Advertisement

Photosynthesis pp 151-173 | Cite as

Plant Proteomics and Photosynthesis

  • Klaas J. van Wijk
Chapter
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 34)

Summary

Peptide mass finger printing and tandem mass spectrometry-based identification of proteins emerged in the mid 1990s, with its first application on the study of photosynthesis and chloroplasts about a decade ago. From there on, the impact of proteomics and protein mass spectrometry has been very significant, with initially most efforts placed on the identification of chloroplast proteins, followed by phosphorylation, comparative proteomics and work on protein-protein interactions. Most of this work has been carried out with Arabidopsis thaliana, the first plant for which the genome was sequenced. This chapter will focus on new results in proteomics of photosynthesis published since 2004, as well as on emerging concepts, challenges and opportunities to make discoveries relevant to photosynthesis. The chapter is restricted to photosynthesis and its regulatory proteins in higher plants and the green alga Chlamydomonas reinhardtii. With the exception of some small, hydrophobic thylakoid membrane proteins, most of the photosynthetic machinery has been observed by mass spectrometry, but many of the post-translational modifications remain to be discovered. One of the biggest challenges of proteomics in the area of photosynthesis will be to identify and characterize proteins with regulatory functions, and proteins involved in chloroplast development, biogenesis and adaptation.

Keywords

Thylakoid Membrane Bundle Sheath Chloroplast Protein Photosynthetic Electron Transport Chain Thylakoid Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations:

2D –

Two dimensional;

BN-PAGE –

Blue native gel electrophoresis;

cICAT –

Cleavable isotope coded affinity tag;

CN-PAGE –

Colorless native gel electrophoresis;

cTP –

Chloroplast transit peptide;

DDA –

Data dependent acquisition;

ESI –

Electro-spray ionization;

EST –

Expressed sequence tag;

FTICR –

Fourier transform ion cyclotron resonance;

IEF –

Isoelectric focusing;

IPG –

Immobilized pH gradient;

iTRAQ –

Isobaric tag reagent for quantification;

LC –

Liquid chromatography;

Lhca/b –

Light-harvesting proteins from the LHCI/II complexes;

LHCI/II –

Light-harvesting complex 1 (or II);

LTQ –

Linear trap quadrupole;

MALDI –

Matrix assisted laser desorption ionization;

MetSo –

Methionine sulfoxide;

MS –

Mass spectrometry;

MS/MS –

Tandem mass spectrometry;

MSR –

Methionine sulfoxide reductase;

NDH –

NADPH dehydrogenase complex;

PGs –

Plastoglobules;

PMF –

Peptide mass finger printing;

PS –

Photosystem;

PTM –

Post-translational modification;

Q-TOF –

Quadrapole time of flight;

TOF –

Time of flight;

TRX –

Thioredoxin;

VIPP1 –

Vesicle-inducing protein in plastids 1

Notes

Acknowledgements

I thank all the members in my laboratory, as well as numerous colleagues for all-stimulating discussions on the topic of proteomics, mass spectrometry and plastid biology. The National Science Foundation (NSF), the United States Department of Agriculture (USDA), the Department of Energy (DOE) and the New York Science and Technology and Research (NYSTAR) are acknowledged for supporting the proteomics and mass spectrometry activities and infrastructure in my laboratory.

References

  1. Adachi J, Kumar C, Zhang Y, Olsen JV and Mann M (2006) The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol 7: R80PubMedCrossRefGoogle Scholar
  2. Allmer J, Markert C, Stauber EJ and Hippler M (2004) A new approach that allows identification of intron-split peptides from mass spectrometric data in genomic databases. FEBS Lett 562: 202–206PubMedCrossRefGoogle Scholar
  3. Allmer J, Naumann B, Markert C, Zhang M and Hippler M (2006) Mass spectrometric genomic data mining: Novel insights into bioenergetic pathways in Chlamydomonas reinhardtii. Proteomics 6: 6207–6220PubMedCrossRefGoogle Scholar
  4. Andaluz S, Lopez-Millan AF, De las Rivas J, Aro EM, Abadia J and Abadia A (2006) Proteomic profiles of thylakoid membranes and changes in response to iron deficiency. Photosynth Res 89: 141–155PubMedCrossRefGoogle Scholar
  5. Andon NL, Hollingworth S, Koller A, Greenland AJ, Yates JR, 3rd and Haynes PA (2002) Proteomic characterization of wheat amyloplasts using identification of proteins by tandem mass spectrometry. Proteomics 2: 1156–1168PubMedCrossRefGoogle Scholar
  6. Aro EM, Suorsa M, Rokka A, Allahverdiyeva Y, Paakkarinen V, Saleem A, Battchikova N and Rintamaki E (2005) Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J Exp Bot 56: 347–356PubMedCrossRefGoogle Scholar
  7. Aseeva E, Ossenbühl F, Eichacker LA, Wanner G, Soll J and Vothknecht UC (2004) Complex formation of Vipp1 depends on its alpha-helical PspA-like domain. J Biol Chem 279: 35535–35541PubMedCrossRefGoogle Scholar
  8. Aseeva E, Ossenbuhl F, Sippel C, Cho WK, Stein B, Eichacker LA, Meurer J, Wanner G, Westhoff P, Soll J and Vothknecht UC (2007) Vipp1 is required for basic thylakoid membrane formation but not for the assembly of thylakoid protein complexes. Plant Physiol Biochem 45: 119–128PubMedCrossRefGoogle Scholar
  9. Austin JR, 2nd, Frost E, Vidi PA, Kessler F and Staehelin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18: 1693–1703PubMedCrossRefGoogle Scholar
  10. Baginsky S and Gruissem W (2004) Chloroplast proteomics: potentials and challenges. J Exp Bot 55: 1213–1220PubMedCrossRefGoogle Scholar
  11. Baginsky S, Siddique A and Gruissem W (2004) Proteome analysis of tobacco bright yellow-2 (BY-2) cell culture plastids as a model for undifferentiated heterotrophic plastids. J Proteome Res 3: 1128–1137PubMedCrossRefGoogle Scholar
  12. Baginsky S, Grossmann J and Gruissem W (2007) Proteome analysis of chloroplast mRNA processing and degradation. J Proteome Res 6: 809–820PubMedCrossRefGoogle Scholar
  13. Barkan A and Goldschmidt-Clermont M (2000) Participation of nuclear genes in chloroplast gene expression. Biochimie 82: 559–572PubMedCrossRefGoogle Scholar
  14. Bellafiore S, Barneche F, Peltier G and Rochaix JD (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433: 892–895PubMedCrossRefGoogle Scholar
  15. Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P and Panstruga R (2005) Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc Natl Acad Sci USA 102: 3135–3140PubMedCrossRefGoogle Scholar
  16. Bonardi V, Pesaresi P, Becker T, Schleiff E, Wagner R, Pfannschmidt T, Jahns P and Leister D (2005) Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature 437: 1179–1182PubMedCrossRefGoogle Scholar
  17. Brehelin C, Kessler F and Van Wijk KJ (2007) Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci 12: 260–266PubMedCrossRefGoogle Scholar
  18. Buchanan BB and Balmer Y (2005) Redox regulation: A broadening horizon. Annu Rev Plant Biol 56: 187–220PubMedCrossRefGoogle Scholar
  19. Buchanan BB and Luan S (2005) Redox regulation in the chloroplast thylakoid lumen: a new frontier in photosynthesis research. J Exp Bot 56: 1439–1447PubMedCrossRefGoogle Scholar
  20. Buchanan B, Gruissem W and Jones RL (eds) (2000) Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, RockvilleGoogle Scholar
  21. Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J and Emili A (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433: 531–537PubMedCrossRefGoogle Scholar
  22. Cheng NH, Liu JZ, Brock A, Nelson RS and Hirschi KD (2006) AtGRXcp, an Arabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage. J Biol Chem 281: 26280–26288PubMedCrossRefGoogle Scholar
  23. Ciambella C, Roepstorff P, Aro EM and Zolla L (2005) A proteomic approach for investigation of photosynthetic apparatus in plants. Proteomics 5: 746–757PubMedCrossRefGoogle Scholar
  24. Collin V, Issakidis-Bourguet E, Marchand C, Hirasawa M, Lancelin JM, Knaff DB and Miginiac-Maslow M (2003) The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity. J Biol Chem 21: 21Google Scholar
  25. Danielsson R, Suorsa M, Paakkarinen V, Albertsson PA, Styring S, Aro EM and Mamedov F (2006) Dimeric and monomeric organization of photosystem II. Distribution of five distinct complexes in the different domains of the thylakoid membrane. J Biol Chem 281: 14241-14249PubMedCrossRefGoogle Scholar
  26. Darie CC, Biniossek ML, Winter V, Mutschler B and Haehnel W (2005) Isolation and structural characterization of the Ndh complex from mesophyll and bundle sheath chloroplasts of Zea mays. FEBS J 272: 2705–2716PubMedCrossRefGoogle Scholar
  27. Depege N, Bellafiore S and Rochaix JD (2003) Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299: 1572–1575PubMedCrossRefGoogle Scholar
  28. Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SM, Baier M and Finkemeier I (2006) The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot 57: 1697–1709PubMedCrossRefGoogle Scholar
  29. Dirk LM, Williams MA and Houtz RL (2001) Eukaryotic peptide deformylases. Nuclear-encoded and chloroplast-targeted enzymes in Arabidopsis. Plant Physiol 127: 97–107PubMedCrossRefGoogle Scholar
  30. Dirk LM, Williams MA and Houtz RL (2002) Specificity of chloroplast-localized peptide deformylases as determined with peptide analogs of chloroplast-translated proteins. Arch Biochem Biophys 406: 135–141PubMedCrossRefGoogle Scholar
  31. Domon B and Aebersold R (2006) Mass spectrometry and protein analysis. Science 312: 212–217PubMedCrossRefGoogle Scholar
  32. Dunkley TP, Hester S, Shadforth IP, Runions J, Weimar T, Hanton SL, Griffin JL, Bessant C, Brandizzi F, Hawes C, Watson RB, Dupree P and Lilley KS (2006) Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci USA 103: 6518–6523PubMedCrossRefGoogle Scholar
  33. Edwards G and Walker DA (1983) C3,C4: mechanisms, and cellular and environmental regulation, of photosynthesis. University of California Press, BerkeleyGoogle Scholar
  34. Emanuelsson O, Brunak S, von Heijne G and Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2: 953–971PubMedCrossRefGoogle Scholar
  35. Ferro M, Seigneurin-Berny D, Rolland N, Chapel A, Salvi D, Garin J and Joyard J (2000) Organic solvent extraction as a versatile procedure to identify hydrophobic chloroplast membrane proteins. Electrophoresis 21: 3517–3526PubMedCrossRefGoogle Scholar
  36. Ferro M, Salvi D, Riviere-Rolland H, Vermat T, Seigneurin-Berny D, Grunwald D, Garin J, Joyard J and Rolland N (2002) Integral membrane proteins of the chloroplast envelope: Identification and subcellular localization of new transporters. Proc Natl Acad Sci USA 99: 11487–11492PubMedCrossRefGoogle Scholar
  37. Ferro M, Salvi D, Brugiere S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J and Rolland N (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 28: 28Google Scholar
  38. Friso G, Giacomelli L, Ytterberg AJ, Peltier JB, Rudella A, Sun Q and Wijk KJ (2004) In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. Plant Cell 16: 478–499PubMedCrossRefGoogle Scholar
  39. Froehlich JE, Wilkerson CG, Ray WK, McAndrew RS, Osteryoung KW, Gage DA and Phinney BS (2003) Proteomic study of the Arabidopsis thaliana chloroplastic envelope membrane utilizing alternatives to traditional two-dimensional electrophoresis. J Proteome Res 2: 413–425PubMedCrossRefGoogle Scholar
  40. Gaude N, Brehelin C, Tischendorf G, Kessler F and Dormann P (2007) Nitrogen deficiency in Arabidopsis affects galactolipid composition and gene expression and results in accumulation of fatty acid phytyl esters. Plant J 49: 727–739CrossRefGoogle Scholar
  41. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G and Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415: 141–147PubMedCrossRefGoogle Scholar
  42. Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B, Edelmann A, Heurtier MA, Hoffman V, Hoefert C, Klein K, Hudak M, Michon AM, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick JM, Kuster B, Bork P, Russell RB and Superti-Furga G (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440: 631–636PubMedCrossRefGoogle Scholar
  43. Giacomelli L, Rudella A and Van Wijk KJ (2006) High light response of the thylakoid proteome in Arabidopsis wild type and the ascorbate-deficient mutant vtc2-2. A comparative proteomics study. Plant Physiol 141: 685–701PubMedCrossRefGoogle Scholar
  44. Giglione C and Meinnel T (2001) Organellar peptide deformylases: universality of the N-terminal methionine cleavage mechanism. Trends Plant Sci 6: 566–572PubMedCrossRefGoogle Scholar
  45. Giglione C, Serero A, Pierre M, Boisson B and Meinnel T (2000) Identification of eukaryotic peptide deformylases reveals universality of N-terminal protein processing mechanisms. EMBO J 19: 5916-5929PubMedCrossRefGoogle Scholar
  46. Giglione C, Vallon O and Meinnel T (2003) Control of protein life-span by N-terminal methionine excision. EMBO J 22: 13–23PubMedCrossRefGoogle Scholar
  47. Glinski M and Weckwerth W (2006) The role of mass spectrometry in plant systems biology. Mass Spectrom Rev 25: 173–214PubMedCrossRefGoogle Scholar
  48. Gómez SM, Nishio JN, Faull KF and Whitelegge JP (2002) The chloroplast grana proteome defined by intact mass measurements from liquid chromatography mass spectrometry. Mol Cell Proteomics 1: 46–59PubMedCrossRefGoogle Scholar
  49. Gomez SM, Bil KY, Aguilera R, Nishio JN, Faull KF and Whitelegge JP (2003) Transit peptide cleavage sites of integral thylakoid membrane proteins. Mol Cell Proteomics 2: 1068–1085PubMedCrossRefGoogle Scholar
  50. Goshe MB and Smith RD (2003) Stable isotope-coded proteomic mass spectrometry. Curr Opin Biotechnol 14: 101–109PubMedCrossRefGoogle Scholar
  51. Goulas E, Schubert M, Kieselbach T, Kleczkowski LA, Gardestrom P, Schroder W and Hurry V (2006) The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low temperature. Plant J 47: 720–734PubMedCrossRefGoogle Scholar
  52. Granvogl B, Reisinger V and Eichacker LA (2006) Mapping the proteome of thylakoid membranes by de novo sequencing of intermembrane peptide domains. Proteomics 6: 3681–3695PubMedCrossRefGoogle Scholar
  53. Gruhler A, Schulze WX, Matthiesen R, Mann M and Jensen ON (2005) Stable isotope labeling of Arabidopsis thaliana cells and quantitative proteomics by mass spectrometry. Mol Cell ProteomicsGoogle Scholar
  54. Haas W, Faherty BK, Gerber SA, Elias JE, Beausoleil SA, Bakalarski CE, Li X, Villen J and Gygi SP (2006) Optimization and use of peptide mass measurement accuracy in shotgun proteomics. Mol Cell Proteomics 5: 1326–1337PubMedCrossRefGoogle Scholar
  55. Hatch MD and Osmond CB (1976) Compartmentation and transport in C4 photosynthesis. In: Heber U and Stocking C (eds) Encyclopedia of Plant Physiology, Ed New Series, Vol 3, pp 144–184. Springer-Verlag, BerlinGoogle Scholar
  56. Heinemeyer J, Eubel H, Wehmhoner D, Jansch L and Braun HP (2004) Proteomic approach to characterize the supramolecular organization of photosystems in higher plants. Phytochemistry 65: 1683–1692PubMedCrossRefGoogle Scholar
  57. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D and Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415: 180–183PubMedCrossRefGoogle Scholar
  58. Hu Q, Noll RJ, Li H, Makarov A, Hardman M and Graham Cooks R (2005) The Orbitrap: a new mass spectrometer. J Mass Spectrom 40: 430–443PubMedCrossRefGoogle Scholar
  59. Huber SC and Hardin SC (2004) Numerous posttranslational modifications provide opportunities for the intricate regulation of metabolic enzymes at multiple levels. Curr Opin Plant Biol 7: 318–322PubMedCrossRefGoogle Scholar
  60. Huttlin EL, Hegeman AD, Harms AC and Sussman MR (2007) Comparison of full versus partial metabolic labeling for quantitative proteomics analysis in Arabidopsis thaliana. Mol Cell Proteomics 6: 860–881PubMedCrossRefGoogle Scholar
  61. Jensen ON (2004) Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol 8: 33–41PubMedCrossRefGoogle Scholar
  62. Jensen ON (2006a) Automated phosphorylation site mapping. Nat Biotechnol 24: 1226–1227PubMedCrossRefGoogle Scholar
  63. Jensen ON (2006b) Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 7: 391–403PubMedCrossRefGoogle Scholar
  64. Johansson E, Olsson O and Nystrom T (2004) Progression and specificity of protein oxidation in the life cycle of Arabidopsis thaliana. J Biol Chem 279: 22204–22208PubMedCrossRefGoogle Scholar
  65. Julka S and Regnier F (2004) Quantification in proteomics through stable isotope coding: a review. J Proteome Res 3: 350–363PubMedCrossRefGoogle Scholar
  66. Kamruzzaman Munshi M, Kobayashi Y and Shikanai T (2005) Identification of a novel protein, CRR7, required for the stabilization of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. Plant J 44: 1036–1044PubMedCrossRefGoogle Scholar
  67. Kessler F, Schnell D and Blobel G (1999) Identification of proteins associated with plastoglobules isolated from pea (Pisum sativum L.) chloroplasts. Planta 208: 107–113PubMedCrossRefGoogle Scholar
  68. Kieselbach T and Schroder WP (2003) The proteome of the chloroplast lumen of higher plants. Photosynth Res 78: 249–264PubMedCrossRefGoogle Scholar
  69. Kirkpatrick DS, Gerber SA and Gygi SP (2005) The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 35: 265–273PubMedCrossRefGoogle Scholar
  70. Kleffmann T, Russenberger D, von Zychlinski A, Christopher W, Sjolander K, Gruissem W and Baginsky S (2004) The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol 14: 354–362PubMedCrossRefGoogle Scholar
  71. Kleffmann T, Hirsch-Hoffmann M, Gruissem W and Baginsky S (2006) plprot: a comprehensive proteome database for different plastid types. Plant Cell Physiol 47: 432–436PubMedCrossRefGoogle Scholar
  72. Kleffmann T, von Zychlinski A, Russenberger D, Hirsch-Hoffmann M, Gehrig P, Gruissem W and Baginsky S (2007) Proteome dynamics during plastid differentiation in rice. Plant Physiol 143: 912–923PubMedCrossRefGoogle Scholar
  73. Kluge C, Seidel T, Bolte S, Sharma SS, Hanitzsch M, Satiat-Jeunemaitre B, Ross J, Sauer M, Golldack D and Dietz KJ (2004) Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex. BMC Cell Biol 5: 29PubMedCrossRefGoogle Scholar
  74. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrin-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MH, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A and Greenblatt JF (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440: 637–643PubMedCrossRefGoogle Scholar
  75. Kroll D, Meierhoff K, Bechtold N, Kinoshita M, Westphal S, Vothknecht UC, Soll J and Westhoff P (2001) VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. Proc Natl Acad Sci USA 98: 4238–4242PubMedCrossRefGoogle Scholar
  76. Kuster B, Mortensen P and Mann M (1999) Identifying proteins in genome databases using mass spectrometry. In: Proceedings of the 47th ASMS Conference on Mass Spectrometry and Allied Topics, pp 1897–1989, DallasGoogle Scholar
  77. Kuster B, Mortensen P, Andersen JS and Mann M (2001) Mass spectrometry allows direct identification of proteins in large genomes. Proteomics 1: 641-650PubMedCrossRefGoogle Scholar
  78. Langdale JA (1998) Cellular differentiation in the leaf. Curr Opin Cell Biol 10: 734–738PubMedCrossRefGoogle Scholar
  79. Lanquar V, Kuhn L, Lelievre F, Khafif M, Espagne C, Bruley C, Barbier-Brygoo H, Garin J and Thomine S (2007) 15N-metabolic labeling for comparative plasma membrane proteomics in Arabidopsis cells. Proteomics 7: 750–754PubMedCrossRefGoogle Scholar
  80. Larsen MR, Trelle MB, Thingholm TE and Jensen ON (2006) Analysis of posttranslational modifications of proteins by tandem mass spectrometry. Biotechniques 40: 790–798PubMedCrossRefGoogle Scholar
  81. Lemaire SD, Michelet L, Zaffagnini M, Massot V and Issakidis-Bourguet E (2007) Thioredoxins in chloroplasts. Curr Genet 51: 343–365PubMedCrossRefGoogle Scholar
  82. Listgarten J and Emili A (2005) Statistical and computational methods for comparative proteomic profiling using liquid chromatography-tandem mass spectrometry. Mol Cell Proteomics 4: 419–434PubMedCrossRefGoogle Scholar
  83. Liu C, Willmund F, Whitelegge JP, Hawat S, Knapp B, Lodha M and Schroda M (2005) J-domain protein CDJ2 and HSP70B are a plastidic chaperone pair that interacts with vesicle inducing protein in plastids 1 (VIPP1). Mol Biol Cell 16: 1165–1177PubMedCrossRefGoogle Scholar
  84. Liu C, Willmund F, Golecki JR, Cacace S, Hess B, Markert C and Schroda M (2007) The chloroplast HSP70B-CDJ2-CGE1 chaperones catalyse assembly and disassembly of VIPP1 oligomers in Chlamydomonas. Plant J 50: 265–277PubMedCrossRefGoogle Scholar
  85. Lohmann A, Schottler MA, Brehelin C, Kessler F, Bock R, Cahoon EB and Dormann P (2006) Deficiency in phylloquinone (vitamin K(1)) methylation affects prenyl quinone distribution, photosystem I abundance, and anthocyanin accumulation in the Arabidopsis AtmenG mutant. J Biol Chem 281: 40461–40472PubMedCrossRefGoogle Scholar
  86. Lonosky PM, Zhang X, Honavar VG, Dobbs DL, Fu A and Rodermel SR (2004) A proteomic analysis of maize chloroplast biogenesis. Plant Physiol 134: 560–574PubMedCrossRefGoogle Scholar
  87. Macek B, Waanders LF, Olsen JV and Mann M (2006) Top-down protein sequencing and MS3 on a hybrid linear quadrupole ion trap-orbitrap mass spectrometer. Mol Cell Proteomics 5: 949–958PubMedCrossRefGoogle Scholar
  88. Majeran W, Cai Y, Sun Q and Van Wijk KJ (2005) Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell 17: 3111–3140PubMedCrossRefGoogle Scholar
  89. Majeran W, Zybailov B, Ytterberg AJ, Dunsmore J, Sun Q, and Van Wijk KJ (2008) Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol Cell Proteomics 7: 1609–1638PubMedCrossRefGoogle Scholar
  90. Marouga R, David S and Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382: 669–678PubMedCrossRefGoogle Scholar
  91. Meng F, Wiener MC, Sachs JR, Burns C, Verma P, Paweletz CP, Mazur MT, Deyanova EG, Yates NA and Hendrickson RC (2007) Quantitative analysis of complex peptide mixtures using FTMS and differential mass spectrometry. J Am Soc Mass Spectrom 18: 226–233PubMedCrossRefGoogle Scholar
  92. Merchant SS, Allen MD, Kropat J, Moseley JL, Long JC, Tottey S and Terauchi AM (2006) Between a rock and a hard place: trace element nutrition in Chlamydomonas. Biochim Biophys Acta 1763: 578–594PubMedCrossRefGoogle Scholar
  93. Meyer Y, Reichheld JP and Vignols F (2005) Thioredoxins in Arabidopsis and other plants. Photosynth Res 86: 419–433PubMedCrossRefGoogle Scholar
  94. Michelet L, Zaffagnini M, Massot V, Keryer E, Vanacker H, Miginiac-Maslow M, Issakidis-Bourguet E and Lemaire SD (2006) Thioredoxins, glutaredoxins, and glutathionylation: new crosstalks to explore. Photosynth Res 89: 225–245PubMedCrossRefGoogle Scholar
  95. Monde RA, Schuster G and Stern DB (2000) Processing and degradation of chloroplast mRNA. Biochimie 82: 573–582PubMedCrossRefGoogle Scholar
  96. Moseley JL, Allinger T, Herzog S, Hoerth P, Wehinger E, Merchant S and Hippler M (2002) Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus. Embo J 21: 6709–6720PubMedCrossRefGoogle Scholar
  97. Motohashi K, Kondoh A, Stumpp MT and Hisabori T (2001) Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proc Natl Acad Sci USA 98: 11224–11229PubMedCrossRefGoogle Scholar
  98. Naumann B, Stauber EJ, Busch A, Sommer F and Hippler M (2005) N-terminal processing of Lhca3 Is a key step in remodeling of the photosystem I-light-harvesting complex under iron deficiency in Chlamydomonas reinhardtii. J Biol Chem 280: 20431–20441PubMedCrossRefGoogle Scholar
  99. Nelson CJ, Hegeman AD, Harms AC and Sussman MR (2006) A quantitative analysis of Arabidopsis plasma membrane using trypsin-catalyzed 18O labeling. Mol Cell Proteomics 5: 1382–1395PubMedCrossRefGoogle Scholar
  100. Nelson CJ, Huttlin EL, Hegeman AD, Harms AC and Sussman MR (2007) Implications of 15N-metabolic labeling for automated peptide identification in Arabidopsis thaliana. Proteomics 7: 1279–1292PubMedCrossRefGoogle Scholar
  101. Nelson T and Langdale J (1992) Developmental genetics of C4 photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 43: 25–47CrossRefGoogle Scholar
  102. Neuhaus HE and Emes MJ (2000) Nonphotosynthetic metabolism in plastids. Annu Rev Plant Physiol Plant Mol Biol 51: 111–140PubMedCrossRefGoogle Scholar
  103. Nield J, Redding K and Hippler M (2004) Remodeling of light-harvesting protein complexes in Chlamydomonas in response to environmental changes. Eukaryot Cell 3: 1370–1380PubMedCrossRefGoogle Scholar
  104. Nystrom T (2005) Role of oxidative carbonylation in protein quality control and senescence. Embo J 24: 1311–1317PubMedCrossRefGoogle Scholar
  105. Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA and Ahn NG (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4: 1487–1502PubMedCrossRefGoogle Scholar
  106. Olsen JV, de Godoy LM, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S and Mann M (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4: 2010–2021PubMedCrossRefGoogle Scholar
  107. Peck SC (2005) Update on proteomics in Arabidopsis. Where do we go from here? Plant Physiol 138: 591–599PubMedCrossRefGoogle Scholar
  108. Peltier JB, Friso G, Kalume DE, Roepstorff P, Nilsson F, Adamska I and Van Wijk KJ (2000) Proteomics of the chloroplast. Systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. Plant Cell 12: 319–342PubMedGoogle Scholar
  109. Peltier JB, Emanuelsson O, Kalume DE, Ytterberg J, Friso G, Rudella A, Liberles DA, Soderberg L, Roepstorff P, von Heijne G and Van Wijk KJ (2002) Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction. Plant Cell 14: 211–236PubMedCrossRefGoogle Scholar
  110. Peltier JB, Ytterberg AJ, Sun Q and Van Wijk KJ (2004) New functions of the thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, fast, and versatile fractionation strategy. J Biol Chem 279: 49367–49383PubMedCrossRefGoogle Scholar
  111. Peltier JB, Cai Y, Sun Q, Zabrouskov V, Giacomelli L, Rudella A, Ytterberg AJ, Rutschow H and Van Wijk KJ (2006) The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. Mol Cell Proteomics 5: 114–133PubMedGoogle Scholar
  112. Pesaresi P, Gardner NA, Masiero S, Dietzmann A, Eichacker L, Wickner R, Salamini F and Leister D (2003) Cytoplasmic N-terminal protein acetylation is required for efficient photosynthesis in Arabidopsis. Plant Cell 15: 1817–1832PubMedCrossRefGoogle Scholar
  113. Rochaix JD (2007) Role of thylakoid protein kinases in photosynthetic acclimation. FEBS Lett 581: 2768–2775PubMedCrossRefGoogle Scholar
  114. Rokka A, Suorsa M, Saleem A, Battchikova N and Aro EM (2005) Synthesis and assembly of thylakoid protein complexes: multiple assembly steps of photosystem II. Biochem J 388: 159–168PubMedCrossRefGoogle Scholar
  115. Rolland N, Ferro M, Ephritikhine G, Marmagne A, Ramus C, Brugiere S, Salvi D, Seigneurin-Berny D, Bourguignon J, Barbier-Brygoo H, Joyard J and Garin J (2006) A versatile method for deciphering plant membrane proteomes. J Exp Bot 57: 1579–1589PubMedCrossRefGoogle Scholar
  116. Romero HM, Berlett BS, Jensen PJ, Pell EJ, Tien M (2004) Investigations into the role of the plastidial peptide methionine sulfoxide reductase in response to oxidative stress in Arabidopsis. Plant Physiol 136: 3784–3794PubMedCrossRefGoogle Scholar
  117. Ross S, Giglione C, Pierre M, Espagne C and Meinnel T (2005) Functional and developmental impact of cytosolic protein N-terminal methionine excision in Arabidopsis. Plant Physiol 137: 623–637PubMedCrossRefGoogle Scholar
  118. Rossignol M, Peltier JB, Mock HP, Matros A, Maldonado AM and Jorrin JV (2006) Plant proteome analysis: a 2004–2006 update. Proteomics 6: 5529–5548PubMedCrossRefGoogle Scholar
  119. Rouhier N, Vieira Dos Santos C, Tarrago L and Rey P (2006) Plant methionine sulfoxide reductase A and B multigenic families. Photosynth Res 89: 247–262PubMedCrossRefGoogle Scholar
  120. Rudella A, Friso G, Alonso JM, Ecker JR and Van Wijk KJ (2006) Downregulation of ClpR2 leads to reduced accumulation of the ClpPRS protease complex and defects in chloroplast biogenesis in Arabidopsis. Plant Cell 18: 1704–1721PubMedCrossRefGoogle Scholar
  121. Rumeau D, Becuwe-Linka N, Beyly A, Louwagie M, Garin J and Peltier G (2005) New subunits NDH-M, -N, and -O, encoded by nuclear genes, are essential for plastid Ndh complex functioning in higher plants. Plant Cell 17: 219–232PubMedCrossRefGoogle Scholar
  122. Sadanandom A, Poghosyan Z, Fairbairn DJ and Murphy DJ (2000) Differential regulation of plastidial and cytosolic isoforms of peptide methionine sulfoxide reductase in Arabidopsis.Plant Physiol 123: 255–264PubMedCrossRefGoogle Scholar
  123. Schagger H, Cramer WA and von Jagow G (1994) Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal Biochem 217: 220–230PubMedCrossRefGoogle Scholar
  124. Schagger H and von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199: 223–231PubMedCrossRefGoogle Scholar
  125. Schroder WP and Kieselbach T (2003) Update on chloroplast proteomics. Photosynth Res 78: 181–193PubMedCrossRefGoogle Scholar
  126. Schubert M, Petersson UA, Haas BJ, Funk C, Schröder WP and Kieselbach T (2002) Proteome map of the chloroplast lumen of Arabidopsis thaliana. J Biol Chem 277: 8354–8365PubMedCrossRefGoogle Scholar
  127. Scigelova M and Makarov A (2006) Orbitrap mass analyzer – overview and applications in proteomics. Proteomics 6 Suppl 2: 16–21PubMedCrossRefGoogle Scholar
  128. Seigneurin-Berny D, Rolland N, Garin J and Joyard J (1999) Technical advance: Differential extraction of hydrophobic proteins from chloroplast envelope membranes: a subcellular-specific proteomic approach to identify rare intrinsic membrane proteins. Plant J 19: 217–228PubMedCrossRefGoogle Scholar
  129. Shadforth I, Xu W, Crowther D and Bessant C (2006) GAPP: a fully automated software for the confident identification of human peptides from tandem mass spectra. J Proteome Res 5: 2849–2852PubMedCrossRefGoogle Scholar
  130. Sheen J (1999) C-4 gene expression. Annu Rev Plant Physiol Plant Mol Biol 50: 187–217PubMedCrossRefGoogle Scholar
  131. Stauber EJ and Hippler M (2004) Chlamydomonas reinhardtii proteomics. Plant Physiol Biochem 42: 989–1001PubMedCrossRefGoogle Scholar
  132. Steen H and Mann M (2004) The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol 5: 699–711PubMedCrossRefGoogle Scholar
  133. Storf S, Stauber EJ, Hippler M and Schmid VH (2004) Proteomic analysis of the photosystem I light-harvesting antenna in tomato (Lycopersicon esculentum). Biochemistry 43: 9214–9224PubMedCrossRefGoogle Scholar
  134. Subramanian C, Xu Y, Johnson CH and von Arnim AG (2004) In vivo detection of protein-protein interaction in plant cells using BRET. Methods Mol Biol 284: 271–286PubMedGoogle Scholar
  135. Sun Q, Emanuelsson O and Van Wijk KJ (2004) Analysis of curated and predicted plastid subproteomes of Arabidopsis. Subcellular compartmentalization leads to distinctive proteome properties. Plant Physiol 135: 723–734PubMedCrossRefGoogle Scholar
  136. Tanner S, Shen Z, Ng J, Florea L, Guigo R, Briggs SP and Bafna V (2007) Improving gene annotation using peptide mass spectrometry. Genome Res 17: 231–239PubMedCrossRefGoogle Scholar
  137. Tao WA and Aebersold R (2003) Advances in quantitative proteomics via stable isotope tagging and mass spectrometry. Curr Opin Biotechnol 14: 110–118PubMedCrossRefGoogle Scholar
  138. Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY and Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37: 914–939PubMedCrossRefGoogle Scholar
  139. Tikkanen M, Piippo M, Suorsa M, Sirpio S, Mulo P, Vainonen J, Vener AV, Allahverdiyeva Y and Aro EM (2006) State transitions revisited-a buffering system for dynamic low light acclimation of Arabidopsis. Plant Mol Biol 62: 779–793PubMedCrossRefGoogle Scholar
  140. Turkina MV and Vener AV (2007) Identification of phosphorylated proteins. Methods Mol Biol 355: 305–316PubMedGoogle Scholar
  141. Turkina MV, Blanco-Rivero A, Vainonen JP, Vener AV and Villarejo A (2006a) CO2 limitation induces specific redox-dependent protein phosphorylation in Chlamydomonas reinhardtii. Proteomics 6: 2693–2704PubMedCrossRefGoogle Scholar
  142. Turkina MV, Kargul J, Blanco-Rivero A, Villarejo A, Barber J and Vener AV (2006b) Environmentally modulated phosphoproteome of photosynthetic membranes in the green alga Chlamydomonas reinhardtii. Mol Cell Proteomics 5: 1412–1425PubMedCrossRefGoogle Scholar
  143. Vainonen JP, Hansson M and Vener AV (2005) STN8 protein kinase in Arabidopsis thaliana is specific in phosphorylation of photosystem II core proteins. J Biol Chem 280: 33679–33686PubMedCrossRefGoogle Scholar
  144. Van Wijk KJ (2000) Proteomics of the chloroplast: experimentation and prediction. Trends Plant Sci 5: 420–425CrossRefGoogle Scholar
  145. Van Wijk KJ (2001) Challenges and prospects of plant proteomics. Plant Physiol 126: 501–508PubMedCrossRefGoogle Scholar
  146. Van Wijk KJ (2004a) Chloroplast proteomics. In: Leister D (ed) Plant Functional Genomics, pp 329–358. The Haworth Press, Inc., Book Division, Binghamton, NYGoogle Scholar
  147. Van Wijk KJ (2004b) Plastid proteomics. Plant Physiol Biochem 42: 963–977PubMedCrossRefGoogle Scholar
  148. Van Wijk KJ (2006) Expression, prediction and function of the thylakoid proteome in higher plants and green algae. In: Wise RR and Hoober JK (eds) The Structure and Function of Plastids, Advances in Photosynthesis and Respiration, Vol 23, pp 125–143. Springer, DordrechtGoogle Scholar
  149. Van Wijk KJ and Baginsky S (2011) Plastid proteomics in higher plants: Current state and future goals. Plant Physiol 155: 1578–1588Google Scholar
  150. Van Wijk KJ, Peltier JB and Giacomelli L (2007) Isolation of chloroplast proteins from Arabidopsis thaliana for proteome analysis. Methods Mol Biol 355: 43–48PubMedGoogle Scholar
  151. Vidi PA, Kanwischer M, Baginsky S, Austin JR, Csucs G, Dörmann P, Kessler F and Bréhélin C (2006) Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. J Biol Chem 281: 11225–11234PubMedCrossRefGoogle Scholar
  152. Vieira Dos Santos C, Cuine S, Rouhier N and Rey P (2005) The Arabidopsis plastidic methionine sulfoxide reductase B proteins. Sequence and activity characteristics, comparison of the expression with plastidic methionine sulfoxide reductase A, and induction by photooxidative stress. Plant Physiol 138: 909–922PubMedCrossRefGoogle Scholar
  153. von Zychlinski A, Kleffmann T, Krishnamurthy N, Sjolander K, Baginsky S and Gruissem W (2005) Proteome analysis of the rice etioplast: metabolic and regulatory networks and novel protein functions. Mol Cell Proteomics 4: 1072–1084CrossRefGoogle Scholar
  154. Wang G, Wu WW, Zeng W, Chou CL and Shen RF (2006) Label-free protein quantification using LC-coupled ion trap or FT mass spectrometry: Reproducibility, linearity, and application with complex proteomes. J Proteome Res 5: 1214–1223PubMedCrossRefGoogle Scholar
  155. Weber AP, Schwacke R and Flugge UI (2005) Solute transporters of the plastid envelope membrane. Annu Rev Plant Biol 56: 133–164PubMedCrossRefGoogle Scholar
  156. Whitelegge JP (2003) Thylakoid membrane proteomics. Photosynth Res 78: 265–277PubMedCrossRefGoogle Scholar
  157. Whitelegge JP (2004) Mass spectrometry for high throughput quantitative proteomics in plant research: lessons from thylakoid membranes. Plant Physiol Biochem 42: 919–927PubMedCrossRefGoogle Scholar
  158. Wiener MC, Sachs JR, Deyanova EG and Yates NA (2004) Differential mass spectrometry: a label-free LC-MS method for finding significant differences in complex peptide and protein mixtures. Anal Chem 76: 6085–6096PubMedCrossRefGoogle Scholar
  159. Willmund F, Muhlhaus T, Wojciechowska M and Schroda M (2007) The NH2-terminal domain of the chloroplast GrpE homolog CGE1 is required for dimerization and cochaperone function in vivo. J Biol Chem 282: 11317–11328PubMedCrossRefGoogle Scholar
  160. Wisz MS, Suarez MK, Holmes MR and Giddings MC (2004) GFSWeb: a web tool for genome-based identification of proteins from mass spectrometric samples. J Proteome Res 3: 1292–1295PubMedCrossRefGoogle Scholar
  161. Wittig I, Braun HP and Schagger H (2006) Blue native PAGE. Nat Protoc 1: 418–428PubMedCrossRefGoogle Scholar
  162. Yates JR, Cociorva D, Liao L and Zabrouskov V (2006) Performance of a linear ion trap-Orbitrap hybrid for peptide analysis. Anal Chem 78: 493–500PubMedCrossRefGoogle Scholar
  163. Ytterberg AJ, Peltier JB and Van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts; a surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140: 984–997PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Plant BiologyCornell UniversityIthacaUSA

Personalised recommendations