubMedCrossRefGoogle Scholar
  111. Nakamura Y, Tsuchiya M and Ohta H (2007) Plastidic phosphatidic acid phosphatases identified in a distinct subfamily of lipid phosphate phosphatases with prokaryotic origin. J Biol Chem 282: 29013–29021PubMedCrossRefGoogle Scholar
  112. Nishida I, Frentzen M, Ishizaki O and Murata N (1997) Purification of isomeric forms of acyl-(acyl-carrier-protein): glycerol-3-phosphate acyltransferase from greening squash cotyledons. Plant Cell Physiol 28: 1071–1079Google Scholar
  113. Nishida I, Sugiura M, Enju A and Nakamura M (2000) A second gene for acyl-(acyl-carrier-protein): glycerol-3-phosphate acyltransferase in squash, Cucurbita moschata cv. Shirogikuza, codes for an oleate-selective isozyme: molecular cloning and protein purification studies. Plant Cell Physiol 41: 1381–1391PubMedCrossRefGoogle Scholar
  114. Nishiyama Y, Hardre-Lienard H, Miras S, Miège C, Block MA, Revah F, Joyard J and Maréchal E (2003) Refolding from denatured inclusion bodies, purification to homogeneity and simplified assay of MGDG synthases from land plants. Prot Expr Purif 31: 79–87CrossRefGoogle Scholar
  115. Nussberger S, Dorr K, Wang DN and Kuhlbrandt W (1993) Lipid-protein interactions in crystals of plant light-harvesting complex. J Mol Biol 234: 347–356PubMedCrossRefGoogle Scholar
  116. Ohlrogge JB and Browse J (1995) Lipid biosynthesis. Plant Cell 7: 957–970PubMedGoogle Scholar
  117. Ohlrogge JB, Browse J and Somerville CR (1991) The genetics of plant lipids. Biochim Biophys Acta 1082: 1–26PubMedCrossRefGoogle Scholar
  118. Okuley J, Lightner J, Feldmann K, Yadav N, Lark E and Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6: 147–158PubMedGoogle Scholar
  119. Park JM, Cho JH, Kang SG, Jang HJ, Pih KT, Piao HL, Cho MJ and Hwang I (1998) A dynamin-like protein in Arabidopsis thaliana is involved in biogenesis of thylakoid membranes. Embo J 17: 859–867PubMedCrossRefGoogle Scholar
  120. Pineau B, Girard-Bascou J, Eberhard S, Choquet Y, Trémolières A, Gerard-Hirne C, Bennardo-Connan A, Decottignies P, Gillet S and Wollman FA (2004) A single mutation that causes phosphatidylglycerol deficiency impairs synthesis of photosystem II cores in Chlamydomonas reinhardtii. Eur J Biochem 271: 329–338PubMedCrossRefGoogle Scholar
  121. Poirier Y, Thoma S, Somerville C and Schiefelbein J (1991) A mutant of A rabidopsis deficient in xylem loading of phosphate. Plant Physiol 97: 1087–1093PubMedCrossRefGoogle Scholar
  122. Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50: 665–693PubMedCrossRefGoogle Scholar
  123. Raghothama KG (2000) Phosphate transport and signaling. Curr Opin Plant Biol 3: 182–187PubMedGoogle Scholar
  124. Räntfors M, Everstsson I, Kjellberg JM and Sandelius AS (2000) Intraplastidial lipid trafficking: Regulation of galactolipid release from isolated chloroplast envelope. Physiol Plant 110: 262–270CrossRefGoogle Scholar
  125. Rawsthorne S (2002) Carbon flux and fatty acid synthesis in plants. Prog Lipid Res 41: 182–196PubMedCrossRefGoogle Scholar
  126. Rawyler A, Meylan-Bettex M and Siegenthaler PA (1995) (Galacto) lipid export from envelope to thylakoid membranes in intact chloroplasts. II. A general process with a key role for the envelope in the establishment of lipid asymmetry in thylakoid membranes. Biochim Biophys Acta 1233: 123–133PubMedCrossRefGoogle Scholar
  127. Rebeillé F (1983) Quelques observations sur le métabolisme du phosphate chez les cellules d’érable sycomore. In : PhD thesis. Université J. Fourier, GrenobleGoogle Scholar
  128. Reifarth F, Christen G, Seeliger AG, Dörmann P, Benning C and Renger G (1997) Modification of the water oxidizing complex in leaves of the dgd1 mutant of Arabidopsis thaliana deficient in the galactolipid digalactosyldiacylglycerol. Biochemistry 36: 11769–11776PubMedCrossRefGoogle Scholar
  129. Russo MA, Quartacci MF, Izzo R, Belligno A and Navari-Izzo F (2007) Long- and short-term phosphate deprivation in bean roots: plasma membrane lipid alterations and transient stimulation of phospholipases. Phytochemistry 68: 1564–1571PubMedCrossRefGoogle Scholar
  130. Sakaki T, Kondo N and Yamada M (1990) Pathway for the synthesis of triacylglycerol from monogalactosyldiacylglycerols in ozone-fumigated spinach leaves. Plant Physiol 94: 773–780PubMedCrossRefGoogle Scholar
  131. Sakurai I, Mizusawa N, Ohashi S, Kobayashi M and Wada H (2007) Effects of the lack of phosphatidylglycerol on the donor side of photosystem II. Plant Physiol 144: 1336–1346PubMedCrossRefGoogle Scholar
  132. Sanda S, Leustek T, Theisen MJ, Garavito RM and Benning C (2001) Recombinant Arabidopsis SQD1 converts udp-glucose and sulfite to the sulfolipid head group precursor UDP-sulfoquinovose in vitro. J Biol Chem 276: 3941–3946PubMedCrossRefGoogle Scholar
  133. Sandelius AS and Andersson MX (2003) Isolation and characterization of an endoplasmic reticulum fraction associated with chloroplasts isolated from garden pea (Pisum sativum). In: 1st European Symposium on Plant Lipids Aachen abstract bookletGoogle Scholar
  134. Sato N, Aoki M, Maru Y, Sonoike K, Minoda A and Tsuzuki M (2003) Involvement of sulfoquinovosyl diacylglycerol in the structural integrity and heat-tolerance of photosystem II. Planta 217: 245–251PubMedGoogle Scholar
  135. Sato N, Suda K and Tsuzuki M (2004) Responsibility of phosphatidylglycerol for biogenesis of the PS I complex. Biochim Biophys Acta 1658: 235–243PubMedCrossRefGoogle Scholar
  136. Schmidt H and Heinz E (1990) Involvement of ferredoxin in desaturation of lipid-bound oleate in chloroplasts. Plant Physiol 94: 214–220PubMedCrossRefGoogle Scholar
  137. Schmidt H and Heinz E (1993) Direct desaturation of intact galactolipids by a desaturase solubilized from spinach (Spinacia oleracea) chloroplast envelopes. Biochem J 289: 777–782PubMedGoogle Scholar
  138. Schmidt H, Dresselhaus T, Buck F and Heinz E (1994) Purification and PCR-based cDNA cloning of a plastidial n-6 desaturase. Plant Mol Biol 26: 631–642PubMedCrossRefGoogle Scholar
  139. Schnurr JA, Shochey JM, de Boer GJ and Browse JA (2002) Fatty acid export from the chloroplast. Molecular characterization of a major plastidial acyl-coenzyme A synthetase from Arabidopsis. Plant Physiol 129, 1700–1709PubMedCrossRefGoogle Scholar
  140. Seifert U and Heinz E (1992) Enzymatic characteristics of UDP-sulfoquinovose: DAG sulfoquinovosyltransferase from chloroplast envelopes. Botanica Acta 105: 197–205Google Scholar
  141. Seigneurin-Berny D, Rolland N, Dorne AJ and Joyard J (2000) Sulfolipid is a potential candidate for annexin binding to the outer surface of chloroplast. Biochem Biophys Res Commun 272: 519–524PubMedCrossRefGoogle Scholar
  142. Shimojima M, Ohta H, Iwamatsu A, Masuda T, Shioi Y and Takamiya K (1997) Cloning of the gene for monogalactosyldiacylglycerol synthase and its evolutionary origin. Proc Natl Acad Sci USA 94: 333–337PubMedCrossRefGoogle Scholar
  143. Siebertz HP, Heinz E, Lindscheid M, Joyard J and Douce R (1979) Characterization of lipids from chloroplast envelopes. Eur J Biochem 101: 429–438PubMedCrossRefGoogle Scholar
  144. Simidjiev I, Stoylova S, Amenitsch H, Javorfi T, Mustardy L, Laggner P, Holzenburg A and Garab G (2000) Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. Proc Natl Acad Sci USA 97: 1473–1476PubMedCrossRefGoogle Scholar
  145. Slack CR, Roughan PG and Balasingham N (1977) Labelling studies in vivo on the metabolism of the acyl and glycerol moieties of the glycerolipids in the developing maize leaf. Biochem J 162: 289–296PubMedGoogle Scholar
  146. Somerville C and Browse J (1996) Dissecting desaturation: Plants prove advantageous. Trends Cell Biol 6: 148–153PubMedCrossRefGoogle Scholar
  147. Sonnhammer EL, von Heijne G and Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6: 175–182PubMedGoogle Scholar
  148. Steffen R, Kelly AA, Huyer J, Dörmann P and Renger G (2005) Investigations on the reaction pattern of photosystem II in leaves from Arabidopsis thaliana wild type plants and mutants with genetically modified lipid content. Biochemistry 44: 3134–3142PubMedCrossRefGoogle Scholar
  149. Stymne S and Stobart AK (1984) Evidence for the reversibility of the acyl-CoA:lysophosphatidylcholine acyltransferase in microsomal preparations from developing safflower (Carthamus tinctorius L.) cotyledons and rat liver. Biochem J 223: 305–314PubMedGoogle Scholar
  150. Thelen JJ and Ohlrogge JB (2002) The multisubunit acetyl-CoA carboxylase is strongly associated with the chloroplast envelope through non-ionic interactions to the carboxyltransferase subunits. Arch Biochem Biophys 400: 245–257PubMedCrossRefGoogle Scholar
  151. Tietje C and Heinz E (1998) Uridine-diphospho-sulfoquinovose: diacylglycerol sulfoquinovosyltransferase activity is concentrated in the inner membrane of chloroplast envelopes. Planta 206: 72–78CrossRefGoogle Scholar
  152. Trémolières A, Dainese P and Bassi R (1994) Heterogenous lipid distribution among chlorophyll-binding proteins of photosystem II in maize mesophyll chloroplasts. Eur J Biochem 221: 721–730PubMedCrossRefGoogle Scholar
  153. Van Besouw A and Wintermans JF (1978) Galactolipid formation in chloroplast envelopes. I. Evidence for two mechanisms in galactosylation. Biochim Biophys Acta 529: 44–53PubMedCrossRefGoogle Scholar
  154. Villarejo A, Buren S, Larsson S, Dejardin A, Monne M, Rudhe C, Karlsson J, Jansson S, Lerouge P, Rolland N, von Heijne G, Grebe M, Bako L and Samuelsson G (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nature Cell Biology 7: 1124–1131CrossRefGoogle Scholar
  155. Wada H and Murata N (eds) (2009) Lipids in Photosyn­thesis: Essential and Regulatory Functions, Advances in Photosynthesis and Respiration, Vol 30. Springer, DordrechtGoogle Scholar
  156. Wada H, Gombos Z and Murata N (1990) Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347: 200–203PubMedCrossRefGoogle Scholar
  157. Williams JP, Imperial V, Khan MU and Hodson JN (2000) The role of phosphatidylcholine in fatty acid exchange and desaturation in Brassica napus L leaves. Biochem J 349: 127–133PubMedCrossRefGoogle Scholar
  158. Xu C, Härtel H, Wada H, Hagio M, Yu B, Eakin C and Benning C (2002) The pgp1 mutant locus of Arabidopsis encodes a phosphatidylglycerolphosphate synthase with impaired activity. Plant Physiol 129: 594–604PubMedCrossRefGoogle Scholar
  159. Xu CC, Fan JL, Riekhof W, Froehlich JE and Benning C (2003) A permease-like protein involved in ER to thylakoid lipid transfer in Arabidopsis. EMBO J 22: 2370–2379PubMedCrossRefGoogle Scholar
  160. Yamaryo Y, Kanai D, Awai K, Shimojima M, Masuda T, Shimada H, Takamiya K and Ohta H (2003) Light and cytokinin play a co-operative role in MGDG synthesis in greening cucumber cotyledons. Plant Cell Physiol 44: 844–855PubMedCrossRefGoogle Scholar
  161. Yamaryo Y, Dubots E, Albrieux C, Baldan B and. Block M A (2008) Phosphate availability affects the tonoplast localization of PLD 2, an Arabidopsis thaliana phospholipase D. FEBS Lett 582: 685–690PubMedCrossRefGoogle Scholar
  162. Yang W, Liu S, Feng FY, Hou HT, Jiang GZ, Xu YN and Kuang TY (2004) Effects of phosphate deficiency on the lipid composition in cucumber thylakoid membranes and PSII particles. Plant Sci 166: 1575–1579CrossRefGoogle Scholar
  163. Yu B and Benning C (2003) Anionic lipids are required for chloroplast structure and function in Arabidopsis. Plant J 36: 762–770PubMedCrossRefGoogle Scholar
  164. Yu B, Xu C and Benning C (2002) Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc Natl Acad Sci USA 99: 5732–5737PubMedCrossRefGoogle Scholar
  165. Yu B, Wakao S, Fan J and Benning C (2004) Loss of plastidic lysophosphatidic acid acyltransferase causes embryo-lethality in Arabidopsis. Plant Cell Physiol 45: 503–510PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Maryse A. Block
    • 1
  • Juliette Jouhet
    • 1
  • Eric Maréchal
    • 1
  • Olivier Bastien
    • 1
  • Jacques Joyard
    • 1
  1. 1.Laboratoire de Physiologie Cellulaire et VégétaleCEA-GrenobleGrenobleFrance

Personalised recommendations