Skip to main content

Photosynthetic Water Splitting: Apparatus and Mechanism

  • Chapter
  • First Online:
Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 34))

Summary

This chapter reviews our current knowledge on the reactions leading to light-induced water splitting into molecular oxygen and hydrogen, bound in the form of plastoquinol. This process takes place in the multimeric protein complex of Photosystem II (PS II). After a brief description of the basic principles of biological solar energy exploitation through photosynthesis, general features of the kinetics, energetics and the structural array and nature of the cofactors of PS II are presented. The overall reaction pattern of the water:plastoquinone oxidoreductase comprises three types of sequences: (a) light-induced charge separation leading to the “stabilized” radical pair \( \text{P68}{0}^{+•}{\text{Q}}_{\text{A}}^{-•}\); (b) oxidative water splitting into molecular oxygen and four protons released into the lumen, driven by P680+• as oxidant and with tyrosine \( {\text{Y}}_{\text{Z}}\) involved as intermediate, and (c) two-step reduction of plastoquinone to quinol under uptake of two protons from the cytoplasm/stroma by the use of \( {\text{Q}}_{\text{A}}^{-•}\) as reductant. Evidence is presented that within the (Chl a)4 \( Phe{o}_{x}\) (x = 0, 1 or 2) unit, which constitutes the photoactive pigment P680, the lowest singlet exciton state predominantly located on Chl a D1 acts as electron donor for the primary charge separation and that the exceptionally high reduction potential of P680 mainly originates from a specific hydrophobic protein microenvironment. The key step of oxidative water splitting is the O-O bond formation which is shown to occur most likely at the level of a binuclearly complexed peroxide. It is emphasized that the protein matrix plays a key role in tuning the energetics and kinetics. Examples are presented for effects of protein relaxation and flexibility on the reaction pattern of PS II.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The term ‘‘proton gradient’’ is often used in an incorrect manner. A gradient of protons, by definition, is ∇[H+ (r→)] where ∇ is a vector operator (derivative to space coordinates) and[H+ (r→)] the scalar field of the local proton concentration at position r→. In fact the vector ∇[H+ (r→)] is the driving force for a vectorial process; however, the actual value of this space dependent quantity is very difficult to determine in biological membrane systems and requires detailed calculations. Therefore only the difference of the trans-membrane electrochemical potential of protons D  m∼[H+] is known and this parameter should not be misleadingly referred to as “proton gradient."

  2. 2.

     D1/D2/Cyt \( {b}_{559}\) preparations were first isolated by Nanba and Satoh (1987) and shown to enable light-induced P680+• Pheo-• formation. This reaction takes place with a high quantum yield (Kurreck et al., 1997a). However, these preparations which are completely deprived of \( {\text{Q}}_{\text{A}}\), \( {\text{Q}}_{\text{B}}\)and the NHFe (Kurreck et al., 1997b) cannot stabilize the primary charge separation. Therefore these samples are not an analogue of the isolated reaction centers from anoxygenic purple bacteria (PBRC) (for reviews, see Lancaster, 2008, Parson, 2008) and should not be termed “PS II reaction centers” although this terminology is widely used in the literature.

Abbreviations

Ant:

antenna complexes of PS II;

BChl, Bphe:

bacteriochlorophyll, bacteriopheophytin;

Chl:

chlorophyll;

\( {\text{Chl}}_{\text{D1}}\), \( {\text{Chl}}_{\text{D2}}\) :

– “monomeric chlorophylls” of the D1- and D2-branches, respectively of the RC;

CP:

chlorophyll-binding proteins;

CP43, CP47:

core antenna subunits of PS II;

Cyt \( {b}_{559}\) :

– cytochrome \( {b}_{559}\)

Cyt \( {b}_{6}f\) :

– cytochrome \( {b}_{6}f\) complex;

DFT:

density functional theory;

EET:

excitation energy transfer;

\( {\text{E}}_{\text{m}}\) :

– midpoint redox potential;

ENDOR:

electron nuclear double resonance;

ERPE:

exciton-radical pair equilibrium;

EPR:

electron paramagnetic resonance;

ESSEM:

Electron spin echo envelope modulation;

ETC:

electron transfer chain;

EXAFS:

extended X-ray absorption fine structure;

FTIR:

Fourier Transform Infrared;

LHCII –:

light-harvesting complex II;

\( {\text{M}}_{\text{j}}{\text{L}}_{\text{k}}{\text{W}}_{1}\) :

– detailed symbol for redox states \( {\text{S}}_{\text{i}}\)of the WOC;

MLS:

EPR multiline signal for the \( {\text{S}}_{2}\) of the WOC;

NET:

nonadiabatic electron transfer;

NHFe:

non-heme iron center;

PS II:

Photosystem II;

PS II CC:

Photosystem II core complex;

PBRC:

RC of purple bacteria;

PG:

phosphatidylglycerol;

\( \text{P68}{0}^{+•}\) :

– oxidized state of the RC pigments;

\( {\text{P}}_{\text{D1}}\), \( {\text{P}}_{\text{D2}}\) :

– “special pair” chlorophylls of the D1- and D2-branches, respectively, of the RC;

\( {\text{Pheo}}_{\text{D1}}\), \( {\text{Pheo}}_{\text{D2}}\) :

– pheophytins of the D1- and D2-branches, respectively, of the RC;

PQ:

plastoquinone;

QA, QB :

– plastoquinones of the RC;

QENS:

quasielastic neutron scattering;

RC:

reaction center;

RC-PC:

reaction center pigment complex;

\( {\text{(RC - PC)}}^{*}\), \( \text{P68}{0}^{*}\) :

– excited singlet state of RC pigments;

WOC:

water oxidizing complex;

\( {\text{Y}}_{\text{Z}}\), \( {\text{Y}}_{\text{D}}\) :

– redox active tyrosines of the D1- and D2-branches, respectively;

XANES:

X-ray absorption near edge spectroscopy

References

  • Ahlbrink R, Haumann M, Cherepanov D, Bögershausen D, Mulkidjanian O and Junge W (1998) Function of tyroszine Z in water oxidation by photosystem II: Electrostatical promoter instead of hydrogen abstractor. Biochemistry 37: 1131–1142

    PubMed  CAS  Google Scholar 

  • Åhrling KA, Peterson S and Styring S (1997) An oscillating manganese electron paramagnetic resonance signal from the \( {\text{S}}_{0}\) state of the oxygen-evolving complex in photosystem II. Biochemistry 36: 13148–13152

    PubMed  CAS  Google Scholar 

  • Akiyama M, Miyashita H, Kise H, Watanabe T, Mimuro M, Miyachi S and Kobayashi M (2002) Quest for minor but key chlorophyll molecules in photosynthetic reaction centers – unusual pigment composition in the reaction centers of the chlorophyll d-dominated cyanobacterium Acaryochloris marina. Photosynth Res 74: 97–107

    PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Tomo T, Shimada Y, Kindo H, Nagao R, Klimov VV and Mimuro M (2010) Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls. Proc Nat Acad Sci USA 107: 3924–3929

    Google Scholar 

  • Allen JF and Nilsson A (1997) Redox signalling and the structural basis of regulation of photosynthesis by protein phosphorylation. Physiol Plant 100: 863–868

    PubMed  CAS  Google Scholar 

  • Anderson AB and Albu TV (1999) Ab initio determination of reversible potentials and activation energies for outer-sphere oxygen reduction to water and the reverse oxidation reaction. J Am Chem Soc 121: 11855–11863

    PubMed  CAS  Google Scholar 

  • Anderson JM (2001) Does functional photosystem II complex have an oxygen channel? FEBS Lett 488: 1–4

    PubMed  CAS  Google Scholar 

  • Aoyama C, Suzuki H, Sugiura M and Noguchi T (2008) Flash-induced FTIR difference spectroscopy shows no evidence for the structural coupling of bicarbonate to the oxygen-evolving Mn cluster in photosystem II. Biochemistry 47: 2760–2765

    PubMed  CAS  Google Scholar 

  • Augustine AJ, Quintanar L, Stoj CS, Kosman, DJ, Solomon EI (2007) Spectroscopic and kinetic studies of perturbed trinuclear copper clusters: The role of protons in reductive cleavage of the O-O bond in the multicopper oxidase Fet3p. J Am Chem Soc 129: 13118–13126

    PubMed  CAS  Google Scholar 

  • Babcock GT, Blankenship RE and Sauer K (1976) Reaction kinetics for positive charge accumulation on the water side of chloroplast photosystem II. FEBS Lett 61: 286–289

    PubMed  CAS  Google Scholar 

  • Babcock GT and Wikström M (1992) Oxygen activation and the conservation of energy in cell respiration. Nature 356: 301–309

    PubMed  CAS  Google Scholar 

  • Bader KP, Renger G and Schmidt GH (1993) A mass spectroscopic analysis of the water-splitting reaction. Photosynth Res 38: 355–361

    PubMed  CAS  Google Scholar 

  • Bao H, Zhang C, Ren Y and Zhao J (2010) Low-temperature electron transfer suggests two types of QA in intact photosystem II. Biochim Biophys Acta 1797: 339–346

    Google Scholar 

  • Barter LMC, Bianchietti M, Jeans C, Schilstra MJ, Hankamer B, Diner BA, Barber J, Durrant JR and Klug DR (2001) Relationship between excitation energy transfer, ­trapping, and antenna size in photosystem II. Biochemistry 40: 4026–4034

    PubMed  CAS  Google Scholar 

  • Barter LMC and Klug DR (2005) A unified picture of energy and electron transfer in primary photosynthesis. Chem Phys 319: 308–315

    PubMed  CAS  Google Scholar 

  • Bell LN and Gudkov ND (1992) Thermodynamics of light energy conversion. In: Barber J (ed) Topics in Photosynthesis, The Photosystems: Structure, Function and Molecular Biology, pp 17–43. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Benson AA (2002) Following the path of carbon in photosynthesis: A personal story. Photosynth Res 73: 29–49

    PubMed  CAS  Google Scholar 

  • Bernarding J, Eckert HJ, Eichler HJ, Napiwotzki A and Renger G (1994) Kinetic studies on the stabilisation of the primary radical pair \( \text{P68}{0}^{+}{\text{Pheo}}^{-}\) in different photosystem II preparations from higher plants. Photochem Photobiol 59: 566–573

    PubMed  CAS  Google Scholar 

  • Berthomieu C and Hienerwadel R (2005) Vibrational spectroscopy to study the properties of redox-active tyrosines in photosystem II and other proteins. Biochim Biophys Acta 1707: 51–66

    PubMed  CAS  Google Scholar 

  • Betley TA, Wu Q, Van Voorhis T and Nocera DG (2008) Electronic design criteria for O  −  O bond formation via metal  −  oxo complexes. Inorg Chem 47: 1849–1861

    PubMed  CAS  Google Scholar 

  • Bianco R, Hay PJ and Hynes JT (2011) Theoretical study of O–O single bond formation in the oxidation of water by the ruthenium blue dimer. J Phys Chem A115: 8003–8016

    Google Scholar 

  • Bibby TS, Nield J, Chen M, Larkum AWD and Barber J (2003) Structure of a photosystem II supercomplex isolated from Prochloron didemni retaining its chlorophyll a/b light-harvesting system. Proc Natl Acad Sci USA 100: 9050–9054

    PubMed  CAS  Google Scholar 

  • Biesiadka J, Loll B, Kern J, Irrgang K-D and Zouni A (2004) Crystal structure of cyanobacterial photosystem II at 3.2  Å resolution: a closer look at the Mn-cluster. Phys Chem Chem Phys 6: 4733–4736

    PubMed  CAS  Google Scholar 

  • Blackwell M, Gibas C, Gygax S, Roman D and Wagner B (1994) The plastoquinone diffusion coefficient in chloroplasts and its mechanistic implications. Biochim Biophys Acta 1183: 533–543

    PubMed  CAS  Google Scholar 

  • Blomberg MRA and Siegbahn PEM (2006) Different types of biological proton transfer reactions studied by quantum chemical methods. Biochim Biophys Acta 1757: 969–980

    PubMed  CAS  Google Scholar 

  • Bögershausen O, Haumann M and Junge W (1996) Photosynthetic oxygen evolution: H/D isotope effects and the coupling between electron and proton transfer during transitions \( {\text{S}}_{2}\) to \( {\text{S}}_{3}\) and \( {\text{S}}_{3}\) to \( {\text{S}}_{4}\) to \( {\text{S}}_{0}\). Ber Bun Gesell Chem Phys Phys Chem 100: 1987–1992

    PubMed  CAS  Google Scholar 

  • Boekema EJ, Hankamer B, Bald D, Kruip J, Nield J, Boonstra AF, Barber J and Rögner M (1995) Supramolecular structure of the photosystem II complex from green plants and cyanobacteria. Proc Natl Acad Sci USA 92: 175–179

    PubMed  CAS  Google Scholar 

  • Boussac A and Etienne A-L (1984) Midpoint potential of signal II (slow) in tris-washed photosystem-II particles. Biochim Biophys Acta 766: 576–581

    PubMed  CAS  Google Scholar 

  • Boussac A and Rutherford AW (1988) Nature of the inhibition of the oxygen-evolving enzyme of photosystem II induced by NaCl washing and reversed by the addition of \( {\text{Ca}}^{2+}\) or \( {\text{Sr}}^{2+}\). Biochemistry 27: 3476–3483

    PubMed  CAS  Google Scholar 

  • Bowes JM, Crofts AR and Itoh S (1979) High potential acceptor for photosystem II. Biochim Biophys Acta 547: 320–335

    PubMed  CAS  Google Scholar 

  • Bowes JM, Crofts AR and Arntzen CJ (1980) Redox reactions on the reducing side of photosystem II in chloroplasts with altered herbicide-binding properties. Arch Biochem Biophys 200: 303–308

    PubMed  CAS  Google Scholar 

  • Brettel K, Schlodder E and Witt HT (1984) Nanosecond reduction kinetics of photooxidized chlorophyll-\( {\text{a}}_{\text{II}}\) (P-680) in single flashes as a probe for the electron pathway, \( {\text{H}}^{+}\)-release and charge accumulation in the \( {\text{O}}_{2}\)-evolving complex. Biochim Biophys Acta 766: 403–415

    PubMed  CAS  Google Scholar 

  • Briantais JM, Vernotte C, Lavergne J and Arntzen CJ (1977) Identification of \( {\text{S}}_{2}\) as the sensitive state to alkaline photoinactivation of photosystem II in chloroplasts. Biochim Biophys Acta 461: 61–74

    PubMed  CAS  Google Scholar 

  • Bricker TM and Frankel LK (2002) The structure and function of CP47 and CP43 in photosystem II. Photosynth Res 72: 131–146

    PubMed  CAS  Google Scholar 

  • Bricker TM and Frankel LK (2011) Auxiliary functions of the PsbO, PsbP and PsbQ proteins of higher plant photosystem II: A critical analysis. J Photochem Photobiol B: Biol 104: 165–178

    Google Scholar 

  • Bricker TM, Roose JR, Fagerlund RD, Frankel LK and Eaton-Rye JJ (2011) The extrinsic proteins of photosystem II. Biochim Biophys Acta doi: 10.1016/j.bbabio.2011.07.006

    Google Scholar 

  • Broess K, Trinkunas G, Van Hoek A, Croce R and Van Amerongen H (2008) Determination of the exciton migration time in photosystem II. Consequences for the membrane organization and charge separation parameters. Biochim Biophys Acta 1777: 404–409

    PubMed  CAS  Google Scholar 

  • Buick R (1992) The antiquity of oxygenic photosynthesis; evidence from stromatolites in sulphate-deficient Archaen lakes. Science 255: 74–77

    PubMed  CAS  Google Scholar 

  • Burda K, Bader KP and Schmid GH (2001) An estimation of the size of the water cluster present at the cleavage site of the water splitting enzyme. FEBS Lett 491: 81–84

    PubMed  CAS  Google Scholar 

  • Bylina EJ, Kirmaier C, McDowell L, Holten D and Youvan DC (1988) Influence of an amino-acid residue on the optical properties and electron transfer dynamics of a photosynthetic reaction centre complex. Nature 336: 182–184

    PubMed  CAS  Google Scholar 

  • Callahan EE, Beaker DW and Cheniae GM (1986) Studies on the photoactivation of the water-oxidizing enzyme. II. Characterization of weak light photoinhibition of PS II and its light-induced recovery. Plant Physiol 82: 79–88

    PubMed  CAS  Google Scholar 

  • Calvin M (1989) Forty years of photosynthesis and related activities. Photosynth Res 21: 3–16

    PubMed  CAS  Google Scholar 

  • Careri C, Gratton E, Yang P-H and Rupley JA (1980) Correlation of IR spectroscopic, heat capacity, diamagnetic susceptibility and enzymatic measurements on lysozyme powder. Nature 284: 572–573

    PubMed  CAS  Google Scholar 

  • Carugo O and Carugo-Djinovic K (2005) When X-rays modify the protein structure: radiation damage at work. Trends Biochem Sci 30: 213–219

    PubMed  CAS  Google Scholar 

  • Castelfranco PA, Lu Y-K and Stemler AJ (2007) Hypothesis: the peroxydicarbonic acid cycle in photosynthetic oxygen evolution. Photosynth Res 94: 235–246

    PubMed  CAS  Google Scholar 

  • Cheniae GM and Martin IF (1973) Absence of oxygen-evolving capacity in dark-grown Chlorella: the photoactivation of oxygen-evolving centers. Photochem Photobiol 17: 441–459

    PubMed  CAS  Google Scholar 

  • Chow WS and Aro E-M (2005) Photoinactivation and mechanism of recovery. In: Wydrzynski TJ and Satoh K (eds) Photosystem II: The Light-Driven Water:Plastoqui­none Oxidoreductase. Advances in Photosynthesis and Respiration, Vol 22, pp 627–648. Springer, Dordrecht

    Google Scholar 

  • Christen G, Karge M, Eckert HJ and Renger G (1997) The role of protonation steps in electron transfer reactions in tris-treated PS II membrane fragments. Photosynthetica 33: 529–539

    PubMed  CAS  Google Scholar 

  • Christen G, Reifarth F and Renger G (1998) On the origin of the “35 ms kinetics” of \( \text{P68}{0}^{+•}\) reduction in photosystem II with an intact water-oxidising complex. FEBS Lett 429: 49–52

    PubMed  CAS  Google Scholar 

  • Christen G, Seeliger A and Renger G (1999) \( {\text{p}}_{680}^{+•}\) reduction kinetics and redox transition probability of the water oxidising complex as a function of pH and H/D isotope exchange in spinach thylakoids. Biochemistry 38: 6082–6092

    PubMed  CAS  Google Scholar 

  • Chu HA, Hillier W and Debus RJ (2004) Evidence that the C-terminus of the D1 polypeptide of photosystem II is ligated to the manganese ion that undergoes oxidation during the \( {\text{S}}_{1}\) to \( {\text{S}}_{2}\) transition: An isotope-edited FTIR study. Biochemistry 43: 3152–3166

    PubMed  CAS  Google Scholar 

  • Clausen J and Junge W (2004) Detection of an intermediate of photosynthetic water oxidation. Nature 430: 480–483

    PubMed  CAS  Google Scholar 

  • Clausen J, Debus RJ and Junge W (2004) Time-resolved oxygen production by PSII: chasing chemical intermediates. Biochim Biophys Acta 1655: 184–194

    PubMed  CAS  Google Scholar 

  • Clausen J, Beckmann K, Junge W, Messinger J (2005) Evidence that bicarbonate is not the substrate in photosynthetic oxygen evolution. Plant Physiol 139: 1444–1450

    PubMed  CAS  Google Scholar 

  • Conjeaud H, Mathis P and Paillotin G (1979) The effect of pH on the reduction kinetics of P680 in tris-treated chloroplasts. Biochim Biophys Acta 48: 280–291

    PubMed  CAS  Google Scholar 

  • Cox N, Rapatskiy L, Su J-H,. Pantazis DA, Sugiura M, Kulik L, Dorlet P, Rutherford AW, Neese F, Boussac A, Lubitz W and Messinger J (2011) Effect of Ca2+/Sr2+ substitution on the electronic structure of the oxygen-evolving complex of photosystem II: A combined multifrequency EPR, 55Mn-ENDOR, and DFT study of the S2 state. J Am Chem Soc 133: 3635–3648

    Google Scholar 

  • Cramer WA, Zhang H, Yan J, Kurisu G, Yamashita E, Dashdorj N, Kim H, and Savikhin S (2008) Structure-function of the cytochrome \( {b}_{6}f\) complex: A design that has worked for three billion years. In: Renger G (ed) Primary Processes of Photosynthesis: Basic Principles and Apparatus, Part II Reaction Centers/Photosystems, Electron Transport Chains, Photophosphorylation and Evolution, pp 417–446. Royal Society Chemistry, Cambridge

    Google Scholar 

  • Croce R and Van Amerongen H (2011) Light-harvesting and structural organization of photosystem II: From individual complexes to thylakoid membrane. J Photochem Photobiol B: Biol 104: 142–153

    Google Scholar 

  • Crofts AR and Wraight CA (1983) The electrochemical domain of photosynthesis. Biochim Biophys Acta 726: 149–185

    PubMed  CAS  Google Scholar 

  • Cukier RI (2004) Theory and simulation of proton-coupled electron transfer, hydrogen-atom transfer, and proton translocation in proteins. Biochim Biophys Acta 1655: 37–44

    PubMed  CAS  Google Scholar 

  • Cuni A, Xiong L, Sayre R, Rappaport F and Lavergne J (2004) Modification of the pheophytin midpoint potential in photosystem II: Modulation of the quantum yield of charge separation and of charge recombination pathways. Chem Phys Phys Chem 6: 4825–4831

    PubMed  CAS  Google Scholar 

  • Davydov R, Osborne RL, Kim SH, Dawson JH and Hoffman BM (2008) EPR and ENDOR studies of cryoreduced compounds II of peroxidases and myoglobin. Proton-coupled electron transfer and protonation status of ferryl hemes. Biochemistry 47: 5147–5155

    PubMed  CAS  Google Scholar 

  • Debus R (2005) The catalytic manganese cluster: protein ligation. In: Wydrzynski TJ and Satoh K (eds) Photosystem II: The Light-Driven Water:Plastiquinone Oxidoreductase. Advances in Photosynthesis and Respiration, Vol 22, pp 261–284. Springer, Dordrecht

    Google Scholar 

  • Debus RJ, Feher G and Okamura MY (1986) Iron-depleted reaction centers from Rhodopseudomonas sphaeroides R-26.1: Characterization and reconstitution with \( {\text{Fe}}^{2+}\), \( {\text{Mn}}^{2+}\), \( {\text{Co}}^{2+}\), \( {\text{Ni}}^{2+}\), \( {\text{Cu}}^{2+}\), and \( {\text{Zn}}^{2+}\). Biochemistry 25: 2276–2287

    PubMed  CAS  Google Scholar 

  • Debus R, Strickler MA, Walker LM and. Hillier W (2005) No evidence from FTIR difference spectroscopy that aspartate-170 of the D1 polypeptide ligates a manganese ion that undergoes oxidation during the S0 to S1, S1 to S2, or S2 to S3 transitions in photosystem II. Biochemistry 44: 1367–1374

    PubMed  CAS  Google Scholar 

  • Dekker JP, Plijter JJ, Ouwehand L and Van Gorkom HJ (1984) Kinetics of manganese redox transitions in the oxygen-evolving apparatus of photosynthesis. Biochim Biophys Acta 767: 176–179

    PubMed  CAS  Google Scholar 

  • de Marais DJ (2000) Evolution. When did photosynthesis emerge on Earth? Science 289: 1703–1705

    PubMed  CAS  Google Scholar 

  • de Wijn R and Van Gorkom HJ (2001) Kinetics of electron transfer from \( {\text{Q}}_{\text{A}}\) to \( {\text{Q}}_{\text{B}}\) in photosystem II. Biochemistry 40: 11912–11922

    PubMed  CAS  Google Scholar 

  • Dexheimer SL and Klein MP (1992) Detection of a paramagnetic intermediate in the S1 state of the photosynthetic oxygen-evolving complex. J Am Chem Soc 114: 2821–2826

    PubMed  CAS  Google Scholar 

  • Diner BA, Force DA, Randall DW and Britt RD (1998) Hydrogen bonding, solvent exchange, and coupled proton and electron transfer in the oxidation and reduction of redox-active tyrosine \( {\text{Y}}_{\text{Z}}\) in Mn-depleted core complexes of photosystem II. Biochemistry 37: 17931–17943

    PubMed  CAS  Google Scholar 

  • Diner BA, Schlodder E, Nixon PJ, Coleman WJ, Rappaport F, Lavergne J, Vermaas WFJ and Chisholm DA (2001) Site-directed mutations at D1-His198 and D2-His197 of photosystem II in Synechocystis PCC 6803: Sites of primary charge separation and cation triplet stabilization. Biochemistry 40: 9265–9281

    PubMed  CAS  Google Scholar 

  • Diner BA, Bautista JA, Nixon PJ, Berthomieu C, Hienerwadel R, Britt RD, Vermaas WFJ and Chisholm DA (2004) Coordination of proton and electron transferform the redox-active tyrosine, \( {\text{Y}}_{\text{Z}}\), of photosystem II and examination of the electrostatic influence of oxidized tyrosine, \( {\text{Y}}_{\text{D}}({\text{H}}^{+})\). Phys Chem Chem Phys 6: 4844–4850

    PubMed  CAS  Google Scholar 

  • Dismukes GC and Siderer Y (1981) Intermediates of a polynuclear manganese cluster involved in photosynthetic oxidation of water. Proc Natl Acad Sci USA 78: 274–278

    PubMed  CAS  Google Scholar 

  • Durrant JR, Hastings G, Joseph DM, Barber J, Porter G and Klug DR (1992) Subpicosecond equilibration of excitation energy in isolated photosystem II reaction centers. Proc Natl Acad Sci USA 89: 11632–1163

    PubMed  CAS  Google Scholar 

  • Duysens LMN and Sweers HE (1963) Mechanism of two photochemical reactions in algae as studied by means of fluorescence. In: Takamiya A and Shibata K (eds) Studies on Microalgae and Photosynthetic Bacteria, pp 353–372. Univ Tokyo Press, Tokyo

    Google Scholar 

  • Eaton-Rye JJ and Govindjee (1988a) Electron transfer through the quinone acceptor complex of photosystem II in bicarbonate-depleted spinach thylakoid membranes as a function of actinic flash number and frequency. Biochim Biophys Acta 935: 237–247

    PubMed  CAS  Google Scholar 

  • Eaton-Rye JJ and Govindjee (1988b) Electron transfer through the quinone acceptor complex of photosystem II after one or two actinic flashes in bicarbonate-depleted spinach thylakoid membranes. Biochim Biophys Acta 935: 248–257

    PubMed  CAS  Google Scholar 

  • Eaton-Rye JJ and Putnam-Evans C (2005) The CP47 and CP43 core antenna components. In: Wydrzynski TJ and Satoh K (eds) Photosystem II: The Light-Driven Water:Plastoquinone Oxidoreductase. Advances in Photosynthesis and Respiration, Vol 22, pp 139–175. Springer, Dordrecht

    Google Scholar 

  • Eckert H-J and Renger G (1988) Temperature dependence of \( \text{P68}{0}^{+}\) reduction in \( {\text{O}}_{2}\)-evolving PS II membrane fragments at different redox states \( {\text{S}}_{\text{i}}\) of the water oxidizing system. FEBS Lett 236: 425–431

    PubMed  CAS  Google Scholar 

  • Eckert H-J, Renger G, Bernarding J, Faust P, Eichler HJ and Salk J (1987) Examination of fluorescence lifetime and radical pair decay in PS II membrane fragments from spinach. Biochim Biophys Acta 893: 208–218

    PubMed  CAS  Google Scholar 

  • Eckert H-J, Wiese N, Bernarding J, Eichler HJ and Renger G (1988) Analysis of the electron transfer from Pheo to \( {\text{Q}}_{\text{A}}\) in PS II membrane fragments from spinach by time resolved 325 nm absorption changes in the picosecond domain. FEBS Lett 240: 153–158

    PubMed  CAS  Google Scholar 

  • Eckert H-J, Geiken B, Bernarding J, Napiwotzki A, Eichler HJ and Renger G (1991) Two sites of photoinhibition of the electron transfer in oxygen evolving and tris-treated PS II membrane fragments from spinach. Photosynth Res 27: 97–108

    PubMed  CAS  Google Scholar 

  • Enami I, Kitamura M, Tomo T, Isokawa Y Ohta H and Katoh S (1994) Is the primary course of thermal inactivation of oxygen evolution in spinach PS II membranes release of the extrinsic 33 kDa protein or of Mn? Biochim Biophys Acta 1186: 52–58

    PubMed  CAS  Google Scholar 

  • Enami I, Okumura A, Nagao R, Suzuki T, Iwai M and Shen JR (2008) Structures and functions of the extrinsic proteins of photosystem II from different species. Photosynth Res 98: 349–363

    PubMed  CAS  Google Scholar 

  • Engelmann ECM, Zucchelli Garlaschi GFM, Casazza AP and Jennings RC (2005) The effect of outer antenna complexes on the photochemical trapping rate in barley thyalkoid photosystem II. Biochim Biophys Acta 1706: 276–286

    PubMed  CAS  Google Scholar 

  • Faller P, Fufezan C and Rutherford AW (2005) Side-path electron donors: Cytochrome \( {b}_{559}\), chlorophyll Z and β-carotene. In: Wydrzynski TJ and Satoh K (eds) Photosystem II: The Light-Driven Water:Plastoquinone Oxidoredutase. Advances in Photosynthesis and Respiration, Vol 22, pp 347–365. Springer, Dordrecht

    Google Scholar 

  • Ferreira K, Iverson TM, Maghlouni K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831–1838

    PubMed  CAS  Google Scholar 

  • Flores M, Savitsky A, Paddock ML, Abresch EC, Dubinskii AA, Okamura MY, Lubitz W and Möbius K (2010) Electron−Nuclear and Electron−Electron Double Resonance spectroscopies show that the primary quinone acceptor QA in reaction centers from photosynthetic bacteria Rhodobacter sphaeroides remains in the same orientation upon light-induced reduction. J Phys Chem B 114: 16894–16901

    Google Scholar 

  • Franzen LG, Styring S, Etienne AL, Hansson O and Vernotte C (1986) Spectroscopic and functional-characterization of a highly oxygen-evolving photosystem-II reaction center complex from spinach. Photobiochem Photobiophys 13: 15–28

    PubMed  CAS  Google Scholar 

  • Fromme R, Grotjohann I and Fromme P (2008) Structure and function of photosystem I. In: Renger G (ed) Primary Processes of photosynthesis: Basic Principles and Apparatus, Part II Reaction Centers/Photosystems, Electron Transport Chains, Photophosphorylation and Evolution, pp 111–146. Royal Society Chemistry, Cambridge

    Google Scholar 

  • Fufezan C, Drepper F, Juhnke HD, Lancaster CRD, Un S, Rutherford AW and Krieger-Liszkay A (2005) Herbicide-induced changes in charge recombination and redox potential of \( {\text{Q}}_{\text{A}}\) in the T4 mutant of Blastochloris viridis. Biochemistry 44: 5931–5939

    PubMed  CAS  Google Scholar 

  • Fufezan C, Gross CM, Sjödin M, Rutherford AW, Krieger-Liszkay A and Kirilovsky D (2007) Influence of the redox potential of the primary quinone electron acceptor on photoinhibition in photosystem II. J Biol Chem 282: 12492–12502

    PubMed  CAS  Google Scholar 

  • Gadjeva R, Mamedov F, Renger G and Styring S (1999) Interconversion of low and high potential forms of cytochrome \( {b}_{559}\) in tris-washed photosystem II membranes under aerobic/anaerobic conditions. Biochemistry 38: 10578–10584

    PubMed  CAS  Google Scholar 

  • Garbers A, Kurreck J, Reifarth F, Renger G and Parak F (1998) Correlation between protein flexibility and electron transfer from \( {\text{Q}}_{\text{A}}^{-•}\) to \( {\text{Q}}_{\text{B}}\) in PS II membrane fragments from spinach. Biochemistry 37: 11399–11404

    PubMed  CAS  Google Scholar 

  • Gatt P, Stranger R and Pace RJ (2011) Application of computational chemistry to understanding the structure and mechanism of the Mn catalytic site in photosystem II – A review. J Photochem Photobiol B: Biol 104: 80–93

    Google Scholar 

  • Germano M, Shkuropatov AY, Permentier H, de Wijn R, Hoff AJ, Shuvalov VA and Van Gorkom HJ (2001) Pigment organization and their interactions in reaction centers of photosystem II: Optical spectroscopy at 6 K of reaction centers with modified pheophytin composition. Biochemistry 40: 11472–11482

    PubMed  CAS  Google Scholar 

  • Gibasiewicz K, Dobek A, Breton J and Leibl W (2001) Modulation of primary radical pair kinetics and energetics in photosystem II by the redox state of the quinone electron acceptor \( {\text{Q}}_{\text{A}}\). Biophys J 80: 1617–1630

    PubMed  CAS  Google Scholar 

  • Giera W, Ramesh VM, Webber AN, Van Stokkum I, Van Grondelle R and Gibasiewicz K (2010) Effect of the P700 pre-oxidation and point mutations near A0 on the reversibility of the primary charge separation in photosystem I from Chlamydomonas reinhardtii. Biochim Biophys Acta 1797: 106–112

    Google Scholar 

  • Gläser M, Wolff C and Renger G (1976) Indirect evidence for a very fast recovery kinetics of chlorophyll-a in spinach chloroplasts. Z Naturforsch 31c: 712–721

    PubMed  CAS  Google Scholar 

  • Glatzel P, Bergmann U, Yano J, Visser H, Robblee JH, Gu WW, de Groot FMF, Christou G, Pecoraro VL, Cramer SP and Yachandra VK (2004) The electronic structure of Mn in oxides, coordination complexes, and the oxygen-evolving complex of photosystem II studied by resonant inelastic X-ray scattering. J Am Chem Soc 126: 9946–9959

    PubMed  CAS  Google Scholar 

  • Gleiter HM, Haag E, Inoue Y and Renger G (1993) New results on the functional properties of a photosystem II core complex preparation from spinach. Photosynth Res 35: 41–53

    Google Scholar 

  • Gombos Z, Várkonyi Z, Hagio M, Iwaki M, Kovács L, Masamoto K, Itoh S, and Wada H (2002) Phos­phatidylglycerol requirement for the function of electron acceptor plastoquinone \( {\text{Q}}_{\text{B}}\) in the photosystem II reaction center. Biochemistry 41: 3796–3802

    PubMed  CAS  Google Scholar 

  • Govindjee and Van Rensen JJS (1993) Photosystem II reaction centers and bicarbonate. In: Deisenhofer J and Norris, JR (eds) Photosynthetic Reaction Centers, Vol I, pp 357–389. Academic Press, Orlando

    Google Scholar 

  • Gray MW (1992) The endosymbiont hypothesis revisited. Int Rev Cytol 141: 233–257

    PubMed  CAS  Google Scholar 

  • Guskov A, Gabdulkhakov A, Broser M, Glöckner C, Hellmich J, Kern J, Frank J, Saenger W and Zouni A (2010) Recent progress in the crystallographic studies of photosystem II. ChemPhysChem 11: 1160–1171

    Google Scholar 

  • Haag E, Irrgang K-D, Boekema EJ and Renger G (1990) Functional and structural-analysis of photosystem-II core complexes from spinach with high oxygen evolution capacity. Eur J Biochem 189: 47–53

    PubMed  CAS  Google Scholar 

  • Haehnel W (1984) Photosynthetic electron transport in higher plants. Annu Rev Plant Physiol 35: 659–693

    PubMed  CAS  Google Scholar 

  • Hallen S and Nilsson T (1992) Proton-transfer during the reaction between fully reduced cytochrome-c-oxidase and dioxygen - pH and deuterium-isotope effects. Biochemistry 31: 11853–11859

    PubMed  CAS  Google Scholar 

  • Hammes-Schiffer S (2006) Hydrogen tunneling and protein motion in enzyme reactions. Acc Chem Res 39: 93–100

    PubMed  CAS  Google Scholar 

  • Hansson Ö, Andreasson LE and Vänngard T (1986) Oxygen from water is coordinated to manganese in the \( {\text{S}}_{2}\) state of photosystem II. FEBS Lett 195: 151–154

    PubMed  CAS  Google Scholar 

  • Hasegawa K and Noguchi T (2005) Density functional theory calculations on the dielectric-constant dependence of the oxidation potential of chlorophyll: Implication for the high potential of P680 in photosystem II. Biochemistry 44: 8865–8872

    PubMed  CAS  Google Scholar 

  • Hasegawa K, Kimura Y and Ono T (2004) Oxidation of the Mn cluster induces structural changes of \( {\text{NO}}_{3}^{-}\) functionally bound to the Cl site in the oxygen-evolving complex of photosystem II. Biophys J 86: 1042–1050

    PubMed  CAS  Google Scholar 

  • Haumann M, Müller C, Liebisch P, Iuzzolino L, Dittmer J, Grabolle M, Neisius T, Meyer-Klaucke W and Dau H (2005a) Structural and oxidation state changes of the photosystem II manganese complex in four transitions of the water oxidation cycle (\( {\text{S}}_{0}\)-> \( {\text{S}}_{1}\), \( {\text{S}}_{1}\)-> \( {\text{S}}_{2}\), \( {\text{S}}_{2}\)-> \( {\text{S}}_{3}\), and \( {\text{S}}_{3}\), \( {\text{S}}_{4}\)-> \( {\text{S}}_{0}\)) characterized by X-ray absorption spectroscopy at 20 K and room temperature. Biochemistry 44: 1894–1908

    PubMed  CAS  Google Scholar 

  • Haumann M, Liebisch P, Müller C, Barra M, Grabolle M and Dau H (2005b) Photosynthetic \( {\text{O}}_{2}\) formation tracked by time-resolved X-ray experiments. Science 310: 1019–1021

    PubMed  CAS  Google Scholar 

  • Haumann M, Barra M, Loja P, Loscher S, Krivanek R, Grundmeier A, Andreasson L-E and Dau H (2006) Bromide does not bind to the \( {\text{Mn}}_{4}\text{Ca}\) complex in its \( {\text{S}}_{1}\) state in \( {\text{Cl}}^{-}\)-depleted and \( {\text{Br}}^{-}\)-reconstituted oxygen-evolving photosystem II: Evidence from X-ray absorption spectroscopy at the Br K-edge. Biochemistry 45: 13101–13107

    PubMed  CAS  Google Scholar 

  • Hauska G and Hurt E (1982) Pool function behaviour and mobility of isoprenoid quinones. In: Trumpower B (ed) Functions of Quinones in Energy Conserving Systems, pp 87–110. Academic Press, New York

    Google Scholar 

  • Hauß T, Dante S, Haines TH and Dencher NA (2005) Localization of coenzyme \( {\text{Q}}_{10}\) in the center of a deuterated lipid membrane by neutron diffraction. Biochim Biophys Acta 1710: 57–62

    PubMed  CAS  Google Scholar 

  • Havaux M, Rumeau D and Ducruet J-M (2005) Probing the FQR and NDH activities involved in cyclic electron transport around photosystem I by the ‘afterglow’ luminescence. Biochim Biophys Acta 1709: 203–213

    PubMed  CAS  Google Scholar 

  • Haveman J and Mathis P (1976) Flash-induced absorption changes of the primary donor of photosystem II at 820 nm in chloroplasts inhibited by low pH or tris-treatment. Biochim Biophys Acta 440: 346–355

    PubMed  CAS  Google Scholar 

  • Hayes AMA, Vassiliev IR, Golbeck JH and Debus RJ (1998) Role of D1-His 190 in proton-coupled electron transfer reactions in photosystem II: A chemical complementation study. Biochemistry 37: 11352–11365

    PubMed  CAS  Google Scholar 

  • Hienerwadel R, Grzybek S, Fogel C, Kreutz W, Okamura MY, Paddock ML, Breton J, Nabedryk E and Maentele W (1995) Protonation of Glu L212 following \( {\text{Q}}_{\text{B}}^{-}\) formation in the photosynthetic reaction center of Rhodobacter sphaeroides: Evidence from time-resolved infrared spectroscopy. Biochemistry 34: 2832–2843

    PubMed  CAS  Google Scholar 

  • Hillier W and Messinger J (2005) Mechanism of photosynthetic oxygen production. In Wydrzynski TJ and Satoh K (eds) Photosystem II. The Light-Driven Water:Plastoquinone Oxidoredutase. Advances in Photosynthesis and Respiration, Vol 22, pp 567–608. Springer, Dordrecht

    Google Scholar 

  • Hillier W and Wydrzynski T (2008) \( \text{O}\)Water exchange in photosystem II: Substrate binding and intermediates of the water splitting cycle. Coord Chem Rev 252: 306–317

    PubMed  CAS  Google Scholar 

  • Hillier W, McConnell I, Badger MR, Boussac A Klimov VV, Dismukes GC, Wydrzynski T (2006). Quantitative assessment of intrinsic carbonic anhydrase activity and the capacity for bicarbonate oxidation in photosystem II. Biochemistry 45: 2094–2102

    PubMed  CAS  Google Scholar 

  • Hillier W and Wydrzynski T (2000) The affinities for the two substrate water binding sites in the \( {\text{O}}_{2}\) evolving complex of photosystem II vary independently during S-state turnover. Biochemistry 39: 4399–4405

    PubMed  CAS  Google Scholar 

  • Ho FM and Styring S (2008) Access channels and methanol binding site to the CaMn4 cluster in photosystem II based on solvent accessibility simulations, with implications for substrate water access. Biochim Biophys Acta 1777: 140–153

    PubMed  CAS  Google Scholar 

  • Holzwarth AR, Müller MG, Reus M, Nowaczyk M, Sander MJ and Rögner M (2006a) Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: Pheophytin is the primary electron acceptor. Proc Natl Acad Sci USA 103: 6895–6900

    PubMed  CAS  Google Scholar 

  • Holzwarth AR, Müller MG, Niklas J and Lubitz W (2006b) Ultrafast transient absorption studies on photosystem I reaction centers from Chlamydomonas reinhardtii. 2: Mutations near the P700 reaction center chlorophylls provide new insight into the nature of the primary electron donor. Biophys J 90: 552565

    PubMed  CAS  Google Scholar 

  • Hudaky P and Perczel A (2004) Conformation dependence of \( {\text{pK}}_{\text{a}}\): ab initio and DFT investigation of histidine. J Phys Chem A108: 6195–6205

    PubMed  CAS  Google Scholar 

  • Hundelt M, Hays AMA, Debus RJ and Junge W (1998) Oxygenic photosystem II: The mutation D1 D61N in Synechocystis sp. PCC 6803 retards S-state transitions without affecting electron transfer from \( {\text{Y}}_{\text{Z}}\) to \( \text{P68}{0}^{+•}\). Biochemistry 37: 14450–14456

    PubMed  CAS  Google Scholar 

  • Ido K, Gross CM, Guerrero F, Sedoud A, Lai T-L, Ifuku K, Rutherford AW and Krieger-Liszkay A (2011) High and low potential forms of the QA quinone electron acceptor in photosystem II of Thermosynechococcus elongatus and spinach. J Photochem Photobiol B: Biol 104: 154–157

    Google Scholar 

  • Iizasa M, Suzuki H and Noguchi T (2010) Orientations of carboxylate groups coupled to the Mn cluster in the photosynthetic oxygen-evolving center as studied by polarized ATR-FTIR spectroscopy. Biochemistry 49: 3074–3082

    Google Scholar 

  • Irrgang K-D, Lekauskas A, Franke P, Reifarth F, Smolian H, Karge M and Renger G (1998) Structural analysis of the water: plastoquinone oxidoreductase from spinach thylakoids. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol II pp 977–980, Kluwer, Dordrecht

    Google Scholar 

  • Isgandarova S, Renger G and Messinger J (2003) Functional differences of photosystem II from Synechococcus elongatus and spinach characterized by flash induced oxygen evolution patterns. Biochemistry 42: 8929–8938

    PubMed  CAS  Google Scholar 

  • Ishida N, Sugiura M, Rappaport F, Lai T-L, Rutherford AW and Boussac A (2008) Biosynthetic exchange of bromide for chloride and strontium for calcium in the photosystem II oxygen-evolving enzymes. J Biol Chem 283: 13330–13340

    PubMed  CAS  Google Scholar 

  • Ishikita H, Loll B, Biesiadka J, Saenger W and Knapp E-W (2005) Redox potentials of chlorophylls in the photosystem II reaction center. Biochemistry 44: 4118–4124

    PubMed  CAS  Google Scholar 

  • Ishikita H, Saenger W, Loll B, Biesiadka J and Knapp EW (2006) Energetics of a possible proton exit pathway for water oxidation in photosystem II. Biochemistry 45: 2063–2071

    PubMed  CAS  Google Scholar 

  • Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y and Minagawa J (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis Nature 464: 1210–1215

    Google Scholar 

  • Jankowiak R, Hayes JM and Small GJ (2002) An excitonic pentamer model for the core \( {\text{Q}}_{\text{y}}\) states of the isolated photosystem II reaction center. J Phys Chem B 106: 8803–8814

    PubMed  CAS  Google Scholar 

  • Jeans C, Schilstra MJ, Ray N, Husain S, Minagawa J, Nugent JHA and Klug DR (2002) Replacement of tyrosine D with phenylalanine affects the normal proton transfer pathways for the reduction of \( \text{P68}{0}^{+}\) in oxygen-evolving photosystem II particles from Chlamydomonas. Biochemistry 41: 15754–15761

    PubMed  CAS  Google Scholar 

  • Johnston H, Wang J, Ruffle SV, Sayre RT and Gustafson TL (2000) Fluorescence decay kinetics of wild type and D2-H117N mutant photosystem II reaction centers isolated from Chlamydomonas reinhardtii. J Phys Chem B 104: 4777–4781

    PubMed  CAS  Google Scholar 

  • Joliot P and Joliot A (2005) Quantification of cyclic and linear flows in plants. Proc Natl Acad Sci USA 102: 4913–4918

    PubMed  CAS  Google Scholar 

  • Joliot P, Barbieri G and Chabaud R (1969) Un nouveau modele des centres photochimiques du systeme II. Photochem Photobiol 10: 309–329

    PubMed  CAS  Google Scholar 

  • Joliot P, Lavergne J and Béal D (1992) Plastoquinone compartmentation in chloroplasts; evidence for domains with different rates of photoreduction. Biochim Biophys Acta 1101: 1–12

    PubMed  CAS  Google Scholar 

  • Joliot P, Verméglio A and Joliot A (1997) Photo-induced cyclic electron transfer operates in frozen cells of Rhodobacter sphaeroides. Biochim Biophys Acta 1318: 374–384

    PubMed  CAS  Google Scholar 

  • Junge W and Jackson JB (1982) The development of electrochemical potential gradients across photosynthetic membranes. In: Govindjee (ed) Energy Conservation by Plants and Bacteria, pp 589–646. Academic Press, New York

    Google Scholar 

  • Junge W (2008) Photophosphorylation. In: Renger G (ed) Primary Processes of Photosynthesis: Basic Principles and Apparatus, Part II Reaction Centers/Photosystems, Electron Transport Chains, Photophosphorylation and Evolution, pp 449–487. Royal Society Chemistry, Cambridge

    Google Scholar 

  • Jursinic P and Govindjee (1977) Temperature dependence of delayed light emission in the 6-340 microsecond range after a single flash in chloroplasts. Photochem Photobiol 26: 617–628

    PubMed  CAS  Google Scholar 

  • Kaminskaya O, Kurreck J, Irrgang K-D, Renger G and Shuvalov VA (1999) Redox and spectral properties of cytochrome b559 in different preparations of photosystem II. Biochemistry 38: 16223–16235

    PubMed  CAS  Google Scholar 

  • Kaminskaya O, Renger G and Shuvalov VA (2003) Effect of dehydration on light induced reactions in photosystem II: Evidence for the presence of two functionally different cytochromes b559. Biochemistry 42: 8119–8132

    PubMed  CAS  Google Scholar 

  • Kaminskaya O, Kern J, Shuvalov VA and Renger G (2005) Difference extinction coefficients of cytochromes b559 and c550 in PSII core complex from Thermosynechococcus elongatus. Biochim Biophys Acta 1708: 333–341

    PubMed  CAS  Google Scholar 

  • Kaminskaya O, Shuvalov VA and Renger G (2007) Evidence for a novel quinone binding site in the photosystem II (PS II) complex which regulates the redox potential of Cyt b559. Biochemistry 46: 1091–1105

    PubMed  CAS  Google Scholar 

  • Kamiya N and Shen J-R (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc Natl Acad Sci USA 100: 98–103

    PubMed  CAS  Google Scholar 

  • Karge M, Irrgang K-D, Sellin S, Feinäugle R, Liu B, Eckert H-J, Eichler H-J and Renger G (1996) Effects of hydrogen/deuterium exchange on photosynthetic water splitting in PS II core complexes from spinach. FEBS Lett 378: 140–144

    PubMed  CAS  Google Scholar 

  • Karge M, Irrgang K-D and Renger G (1997) Analysis of the reaction coordinate of photosynthetic water oxidation by kinetic measurements of 355 nm absorption changes at different temperatures in photosystem II preparations suspended in either \( {\rm{H}}_{2}\rm{O}\) or \( {\rm{D}}_{2}\rm{O}\). Biochemistry 36: 8904–8913

    PubMed  CAS  Google Scholar 

  • Kasting JF and Seifert JF (2002) Life and the evolution of earth’s atmosphere. Science 296: 1066–1067

    PubMed  CAS  Google Scholar 

  • Katiliene Z, Katilius E and Woodbury NW (2003) Energy trapping and detrapping in reaction center mutants from Rhodobacter sphaeroides. Biophys J 84: 3240–3251

    PubMed  CAS  Google Scholar 

  • Kato Y, Sugiura M, Oda A and Watanabe T (2009) Spectroelectrochemical determination of the redox potential of pheophytin a, the primary electron acceptor in photosystem II. Proc Nat Acad Sci USA 106: 17365–17370

    Google Scholar 

  • Kawakami K, Umena Y, Kamiya N and J-R Shen (2011) Structure of the catalytic, inorganic core of oxygen-evolving photosystem II at 1.9 Å resolution. J Photochem Photobiol B: Biol 104: 9–18

    Google Scholar 

  • Ke B (2001) Photosynthesis: Photobiochemistry and Photobiophysics. Advances in Photosynthesis and Respi­ration, Vol 12. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Kern J and Renger G (2007) Photosystem II: Structure and mechanism of the water:plastoquinone oxidoreductase. Photosynth Res 94: 183–202

    PubMed  CAS  Google Scholar 

  • Kern J, Loll B, Zouni A, Saenger W Irrgang K-D and Biesiadka J (2005) Cyanobacterial photosystem II at 3.2  Å resolution – the plastoquinone binding pockets. Photosynth Res 84: 153–159

    PubMed  CAS  Google Scholar 

  • Kim EH, Razeghifard MR, Anderson JM and Chow WS (2007) Multiple sites of retardation of electron transfer in photosystem II after hydrolysis of phosphatidylglycerol. Photosynth Res 93: 149–158

    PubMed  CAS  Google Scholar 

  • Kimura Y, Mizusawa N, Yamanari T, Ishii A and Ono T (2005a) Structural changes of D1 C-terminal alpha-carboxylate during S-state cycling in photosynthetic oxygen evolution. J Biol Chem 280: 2078–2083

    PubMed  CAS  Google Scholar 

  • Kimura Y, Mizusawa N, Ishii A and Ono T (2005b) FTIR detection of structural changes in a histidine ligand during S-state cycling of photosynthetic oxygen-evolving complex. Biochemistry 44: 16072–16078

    PubMed  CAS  Google Scholar 

  • Kirmeier C, Holten D and Parson WW (1985) Temperature and detection-wavelength dependence of the picosecond electron-transfer kinetics measured in Rhodopseudomonas sphaeroides reaction centers. Resolution of new spectral and kinetic components in the primary charge-separation process. Biochim Biophys Acta 810: 33–48

    PubMed  CAS  Google Scholar 

  • Kirmaier C, Holten D, Debus RJ, Feher G and Okamura MY (1986) Primary photochemistry of iron-depleted and zinc-reconstituted reaction centers from Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 83: 6407–6411

    PubMed  CAS  Google Scholar 

  • Klimov VV, Klevanik AV, Shuvalov VA and Krasnovsky AA (1977) Reduction of pheophytin in the primary light reaction of photosystem II. FEBS Lett 82: 183–186

    PubMed  CAS  Google Scholar 

  • Klimov VV, Allakhverdiev SI, Demeter S and Krasnovsky AA (1979) Photoreduction of pheophytin in photosystem II of chloroplasts as a function of redox potential of the medium. Dokl Akad Nauk SSSR 249: 227–230

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Maeda H, Watanabe T, Nakane H and Satoh K (1990) Chlorophyll a and β-carotene content in the D1/D2/cytochrome \( {b}_{559}\) reaction center complex from spinach. FEBS Lett 260: 138–140

    PubMed  CAS  Google Scholar 

  • Koepke J, Krammer E-M, Klingen AR, Sebban P, Ullmann G.M and Fritzsch G (2007) pH modulates the quinone position in the photosynthetic reaction center from Rhodobacter sphaeroides in the neutral and charge separated states. J Mol Biol 371: 396–409

    PubMed  CAS  Google Scholar 

  • Koike H and Inoue Y (1987) Temperature dependence of the S-state transitions in a thermophilic cyanobacterium measured by thermoluminescence. In: Biggins J (ed) Progress in Photosynthesis Research, pp. 645–648. Nijhoff, Dordrecht

    Google Scholar 

  • Koike H, Hanssum B, Inoue Y and Renger G (1987) Temperature dependence of the S-state transitions in a thermophilic cyanobacterium, Synechococcus vulcanus Copeland measured by absorption changes in the ultraviolet region. Biochim Biophys Acta 893: 524–533

    PubMed  CAS  Google Scholar 

  • Kok B, Forbush B and McGloin M (1970) Cooperation of charges in photosynthetic \( {\text{O}}_{2}\) evolution. Photochem Photobiol 11: 457–476

    PubMed  CAS  Google Scholar 

  • Kolling DRJ, Brown TS, Ananyev G and Dismukes GC (2009) Photosynthetic oxygen evolution is not reversed at high oxygen pressures: mechanistic consequences for the water-oxidizing complex. Biochemistry 48: 1381–1389

    Google Scholar 

  • Konermann L and Holzwarth AR (1996) Analysis of the absorption spectrum of photosystem II reaction centers: temperature dependence, pigment assignment and inhomogeneous broadening. Biochemistry 35: 829–842

    PubMed  CAS  Google Scholar 

  • Krausz E, Cox N and Peterson Årsköld S (2008) Spectral characteristics of PS II reaction centres: as isolated preparations and when integral to PS II core complexes. Photosynth Res 98: 207–217

    PubMed  CAS  Google Scholar 

  • Krieger-Liszkay A and Rutherford AW (1998) Influence of herbicide binding on the redox potential of the quinone acceptor in photosystem II: Relevance to photodamage and phytotoxicity. Biochemistry 37: 17339–17344

    PubMed  CAS  Google Scholar 

  • Krieger A, Rutherford AW and Johnson GN (1995) On the determination of the redox midpoint potential of the primary quinone acceptor, \( {\text{Q}}_{\text{A}}\), in photosystem II. Biochim Biophys Acta 1229: 193–201

    PubMed  CAS  Google Scholar 

  • Krishtalik LI (1986) Energetics of multielectron reactions. Photosynthetic oxygen evolution. Biochim Biophys Acta 849: 162–171

    PubMed  CAS  Google Scholar 

  • Kühn P, Eckert H-J, Eichler H-J and Renger G (2004) Analysis of the \( \text{P68}{0}^{+•}\) reduction pattern and its temperature dependence in oxygen-evolving PS II core complexes from thermophilic cyanobacteria and higher plants. Phys Chem Chem Phys 6: 4838–4843

    PubMed  CAS  Google Scholar 

  • Kühn P, Pieper J, Kaminskaya O, Eckert H-J, Lechner R, Shuvalov V and Renger G (2005) Reaction pattern of photosystem II: Oxidative water cleavage and protein flexibility. Photosynth Res 84: 317–323

    PubMed  CAS  Google Scholar 

  • Kulik LV, Epel B, Lubitz W and Messinger J (2005a) \( {}^{55}\text{Mn}\) pulse ENDOR at 34 GHz of the \( {\text{S}}_{0}\) and \( {\text{S}}_{2}\) states of the oxygen-evolving complex in photosystem II. J Am Chem Soc 127: 2392–2393

    PubMed  CAS  Google Scholar 

  • Kulik LV, Lubitz W and Messinger J (2005b) Electron spin-lattice relaxation of the \( {\text{S}}_{0}\) state of the oxygen-evolving complex in photosystem II and of dinuclear manganese model complexes. Biochemistry 44: 9368–9374

    PubMed  CAS  Google Scholar 

  • Kulik LV, Epel B, Lubitz W and Messinger J.(2007) Electronic structure of the \( {\rm{Mn}}_{4}{\rm{O}}_{\rm{x}}\rm{Ca}\) cluster in the \( {\text{S}}_{0}\) and \( {\text{S}}_{2}\) states of the oxygen-evolving complex of photosystem II based on pulse \( {}^{55}\text{Mn}\)-ENDOR and EPR spectroscopy. J Am Chem Soc 129: 13421–13435

    PubMed  CAS  Google Scholar 

  • Kurreck J, Garbers A, Reifarth F, Andréasson LE, Parak F and Renger G (1996) Isolation and properties of PS II membrane fragments depleted of the non heme iron center. FEBS Lett 381: 53–57

    PubMed  CAS  Google Scholar 

  • Kurreck J, Liu B, Napiwotzki A, Sellin S, Eckert HJ, Eichler HJ and Renger G (1997a) Stoichiometry of pigments and radical pair formation under saturating pulse excitation in D1/D2/cyt b559 preparations. Biochim Biophys Acta 1318: 307–315

    PubMed  CAS  Google Scholar 

  • Kurreck J, Garbers A, Parak F and Renger G (1997b) Highly purified D1/D2/Cyt b559 preparations from spinach do not contain the non heme iron center. FEBS Lett 403: 283–286

    PubMed  CAS  Google Scholar 

  • Kusunoki M (2011) S1-state Mn4Ca complex of photosystem II exists in equilibrium between the two most-stable isomeric substates: XRD and EXAFS evidence. J Photochem Photobiol B: Biol 104: 100–110

    Google Scholar 

  • Laible PD, Kirmaier C, Udawatte CSM, Hofman SJ, Holten D and Hanson DK (2003) Quinone reduction via secondary b-branch electron transfer in mutant bacterial reaction centers. Biochemistry 42: 1718–1730

    PubMed  CAS  Google Scholar 

  • Lancaster CRD (2008) Structures of reaction centers in anoxygenic bacteria. In: Renger G (ed) Primary Processes of Photosynthesis: Principles and Apparatus, Part II Reaction Centers/Photosystems, Electron Transport Chains, Photophosphorylation and Evolution, pp 5–56. Royal Society Chemistry, Cambridge

    Google Scholar 

  • Lane N (2003) Oxygen - The Molecule that Made the World, Oxford University Press

    Google Scholar 

  • Larkum AWD (2008) The evolution of photosynthesis. In: Renger G (ed) Primary Processes of Photosynthesis: Basic Principles and Apparatus, Part II Reaction Centers/Photosystems, Electron Transport Chains, Photophosphorylation and Evolution, pp 491–521. Royal Society Chemistry, Cambridge

    Google Scholar 

  • Lavergne L, Bouchaud JP and Joliot P (1992) Plastoquinone compartmentation inchloroplasts: 2. Theoretical aspects. Biochim Biophys Acta 1101: 13–22

    PubMed  CAS  Google Scholar 

  • Liang W, Roelofs TA, Cinco RM, Rompel A, Latimer MJ, Yu WO, Sauer K, Klein MP and Yachandra VK (2000) Structural change of the Mn cluster during the S2 to S3 state transition of the oxygen evolving complex of photosystem II. Does it reflect the onset of water/substrate oxidation? Determination by Mn X-ray absorption spectroscopy, J Am Chem Soc 122: 3399–3412

    Google Scholar 

  • Li F, England J and Que Jr L (2010) Near-stoichiometric conversion of H2O2 to FeIV=O at a nonheme iron(II) center. Insights into the O−O bond cleavage step. J Am Chem Soc 132: 2134–2135

    Google Scholar 

  • Lin TJ and O’Malley PJ (2011) An ONIOM study of the spin density distribution of the QA site plastosemiquinone in the photosystem II reaction center J Phys Chem B115: 4227–4233

    Google Scholar 

  • Lince MT and Vermaas W (1998) Association of His117 in the D2 protein of photosystem II with a chlorophyll that affects excitation energy transfer efficiency to the reaction center. Eur J Biochem 256: 595–602

    PubMed  CAS  Google Scholar 

  • Liu F, Concepcion JJ, Jurss JW, Cardolaccia T, Templeton JL and Meyer TJ (2008) Mechanisms of water oxidation from the blue dimer to photosystem II. Inorg Chem 47: 1727–1752

    PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A and Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0  Å resolution structure of photosystem II. Nature 438: 1040–1044

    PubMed  CAS  Google Scholar 

  • Luna VM, Chen Y, Fee JA and Stout CD (2008) Crystallographic studies of Xe and Kr binding within the large internal cavity of cytochrome \( b{a}_{3}\) from Thermus thermophilus: Structural analysis and role of oxygen transport channels in the heme  −  Cu oxidases Biochemistry 47: 4657–4665

    PubMed  CAS  Google Scholar 

  • Lydakis-Simantiris N, Ghanotakis DF and Babcock GT (1997) Kinetic isotope effects on the reduction of the \( {\text{Y}}_{\text{Z}}\) radical in oxygen evolving and tris washed photosystem II membranes by time resolved EPR. Biochim Biophys Acta 1322: 129–140

    PubMed  CAS  Google Scholar 

  • MacMillan F, Gleiter H, Renger G and Lubitz W (1990) EPR/ENDOR studies of plastoquinone anion radical in photosystem II \( {\text{(Q}}_{\text{A}}^{-})\) and in organic solvents. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol 1, pp 849–852. Kluwer, Dordrecht

    Google Scholar 

  • MacMillan F, Lendzian F, Renger G and Lubitz W (1995a) EPR and ENDOR investigation of the primary electron acceptor radical anion \( {\text{Q}}_{\text{A}}^{-•}\) in iron-depleted photosystem II membrane fragments. Biochemistry 34: 8144–8156

    PubMed  CAS  Google Scholar 

  • MacMillan F, Kurreck J, Adir N, Lendzian F, Käss H, Reifarth F, Renger G and Lubitz W (1995b) EPR, ENDOR and ESEEM investigation of the electron acceptor radical anion \( {\text{Q}}_{\text{A}}^{-•}\) in photosystem II (PS II) reaction centres. In: Mathis P (ed) Photosynthesis: from Light to Biosphere, Vol I, pp 659–662. Kluwer, Dordrecht

    Google Scholar 

  • Marcus RA and Sutin N (1985) Electron transport in chemistry and biology. Biochem Biophys Acta 811: 265–322

    PubMed  CAS  Google Scholar 

  • Matsukawa T, Mino H, Yoneda D and Kawamori A (1999) Dual-mode EPR study of new signals from the \( {\text{S}}_{3}\)-state of oxygen-evolving complex in photosystem II. Biochemistry 38: 4072–4077

    PubMed  CAS  Google Scholar 

  • Matsuoka H, Shen J-R, Kawamori A, Nishiyama K, Ohba Y and Yamauchi S (2011) Proton-coupled electron-transfer processes in photosystem II probed by highly resolved g-anisotropy of redox-active tyrosine YZ. J Am Chem Soc 133: 4655–4660

    Google Scholar 

  • McEvoy JP and Brudvig GW (2006) Water-splitting chemistry of photosystem II. Chem Rev 106: 4455–4483

    PubMed  CAS  Google Scholar 

  • Mc Fadden, GI (1999) Endosymbiosis and evolution of the plant cell. Curr Opinion Plant Biol 2: 513–519

    PubMed  CAS  Google Scholar 

  • Messinger J and Renger G (1990) The reactivity of hydrazine with photosystem II strongly depends on the redox state of the water oxidizing system. FEBS Lett 277: 141–146

    PubMed  CAS  Google Scholar 

  • Messinger J and Renger G (1994) Analysis of pH-induced modifications in the period four oscillation of flash-induced oxygen evolution reveal distinct structural changes of the photosystem II donor side at characteristic pH values. Biochemistry 33: 10896–10905

    PubMed  CAS  Google Scholar 

  • Messinger J and Renger G (2008) Photosynthetic water splitting. In: Renger G (ed) Primary Processes of Photosynthesis: Basic Principles and Apparatus, Part II Reaction Centers/Photosystems, Electron Transport Chains, Photophosphorylation and Evolution, pp 291–349. Royal Society Chemistry, Cambridge

    Google Scholar 

  • Messinger J, Wacker U and Renger G (1991) Unusual low reactivity of the water oxidase in the redox state \( {\text{S}}_{3}\) toward exogenous reductants. Analysis of the \( {\text{NH}}_{2}\text{OH}\)and \( {\text{NH}}_{2}{\text{NH}}_{2}\) induced modifications of flash induced oxygen evolution in isolated spinach thylakoids. Biochemistry 30: 7852–786

    PubMed  CAS  Google Scholar 

  • Messinger J, Nugent JHA and Evans MCW (1997a) Detection of an EPR multiline signal for the \( {\text{S}}_{0}^{*}\) state in photosystem II. Biochemistry 36: 11055–11060

    PubMed  CAS  Google Scholar 

  • Messinger J, Robblee JH, Yu WO, Sauer K, Yachandra VK and Klein MP (1997b) The \( {\text{S}}_{0}\) state of the oxygen-evolving complex in photosystem II is paramagnetic: Detection of an EPR multiline signal. J Am Chem Soc 119: 11349–11350

    PubMed  CAS  Google Scholar 

  • Messinger J, Seaton GR, Wydrzynski T, Wacker U and Renger G. (1997) The S–3 state of the water oxidase in photosystem II. Biochemistry 36: 6862–6873

    PubMed  CAS  Google Scholar 

  • Messinger J, Robblee JH, Bergmann U, Fernandez C, Glatzel P, Visser H, Cinco RM, McFarlane KL, Bellacchio E, Pizarro SA, Cramer SP, K. Sauer, Klein MP and Yachandra VK (2001) Absence of Mn centered oxidation in the \( {\text{S}}_{2}\) to \( {\text{S}}_{3}\) transition: Implications for the mechanism of photosynthetic water oxidation. J Am Chem Soc 123: 7804–7820

    PubMed  CAS  Google Scholar 

  • Metz JG, Nixon PJ, Rögner M, Brudvig GW and Diner BA (1989) Directed alteration of the D1 polypeptide of photosystem II: Evidence that tyrosine 161 is the redox component, Z, connecting the oxygen-evolving complex to the primary electron donor, P680. Biochemistry 28: 6960–6969

    Google Scholar 

  • Meyer T J, Hang M, Huynh V and Thorp HH (2007) The role of proton coupled electron transfer (PCET) in water oxidation by photosystem II. Wiring for protons. Angew Chem Int Ed 46: 5284–5304

    PubMed  CAS  Google Scholar 

  • Michel-Beyerle ME, Plato M, Deisenhofer J, Michel H, Bixon M and Jortner J (1988) Unidirectionality of charge separation in reaction centers of photosynthetic bacteria. Biochim Biophys Acta 932: 52–70

    PubMed  CAS  Google Scholar 

  • Miloslavina Y, Szczepaniak M, Müller MG, Sander J, Nowaczyk M, Rögner M and Holzwarth AR (2006) Charge separation kinetics in intact photosystem II core particles is trap-limited. A picosecond fluorescence study. Biochemistry 45: 2436–2442

    PubMed  CAS  Google Scholar 

  • Mimuro M, Kobayashi M, Murakami A, Tsuchiya T and Miyashita H (2008) Oxygen-Evolving Cyanobacteria. In: Renger G (ed) Primary Processes of Photosynthesis: Basic Principles and Apparatus, Part I: Photophysical Principles, Pigments Light Harvesting/Adaptation/Stress, pp 261–299. Royal Society Chemistry, Cambridge

    Google Scholar 

  • Mitchell P (1961) Coupling of photophosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191: 144–148

    PubMed  CAS  Google Scholar 

  • Miyashita H, Adachi K, Kurano N, Ikemot H, Chihara M and Miyach S (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38: 274–281

    PubMed  CAS  Google Scholar 

  • Morovitz HJ (1978) Foundations of Bioenergetics. Academic Press, New York

    Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C, Tomizawa K-I, EndoT, Tasaka M and Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429: 579–582

    PubMed  CAS  Google Scholar 

  • Müh F, Glöckner C, Hellmich J and Zouni A (2011) Light-induced quinone reduction in photosystem II. Biochim Biophys Acta doi:10.1016/ j.bbabio.2011.05.021

    Google Scholar 

  • Müller MG, Dorra D, Holzwarth AR, Gad’on N and Drews G (1995) Time-dependent radical pair relaxation in chromatophores of an antenna-free mutant from Rhodobacter capsulatus. In: Mathis P (ed) Photosynthesis: from Light to Biosphere, Vol 1, pp 595–598. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Müller MG, Hucke M, Reus M and Holzwarth AR (1996) Primary processes and structure of the photosystem II reaction center: IV. Low intensity femtosecond transient absorption spectra of D1-D2 reaction centers. J Phys Chem 100: 9527–9536

    PubMed  CAS  Google Scholar 

  • Murray JW and Barber J (2007) Structural characteristics of channels and pathways in photosystem II including the identification of an oxygen channel. J Struct Biol 159: 228–237

    PubMed  CAS  Google Scholar 

  • Murray JW, Maghlaoui K, Kargul J, Ishida N, Lai T-L, Rutherford AW, Sugoura M, Boussac A and Barber J (2008) X-ray crystallography identifies two chloride dinding sites in the oxygen evolving centre of photosystem II. Energy Environmental Sci 1: 161–166

    PubMed  CAS  Google Scholar 

  • Nabedryk E, Paddock ML, Okamura MY and Breton J (2005) An isotope-edited FTIR investigation of the role of Ser-L223 in binding quinone (\( {\text{Q}}_{\text{B}}\)) and semiquinone \( {\text{(Q}}_{\text{B}}^{-})\) in the reaction center from Rhodobacter sphaeroides. Biochemistry 44: 14519–14527

    PubMed  CAS  Google Scholar 

  • Nanba O and Satoh K (1987) Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci USA 84: 109–112

    PubMed  CAS  Google Scholar 

  • Nikolaev GM, Knox PP, Kononenko AA, Grishanova NP and Rubin AB (1980) Photo-induced electron transport and water state in Rhodospirillum rubrum chromatophores. Biochim Biophys Acta 590: 194–201

    PubMed  CAS  Google Scholar 

  • Noguchi T (2002) Dual role of triplet localization on the accessory chlorophyll in the photosystem II reaction center: photoprotection and photodamage of the D1 protein. Plant Cell Physiol 43: 1112–1116

    PubMed  CAS  Google Scholar 

  • Noguchi T (2008) FTIR detection of water reactions in the oxygen-evolving centre of photosystem II. Phil Trans R Soc B 363: 1189–1195

    PubMed  CAS  Google Scholar 

  • Noguchi T and Sugiura M (2002) Flash-induced FTIR difference spectra of the water oxidizing complex in moderately hydrated photosystem II core films: Effect of hydration extent on S-state transitions. Biochemistry 41: 2322–2330

    PubMed  CAS  Google Scholar 

  • Noguchi T, Tomo T and Inoue Y (1998) Fourier transform infrared study of the cation radical of P680 in the photosystem II reaction center: Evidence for charge delocalization on the chlorophyll dimer. Biochemistry 37: 13614–13625

    PubMed  CAS  Google Scholar 

  • Noguchi T, Kurreck J, Inoue Y and Renger G (1999) Comparative FTIR analysis of the microenvironment of \( {\text{Q}}_{\text{A}}^{-•}\) in cyanide and high pH treated and “iron depleted” PS II membrane fragments. Biochemistry 38: 4846–4852

    PubMed  CAS  Google Scholar 

  • Novoderezhkin VI, Romero E, Dekker JP and Van Grondelle R (2011) Multiple charge-separation pathways in photosystem II: modeling of transient absorption kinetics. ChemPhysChem 12: 681–688

    Google Scholar 

  • Nuijs AM, Van Gorkom HJ, Plijter JJ and Duysens LNM (1986) Primary-charge separation and excitation of chlorophyll a in photosystem II particles from spinach as studied by picosecond absorbance-difference spectroscopy. Biochim Biophys Acta 848: 167–175

    PubMed  CAS  Google Scholar 

  • Oettmeier W (1992) Herbicides of photosystem II. In: Barber J (ed) The Photosystems: Structure, Function and Molecular Biology, pp 349–408. Elsevier, Amsterdam

    Google Scholar 

  • Oettmeier W (1999) Herbicide resistance and supersensitivity in photosystem II. Cell Mol Life Sci 55: 1255–1277

    PubMed  CAS  Google Scholar 

  • Ogrodnik A, Volk M, Letterer R, Feick R and Michel-Beyerle ME (1988) Determination of free energies in reaction centers of Rb. sphaeroides. Biochim Biophys Acta 936: 361–371

    PubMed  CAS  Google Scholar 

  • Olesen K and Andréasson L-E (2003) The function of the chloride ion in photosynthetic oxygen evolution. Biochemistry 42: 2025–2035

    PubMed  CAS  Google Scholar 

  • Ono T, Noguchi T, Inoue Y, Kusunoki M, Matsushita T and Oyanagi H (1992) X-ray detection of the period-four cycling of the manganese cluster in photosynthetic water oxidizing enzyme. Science 258: 1335–1337

    PubMed  CAS  Google Scholar 

  • Paddock L, Feher G and Okamura MY (1995) Pathway of proton transfer in bacterial reaction centers: Further investigations on the role of Ser-L223 studied by site-directed mutagenesis. Biochemistry 34: 15742–15750

    PubMed  CAS  Google Scholar 

  • Page CC, Moser CC, Chen X and Dutton PL (1999) Natural engineering principles of electron tunneling in biological oxidation-reduction. Nature 402: 47–52

    PubMed  CAS  Google Scholar 

  • Papageorgiou GC and Govindjee (eds) (2004) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Vol 19, Springer, Dordrecht

    Google Scholar 

  • Parson WW (2008) Functional patterns of reaction centers in anoxygenic photosynthetic bacteria. In: Renger G (ed) Primary Processes of Photosynthesis: Basic Principles and Apparatus, Part II Reaction Centers/Photosystems, Electron Transport Chains, Photophosphorylation and Evolution, pp 57–109. Royal Society Chemistry, Cambridge

    Google Scholar 

  • Parson WW and Warshel (2004) A density-matrix model of photosynthetic electron transfer with microscopically estimated vibrational relaxation times. Chem Phys 296: 201–216

    PubMed  CAS  Google Scholar 

  • Parson WW, Chu ZT and Warshel A (1990) Electrostatic control of charge separation in bacterial photosynthesis. Biochim Biophys Acta 1017: 251–272

    PubMed  CAS  Google Scholar 

  • Paschenko VZ, Gorokhov VV, Knox PP, Krasilnikov PM, Redlin H, Renger G and Rubin AB (2003) Energetics and mechanisms of high efficiency of charge separation and electrons transfer processes in Rhodobacter sphaeroides reaction centers. Bioelectrochemistry 61: 73–84

    PubMed  CAS  Google Scholar 

  • Pawlowicz NP, Groot M-L and Van Stokkum IHM, Breton J, Van Grondelle R (2007) Charge separation and energy transfer in the photosystem II core complex studied by femtosecond mid-infrared spectroscopy. Biophys J 93: 2732–2742

    PubMed  CAS  Google Scholar 

  • Pecoraro VL, Baldwin MJ, Caudle MT, Hsieh W-Y and Law NA (1998) A proposal for water oxidation in photosystem II. Pure Appl Chem 70: 925–929

    PubMed  CAS  Google Scholar 

  • Peloquin JM, Campbell KA, Randall DW, Evanchik MA, Pecoraro VL, Armstrong WH and Britt RD (2000) \( {}^{55}\text{Mn}\) ENDOR of the \( {\text{S}}_{2}\)-State multiline EPR signal of photosystem II: Implications on the structure of the tetranuclear Mn cluster. J Am Chem Soc 122: 10926–10942

    PubMed  CAS  Google Scholar 

  • Perrine Z and Sayre R (2011) Modulating the redox ­potential of the stable electron acceptor, QB, in mutagenized photosystem II reaction centers. Biochemistry 50: 1454–1464

    Google Scholar 

  • Peter GF and Thornber JP (1991) Biochemical evidence that the higher plant photosystem II core complex is organized as a dimer. Plant Cell Physiol 32: 1237–1250

    PubMed  CAS  Google Scholar 

  • Petrouleas V and Diner BA (1986) Identification of \( {\text{Q}}_{400}\), a high-potential electron acceptor of photosystem II, with the iron of the quinone-iron acceptor complex. Biochim Biophys Acta 849: 264–275

    PubMed  CAS  Google Scholar 

  • Petrouleas V and Crofts AR (2005) The iron-quinone acceptor complex. In: Wydrzynski TJ and Satoh K (eds) Photosystem II: The Light-Driven Water:Plastoquinone Oxidoreductase. Advances in Photosynthesis and Respiration, Vol 22, pp 177–206. Springer, Dordrecht

    Google Scholar 

  • Petrouleas V, Deligiannakis Y and Diner BA (1994) Binding of carboxylate anions at the non-heme Fe(II) of PS II. II. Competition with bicarbonate and effects on the \( {\text{Q}}_{\text{A}}\)/\( {\text{Q}}_{\text{B}}\) electron transfer rate. Biochim Biophys Acta 1188: 271–277

    PubMed  CAS  Google Scholar 

  • Pieper J and Renger G (2009) Protein dynamics investigated by neutron scattering. Photosynth Res 102: 281–293

    Google Scholar 

  • Pieper J, Hauß T, Buchsteiner A, Baczyński K, Adamiak K, Lechner RE and Renger G (2007) Temperature- and hydration-dependent protein dynamics in photosystem II of green plants studied by quasielastic neutron scattering. Biochemistry 46: 11398–11409

    PubMed  CAS  Google Scholar 

  • Pieper J, Hauß T, Buchsteiner A and Renger G (2008) The effect of hydration on protein flexibility in photosystem II of green plants studied by quasielastic neutron scattering. Eur Biophys J 37: 657–663

    PubMed  CAS  Google Scholar 

  • Pogson JB, Rissler HM and Frank HA (2005) The role of carotenoids in energy quenching. In: Wydrzynski TJ and Satoh K (eds) Photosystem II: The Light-Driven Water:Plastoqui­none Oxidoreductase. Advances in Photosynthesis and Respiration, Vol 22, pp 515–537. Springer, Dordrecht

    Google Scholar 

  • Pospíšil P (2011) Enzymatic function of cytochrome b559 in photosystem II. J Photochem Photobiol B: Biol 104: 341–347

    Google Scholar 

  • Poulson M, Samson S and Whitmarsh J (1995) Evidence that cytochrome b-559 protects photosystem II against photoinhibition. Biochemistry 34: 10932–10938

    PubMed  CAS  Google Scholar 

  • Pushkar Y, Yano J, Sauer K, Boussac A and Yachandra VK (2008) Structural changes in the \( {\text{Mn}}_{4}\text{Ca}\) cluster and the mechanism of photosynthetic water splitting. Proc Nat Acad Sci USA 105: 1879–1884

    PubMed  CAS  Google Scholar 

  • Rappaport F and. Diner BA (2008) Primary photochemistry and energetics leading to the oxidation of the \( {\text{(Mn)}}_{4}\text{Ca}\) cluster and to the evolution of molecular oxygen in photosystem II. Coord Chem Rev 252: 259–272

    PubMed  CAS  Google Scholar 

  • Rappaport F, Blanchard-Desce M and Lavergne J (1994) Kinetics of the electron transfer and electrochromic change during the redox transitions of the photosynthetic oxygen-evolving complex. Biochim Biophys Acta 1184: 178–192

    PubMed  CAS  Google Scholar 

  • Rappaport F, Guergova-Kuras M, Nixon PJ, Diner BA and Lavergne J (2002) Kinetics and pathways of charge recombination in photosystem II. Biochemistry 41: 8518–8527

    PubMed  CAS  Google Scholar 

  • Raszewski G and Renger T (2008) Light-harvesting in photosystem II core complexes is limited by the transfer to the trap: Can the core complex turn into a photoprotective mode? J Am Chem Soc 130: 4431–4446

    PubMed  CAS  Google Scholar 

  • Raszewski G, Saenger W and Renger T (2005) Theory of optical spectra of photosystem II reaction centers: Location of the triplet state and the identity of the primary electron donor. Biophys J 88: 986–998

    PubMed  CAS  Google Scholar 

  • Raszewski G, Diner BA, Schlodder E and Renger T (2008) Spectroscopic properties of reaction center pigments in photosystem II core complexes: Revision of the multimer model. Biophys J 95: 105–119

    PubMed  CAS  Google Scholar 

  • Raymond J and Blankenship RE (2004) The evolutionary development of the protein complement of photosystem 2. Biochim Biophys Acta 1655: 133–139

    PubMed  CAS  Google Scholar 

  • Razeghifard MR and Pace RJ (1997) Electron paramagnetic resonance kinetic studies of the S states in spinach PSII membranes. Biochim Biophys Acta 1322: 141–150

    PubMed  CAS  Google Scholar 

  • Razeghifard MR and Pace RJ (1999) EPR kinetic studies of oxygen release in thylakoids in PSII membranes: A kinetic intermediate in the \( {\text{S}}_{3}\) to \( {\text{S}}_{0}\) transition. Biochemistry 38: 1252–1257

    PubMed  CAS  Google Scholar 

  • Razeghifard MR, Chen M, Hughes JL, Freeman J, Krausz E, and Wydrzynski T (2005) Spectroscopic studies of photosystem II in chlorophyll d-containing Acaryochloris marina. Biochemistry 44: 11178–11187

    PubMed  CAS  Google Scholar 

  • Reifarth F and Renger G (1998) Indirect evidence for structural changes coupled with \( {\text{Q}}_{\text{B}}^{-•}\) formation in photosystem II. FEBS Lett 428: 123–126

    PubMed  CAS  Google Scholar 

  • Reifarth F, Christen G, Seeliger AG, Dörmann P, Benning C and Renger G (1997) Modification of the water oxidising complex in leaves of the dgd1 mutant of Arabidopsis thaliana deficient in the galactolipid digalactosyldiacylglycerol. Biochemistry 36: 11769–11776

    PubMed  CAS  Google Scholar 

  • Reinman S and Mathis P (1981) Influence of temperature on photosystem II electron transfer reactions. Biochim Biophys Acta 635: 249–258

    PubMed  CAS  Google Scholar 

  • Renger G (1978) Theoretical studies about the functional and structural organization of the photosynthetic oxygen evolution. In: Metzner H (ed) Photosynthetic Oxygen Evolution, pp 229–248. Academic Press, London

    Google Scholar 

  • Renger G (1983) Biological Energy Conservation. In: Hoppe W, Lohmann W, Markl H and Ziegler H (eds) Biophysics, pp 347–371. Springer, Berlin

    Google Scholar 

  • Renger G (1987) Mechanistic aspects of photosynthetic water cleavage. Photosynthetica 21: 203–224

    PubMed  CAS  Google Scholar 

  • Renger G (1993) Water cleavage by solar-radiation - an inspiring challenge of photosynthesis research. Photosynth Res 38: 229–247

    PubMed  CAS  Google Scholar 

  • Renger G (1997) Mechanistic and structural aspects of photosynthetic water oxidation, Physiol Plant 100: 828–841

    PubMed  CAS  Google Scholar 

  • Renger G (1999) Molecular mechanism of water oxidation. In: Singhal GS, Renger G, Govindjee, Irrgang, KD and Sopory SK (eds) Concepts in Photobiology: Photosynthesis and Photomorphogenesis, pp 292-329. Kluwer Academic Publishers, Dordrecht; and Narosa Publishing Co, New Delhi

    Google Scholar 

  • Renger G (2001) Photosynthetic water oxidation to molecular oxygen: apparatus and mechanism. Biochim Biophys Acta 1503: 210–228

    PubMed  CAS  Google Scholar 

  • Renger G (2004) Coupling of electron and proton transfer in oxidative water splitting in photosynthesis. Biochim Biophys Acta 1655: 195–204

    PubMed  CAS  Google Scholar 

  • Renger G (2007) Oxidative photosynthetic water splitting: energetics, kinetics and mechanism. Photosynth Res 92: 407–425

    PubMed  CAS  Google Scholar 

  • Renger G (2008) Functional pattern of photosystem II in oxygen evolving organisms. In: Renger G (ed) Primary Processes of Photosynthesis: Principles and Apparatus, Part II Reaction Centers/Photosystems, Electron Transport Chains, Photophosphorylation and Evolution, pp 237–290. Royal Society Chemistry, Cambridge

    Google Scholar 

  • Renger G (2011) Light induced oxidative water splitting in photosynthesis: energetics, kinetics and mechanism. J Photochem Photobiol B: Biol 104: 35–43

    Google Scholar 

  • Renger G and Hanssum B (1992) Studies on the reaction coordinates of the water oxidase in PS II membrane fragments from spinach. FEBS Lett 299: 28–32

    PubMed  CAS  Google Scholar 

  • Renger G and Holzwarth AR (2005) Primary electron transfer. In: Wydrzynski TJ and Satoh K (eds) Photosystem II: The Light-Driven Water: Plastoquinone Oxidoreductase. Advances in Photosynthesis and Respiration, Vol 22, pp 139–175. Springer, Dordrecht

    Google Scholar 

  • Renger G and Renger T (2008) Photosystem II: The machinery of photosynthetic water splitting. Photosynth Res 98: 53–80

    PubMed  CAS  Google Scholar 

  • Renger G and Völker M (1982) Studies on the proton release of the donor side of system II. Correlation between oxidation and deprotonization of donor D1 in Tris-washed inside-out thylakoids. FEBS Lett 149: 203–207

    PubMed  CAS  Google Scholar 

  • Renger G and Weiss W (1982) The detection of intrinsic 320 nm absorption changes reflecting the turnover of the water splitting enzyme system Y which leads to oxygen formation in trypsinized chloroplats. FEBS Lett 137: 217–221

    PubMed  CAS  Google Scholar 

  • Renger G and Weiss W (1986) Functional and structural aspects of photosynthetic water oxidation. Biochem Soc Trans 14: 17–20

    PubMed  CAS  Google Scholar 

  • Renger G and Wolff Ch (1976) The existence of a high photochemical turnover rate at the reaction centers of system II in tris-washed chloroplasts. Biochim Biophys Acta 423: 610–614

    PubMed  CAS  Google Scholar 

  • Renger G, Gläser M and Buchwald HE (1977) The control of the reduction kinetics in the dark of photooxidized chlorophyll-\( {\text{a}}_{\text{II}}^{+}\) by inner thylakoid proton concentration. Biochim Biophys Acta 461: 392–402

    PubMed  CAS  Google Scholar 

  • Renger G, Eckert H-J and Weiss W (1983) Studies on the mechanism of photosynthetic oxygen formation. In: Inoue Y, Crofts AR,, Murata N, Renger G und Satoh K (eds) The Oxygen Evolving System in Photosynthesis, pp 73–82. Academic Press, Tokyo

    Google Scholar 

  • Renger G, Völker M and Weiss W (1984) Studies on the nature of the water-oxidizing enzyme. I. The effect of trypsin on the system II reaction pattern in inside-out thylakoids. Biochim Biophys Acta 766: 582–591

    PubMed  CAS  Google Scholar 

  • Renger G, Wacker U and Völker M (1987) Studies on the protolytic reactions coupled with water cleavage in photosystem II membrane fragments from spinach. Photosynth Res 13: 167–184

    PubMed  CAS  Google Scholar 

  • Renger G, Völker M, Eckert H-J, Fromme R, Hohm-Veit S and Gräber P (1989) On the mechanism of photosystem II deterioration by UV-B irradiation. Photochem Photobiol 49: 97–105

    PubMed  CAS  Google Scholar 

  • Renger G, Messinger J and Hanssum B (1990) Thermodynamic, kinetic and mechanistic aspects of photosynthetic water oxidation In: Baltscheffsky M (ed) Current Research in Photosynthesis, pp 845–848. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Renger G, Gleiter HM, Haag E and Reifarth F (1993) Photosystem II: thermodynamics and kinetics of electron transport from \( {\text{Q}}_{\text{A}}^{-•}\) to \( {\text{Q}}_{\text{B}}\) \( {\text{(Q}}_{\text{B}}^{-•})\) and deleterious effects of copper (II). Z Naturforsch 48c: 234–240

    PubMed  CAS  Google Scholar 

  • Renger G, Bittner T and Messinger J (1994) Structure-function relationships in photosynthetic water oxidation. Biochem Soc Trans 22: 318–322

    PubMed  CAS  Google Scholar 

  • Renger G, Eckert HJ, Bergmann A, Bernarding J, Liu B, Napiwotzki A, Reifarth F and Eichler JH (1995) Fluorescence and spectroscopic studies on exciton trapping and electron transfer in photosystem II of higher plants. Austr J Plant Physiol 22: 167–181

    PubMed  CAS  Google Scholar 

  • Renger G, Christen G, Karge M, Eckert H-J and Irrgang K-D (1998) Application of the Marcus theory for analysis of the temperature dependence of the reactions leading to photosynthetic water oxidation – results and implications. J Bioinorg Chem 3: 360–366

    PubMed  CAS  Google Scholar 

  • Rhee KH (2001) Photosystem II: the solid structural era. Annu Rev Biophys Biomol Struct 30 307–328

    PubMed  CAS  Google Scholar 

  • Riistama S, Puustinen A, García-Horsman A, Iwata S, Michel H and Wikström M (1996) Channelling of dioxygen into the respiratory enzyme. Biochim Biophys Acta 12275: 1–4

    PubMed  CAS  Google Scholar 

  • Rinyu L, Marin EW, Takahashi E, Maroti P and Wraight CA (2003) Modulation of the free energy of the primary quinone acceptor (\( {\text{Q}}_{\text{A}}\)) in reaction centers from Rhodobacter sphaeroides: contributions from the protein and protein-lipid (cardiolipin) interactions. Biochim Biophys Acta 1655: 93–101

    PubMed  CAS  Google Scholar 

  • Robinson HH and Crofts AR (1984) Kinetics of the oxidation-reduction reactions of the photosystem II acceptor complex and the pathway for deactivation. FEBS Lett 151: 221–226

    PubMed  CAS  Google Scholar 

  • Rockley MG, Windsor MW, Cogdell RJ and Parson WW (1975) Picosecond detection of an intermediate in the photochemical reaction of bacterial photosynthesis. Proc Natl Acad Sci USA 72: 2251–2255

    PubMed  CAS  Google Scholar 

  • Roelofs TA and Holzwarth AR (1990) In search of a putative long-lived relaxed radical pair state in closed photosystem II. Kinetic modeling of picosecond fluorescence data. Biophys J 57: 1141–1153

    PubMed  CAS  Google Scholar 

  • Ruffle SV, Wang J, Johnston HG, Gustafson TL, Hutchison RS, Minagawa J, Crofts A and Sayre RT (2001) Photosystem II peripheral accessory chlorophyll mutants in Chlamydomonas reinhardtii. Biochemical characterization and sensitivity to photo-inhibition. Plant Physiol 127: 633–644

    PubMed  CAS  Google Scholar 

  • Santoni E, Jakopitsch C, Obinger C, and Smulevichpp G (2004) Comparison between catalase-peroxidase and cytochrome c peroxidase. The role of the hydrogen-bond networks for protein stability and catalysis. Biochemistry 43: 5792–5802

    PubMed  CAS  Google Scholar 

  • Sacquin-Mora S, Sebban P, Derrien V, Frick B, Lavery R and Alba-Simionesco C (2007) Probing the flexibility of the bacterial reaction center: The wild-type protein is more rigid than two site-specific mutants. Biochemistry 46: 14960–14968

    PubMed  CAS  Google Scholar 

  • Sauer K, Yano J and Yachandra VK (2008) X-ray spectroscopy of the photosynthetic oxygen-evolving complex. Coord Chem Rev 252: 318–335

    PubMed  CAS  Google Scholar 

  • Schatz GH, Brock H and Holzwarth AR (1987) Picosecond kinetics of fluorescence and absorbance changes in photosystem II particles excited by low photon density. Proc Natl Acad Sci USA 84: 8414–8418

    PubMed  CAS  Google Scholar 

  • Schatz GH, Brock H and Holzwarth AR (1988) Kinetic and energetic model for the primary processes in photosystem II. Biophys J 54: 397–405

    PubMed  CAS  Google Scholar 

  • Scheer KH (2008) Chlorophylls. In: Renger G (ed) Primary Processes of Photosynthesis: Basic Principles and Apparatus, Part I: Photophysical Principles, Pigments Light Harvesting/Adaptation/Stress, pp 101–149. Royal Society Chemistry, Cambridge

    Google Scholar 

  • Schilstra MJ, Rappaport F, Nugent JHA, Barnett CJ and Klug DR (1998) Proton/hydrogen transfer affects the S-state-dependent microsecond phases of \( \text{P68}{0}^{+}\) reduction during water splitting. Biochemistry 37: 3974–3981

    PubMed  CAS  Google Scholar 

  • Schmidt U and Reineker P (1985) Triplet excitons in molecular pairs. Mol Phys 55: 77–95

    PubMed  CAS  Google Scholar 

  • Schödel R, Irrgang KD, Voigt J and Renger G (1998) Rate of carotenoid triplet formation in solubilized light-harvesting complex II (LHCII) from spinach. Biophys J 75: 3143–3153

    PubMed  CAS  Google Scholar 

  • Schwartz JK, Wei P, Mitchell KH, Fox BG and Solomon EI (2008) Geometric and electronic structure studies of the binuclear nonheme ferrous active site of toluene-4-monooxygenase: Parallels with methane monooxygenase and insight into the role of the effector proteins in \( {\text{O}}_{2}\) activation. J Am Chem Soc 130: 7098–7109

    PubMed  CAS  Google Scholar 

  • Schweitzer RH, Melkozernov AN, Blankenship RE and Brudvig GW (1998) Time-resolved fluorescence measurements of photosystem II: The effect of quenching by oxidized chlorophyll Z. J Phys Chem B 102: 8320–8326

    PubMed  CAS  Google Scholar 

  • Shelaev IV, Gostev FE, Vishnev MI, Shkuropatov AYa,Ptushenko VV, Mamedov MD, Sarkisov OM, Nadtochenko VA, Semenov AYu and Shuvalov VA (2011) P680 (PD1PD2) and ChlD1 as alternative electron donors in photosystem II core complexes and isolated reaction centers. J Photochem Photobiol B: Biol 104: 44–50

    Google Scholar 

  • Shevela D, Nöring B, Eckert H-J, Messinger J and Renger G (2006) Characterization of the water-oxidizing complex of photosystem II of the Chl d - containing cyanobacterium Acaryochloris marina via its reactivity towards endogenous electron donors and acceptors Phys Chem Chem Phys 8: 3460–3446

    PubMed  CAS  Google Scholar 

  • Shevela D, Su J-H, Klimov V and Messinger J (2008) Hydrogencarbonate is not a tightly bound constituent of the water oxidizing complex in photosystem II. Biochim. Biophys. Acta 1777: 532–539

    PubMed  CAS  Google Scholar 

  • Sheleva D, Beckmann K, Clausen J, Junge W and Messinger J (2011) Photosynthetic oxygen-evolution at elevated oxygen pressure: direct detection by membrane inlet mass spectrometry. Proc Nat Acad Sci USA 108: 3602–3607

    Google Scholar 

  • Shi L-X and Schröder WP (2004) The low molecular mass subunits of the photosynthetic supracomplex, photosystem II. Biochim Biophys Acta 1608: 75–96

    PubMed  CAS  Google Scholar 

  • Shibamoto T, Kato Y, Sugiura M and Watanabe T (2009) Redox potential of the primary plastoquinone electron acceptor QA in photosystem II from Thermosynechococcus elongatus determined by spectroelectrochemistry. Biochemistry 48: 10682–10684

    Google Scholar 

  • Shibamoto T, KatoY, Nagao R, Yamazaki T, Tomo T and Watanabe T (2010) Species-dependence of the redox potential of the primary quinone electron acceptor QA in photosystem II verified by spectroelectrochemistry. FEBS Lett 584: 1526–1530

    Google Scholar 

  • Shlyk-Kerner O, Samish I, Kaftan D, Holland N, Maruthi Sai PS, Kless H, and Scherz A (2006) Protein flexibility acclimatizes photosynthetic energy conversion to the ambient temperature. Nature 442: 827–830

    PubMed  CAS  Google Scholar 

  • Shutova T, Irrgang K-D, Shubin V, Klimov VV and Renger G (1997) Analysis of pH-induced structural changes of the isolated extrinsic 33 kDa protein of photosystem II. Biochemistry 36: 6350–6358

    PubMed  CAS  Google Scholar 

  • Shutova T, Klimov VV, Andersson B and Samuelsson G (2007) A cluster of carboxylic groups in PsbO protein is involved in proton transfer from the water oxidizing complex of photosystem II. Biochim Biophys Acta 1767: 434–440

    PubMed  CAS  Google Scholar 

  • Siegbahn PEM (2006) O--O bond formation in the \( {\text{S}}_{4}\) state of the oxygen-evolving complex in photosystem II, Chemistry - A European Journal 12: 9217–9227

    PubMed  CAS  Google Scholar 

  • Siegbahn PEM (2008) Theoretical studies of O–O bond formation in photosystem II. Inorg Chem 47: 1779–1786

    PubMed  CAS  Google Scholar 

  • Siegbahn PEM (2009) Structures and energetics for O2 formation in photosystem II. Acc Chem Res 42: 1871–1880

    Google Scholar 

  • Siegbahn PEM (2011) Recent theoretical studies of water oxidation in photosystem II. J Photochem Photobiol B: Biol 104: 94–99

    Google Scholar 

  • Siggel U, Renger G, Stiehl HH and Rumberg B (1972) Evidence for electronic and ionic interaction between electron transport chains in chloroplasts. Biochim Biophys Acta 256: 328–335

    PubMed  CAS  Google Scholar 

  • Soper JD, Kryatov SV, Rybak-Akimova EV and Nocera DG (2007) Proton-directed redox control of O-O bond activation by heme hydroperoxidase models. J Am Chem Soc 129: 5069–5075

    PubMed  CAS  Google Scholar 

  • Sproviero EM, Gascon JA, McEvoy JP, Brudvig GW and Batista VS (2006) QM/MM Models of the \( {\text{O}}_{2}\)-evolving complex of photosystem II. J Chem Theory and Comput 4: 1119–1134

    PubMed  CAS  Google Scholar 

  • Sproviero EM, Gascon JA, McEvoy JP, Brudvig GW and Batista VS (2008) Quantum mechanics/molecular mechanics study of the catalytic cycle of water splitting in photosystem II. J Am Chem Soc 130: 3428–3442

    PubMed  CAS  Google Scholar 

  • Steffen R, Eckert H-J, Kelly AA, Dörmann P and Renger G (2005a) Investigations on the reaction pattern of photosystem II in leaves from Arabidopsis thaliana by time-resolved fluorometric analysis. Biochemistry 44: 3123–3133

    PubMed  CAS  Google Scholar 

  • Steffen R, Kelly AA, Huyer J, Dörmann P and Renger G (2005b) Investigations on the reaction pattern of photosystem II in leaves from Arabidopsis thaliana wild-type plants and mutants with genetically modified lipid content. Biochemistry 44: 3134–3142

    PubMed  CAS  Google Scholar 

  • Stewart DH and Brudvig GW (1998) Cytochrome \( {b}_{559}\) of photosystem II. Biochim Biophys Acta 1367: 63–87

    PubMed  CAS  Google Scholar 

  • Stiehl HH and Witt HT (1969) Quantitative treatment of the function of plastoquinone in photosynthesis. Z Naturforsch 24b: 1588–1598

    PubMed  CAS  Google Scholar 

  • Strasser RJ and Sironval C (1972) Induction of photosystem II activity in flashed leaves. FEBS Lett 28: 56–60

    PubMed  CAS  Google Scholar 

  • Strickler MA, Hillier W and Debus RJ (2006) No evidence from FTIR difference spectroscopy that glutamate-189 of the D1 polypeptides ligates a Mn ion that undergoes oxidation during the \( {\text{S}}_{0}\) to \( {\text{S}}_{1}\), \( {\text{S}}_{1}\) to \( {\text{S}}_{2}\) or \( {\text{S}}_{2}\) to \( {\text{S}}_{3}\) transitions in photosystem II. Biochemistry 45: 8801–8811

    PubMed  CAS  Google Scholar 

  • Strzalka K, Walczak T, Sarna T and Swartz HM (1990) Measurement of time-resolved oxygen concentration changes in photosynthetic systems by nitroxide-based EPR oximetry. Arch Biochem Biophys 281: 312–318

    PubMed  CAS  Google Scholar 

  • Styring S and Rutherford AW (1988) Deactivation kinetics and temperature dependence of the S-state transitions in the oxygen evolving system of photosystem II measured by EPR spectroscopy. Biochim Biophys Acta 933 378–387

    Google Scholar 

  • Sugiura M and Inoue Y (1999) Highly purified thermo-stable oxygen-evolving photosystem II core complex from the thermophilic cyanobacterium Synechococcus elongatus having His-tagged CP43. Plant Cell Physiol 40: 1219–1231

    PubMed  CAS  Google Scholar 

  • Sugiura M, Rappaport F, Brettel K, Noguchi T, Rutherford AW and Boussac A (2004) Site-directed mutagenesis of Thermosynechococcus elongatus photosystem II: The \( {\text{O}}_{2}\)-evolving enzyme lacking the redox-active tyrosine D. Biochemistry 43: 13549–13563

    PubMed  CAS  Google Scholar 

  • Sugiura M, Rappaport F, Hillier W, Dorlet P, Ohno Y, Hayashi H and Boussac A (2009) Evidence that D1-His332 in photosystem II from Thermosynechococcus elongatusinteracts with the S3-state and not with the S2-state. Biochemistry 48: 7856–7866

    Google Scholar 

  • Suzuki H, Nagasaka M, Sugiura M and Noguchi T (2005) Fourier transform infrared spectrum of the secondary quinone electron acceptor \( {\text{Q}}_{\text{B}}\) in photosystem II. Biochemistry 44: 11323–11328

    PubMed  CAS  Google Scholar 

  • Suzuki H, Sugiura M and Noguchi T (2009) Monitoring proton release during photosynthetic water oxidation in photosystem II by means of isotope-edited infrared spectroscopy. J Am Chem Soc 131: 7849–7857

    Google Scholar 

  • Szczepaniak M, Sander J, Nowaczyk M, Müller MG, Rögner M and Holzwarth AR (2009) Charge separation, stabilization, and protein relaxation in photosystem II core particles with closed reaction center. Biophys J 96: 621–631

    Google Scholar 

  • Takahashi R, Hasegawa K and Noguchi T (2008) Effect of charge distribution over a chlorophyll dimer on the redox potential of P680 in photosystem II as studied by density functional theory calculations. Biochemistry 47: 6289–6291

    PubMed  CAS  Google Scholar 

  • Tandori J, Sebban P, Michel H and Baciou L (1999) In Rhodobacter sphaeroides reaction centers, mutation of proline L209 to aromatic residues in the vicinity of a water channel alters the dynamic coupling between electron and proton transfer processes. Biochemistry 38: 13179–13187

    PubMed  CAS  Google Scholar 

  • Telfer A (2002) What is β-carotene doing in the photosystem II reaction centre? Phil Tans R Soc Lond B 357: 1431–1440

    PubMed  CAS  Google Scholar 

  • Theg SM, Filar LJ and Dilley RJ (1986) Photoinactivation of chloroplasts already inhibited on the oxidizing side of phototsystem II. Biochim Biophys Acta 849: 104–111

    PubMed  CAS  Google Scholar 

  • Thompson K, Blaylock R, Sturtevant JM, and Brudvig GW (1989) Molecular basis of the heat denaturation of photosystem II. Biochemistry 28: 6686–6695

    PubMed  CAS  Google Scholar 

  • Tiede DM and Dutton PL (1981) Orientation of the primary quinone of bacterial photosynthetic reaction centers contained in chromatophore and reconstituted membranes. Biochim Biophys Acta 637: 278–290

    PubMed  CAS  Google Scholar 

  • Tommos C and Babcock GT (1998) Oxygen production in nature: a light-driven metalloradical enzyme process. Acc Chem Res 31: 18–25

    PubMed  CAS  Google Scholar 

  • Tommos C and Babcock GT (2000) Proton and hydrogen currents in photosynthetic water oxidation. Biochim Biophys Acta 1458: 199–299

    PubMed  CAS  Google Scholar 

  • Tomo T, Mimuro M, Iwaki M, Kobayashi M, Itoh S and Satoh K (1997) Topology of pigments in the isolated photosystem II reaction center studied by selective extraction. Biochim Biophys Acta 1321: 21–30

    PubMed  CAS  Google Scholar 

  • Trissl HW and Lavergne J (1995) Fluorescence induction from photosystem II: analytical equations for the yields of photochemistry and fluorescence derived from analysis of a model including exciton-radical pair equilibrium and restricted energy transfer between photosynthetic units. Austral J Plant Physiol 22: 183–193

    PubMed  CAS  Google Scholar 

  • Ulas G, Olack G and Brudvig GW (2008) Evidence against bicarbonate bound in the \( {\text{O}}_{2}\)-evolving complex of photosystem II. Biochemistry 47: 3073–3075

    PubMed  CAS  Google Scholar 

  • Umena Y, Kawakami K J-R Shen and Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473 55–60

    Google Scholar 

  • Utschig LM, Chemerisov SD, Tiede DM and Poluektov OG (2008) Electron paramagnetic resonance study of radiation damage in photosynthetic reaction center crystals. Biochemistry 47: 9251–9257

    PubMed  CAS  Google Scholar 

  • Vacha F, Durchan M and Siffel P (2002) Excitonic interactions in the reaction centre of photosystem II studied by using circular dichroism. Biochim Biophys Acta 1554: 147–152

    PubMed  CAS  Google Scholar 

  • Van Amerongen H and Dekker JP (2003) Light-harvesting in photosystem II. In: Green BR and Parson WW (eds) Light-Harvesting Antennas in Photosynthesis Advances in Photosynthesis and Respiration, Vol 13, pp 219–251. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Van Amerongen H and Croce R (2008) Structure and function of photosystem II light-harvesting proteins (Lhcb) of higher plants. In: Renger G (ed) Primary Processes of Photosynthesis: Basic Principles and Apparatus, Part I: Photophysical Principles, Pigments Light Harvesting/Adaptation/Stress, pp 329–367. Royal Society Chemistry, Cambridge

    Google Scholar 

  • Van der Weij−de Wit CD, Dekker JP, Van Grondelle R and Van Stokkum IHM (2011) Charge separation is virtually irreversible in photosystem II core complexes with oxidized primary quinone acceptor. J Phys Chem A 115: 3947–3956

    Google Scholar 

  • Van Gorkom HJ (1974) Identification of the reduced primary electron acceptor of photosystem II as a bound semiquinone anion. Biochim Biophys Acta 347: 439–442

    PubMed  CAS  Google Scholar 

  • Van Gorkom HJ and Yocum CF (2005) The calcium and chloride cofactors. In: Wydrzynski TJ and Satoh K (eds) Photosystem II: The Light-Driven Water:Plastoqui­none Oxidoreductase. Advances in Photosynthesis and Respiration, Vol 22, pp 307–328. Springer, Dordrecht

    Google Scholar 

  • Van Leeuwen PJ, Heimann CC, Gast P, Dekker JP and Gorkom HJ (1993) Flash-induced redox changes in oxygen-evolving spinach photosystem II core particles. Photosynth Res 38 169–176

    Google Scholar 

  • Van Mieghem FJE and Rutherford AW (1993) Comparative spectroscopy of photosystem-II and purple bacterial reaction centres. Biochem Soc Trans 21: 986–991

    PubMed  CAS  Google Scholar 

  • Van Mieghem F, Nitschke W, Mathis P and Rutherford AW (1989) The influence of the quinone-iron complex on the reaction center photochemistry of photosystem II. Biochim Biophys Acta 977: 207–214

    PubMed  CAS  Google Scholar 

  • Van Miegham F, Brettel K, Hillmann B, Kamlowski A, Rutherford AW and Schlodder E (1995) Charge recombination reactions in photosystem II. 1. Yields, recombination pathways and kinetics of the primary pair. Biochemistry 34: 4798–4813

    PubMed  CAS  Google Scholar 

  • Van Niel CB (1941) The bacterial photosynthesis and their importance of the general problem of photosynthesis. Acta Enzymology 1: 263–328

    PubMed  CAS  Google Scholar 

  • Van Rensen JJS and Klimov VV (2005) Bicarbonate interactions. In: Wydrzynski TJ and Satoh K (eds) Photosystem II: The Light-Driven Water:Plastoquinone Oxidoreductase, Advances in Photosynthesis and Respiration, Vol 22, pp 329–346. Springer, Dordrecht

    Google Scholar 

  • Vasil’ev S, Bergmann A, Redlin H, Eichler H-J and Renger G (1996) On the role of exchangeable hydrogen bonds for the kinetics of \( {\text{P}}_{680}^{+•}{\text{Q}}_{\text{A}}^{-•}\) formation and \( {\text{P}}_{680}^{+•}{\text{Pheo}}^{-•}\) recombination in photosystem II. Biochim Biophys Acta 1276: 35–44

    PubMed  CAS  Google Scholar 

  • Vasil’ev S, Orth P, Zouni A, Owens TG and Diner B (2001) Excited-state dynamics in photosystem II: Insights from the X-ray crystal structure. Proc Natl Acad Sci USA 98: 8602–8607

    PubMed  CAS  Google Scholar 

  • Vasil’ev S, Lee C-I, Brudvig GW and Bruce D (2002) Structure-based kinetic modeling of excited-state transfer and trapping in histidine-tagged photosystem II core complexes from Synechocystis. Biochemistry 41: 12236–12243

    PubMed  CAS  Google Scholar 

  • Vasil’ev S, Shen J-R, Kamiya N and Bruce D (2004) The orientations of core antenna chlorophylls in photosystem II are optimized to maximize the quantum yield of photosynthesis. FEBS Lett 561: 111–116

    PubMed  CAS  Google Scholar 

  • Vass I and Styring S (1991) pH dependent charge equilibria between tyrosine-D and the S-states in photosystem II. Estimation of relative midpoint potentials. Biochemistry 30: 830–839

    PubMed  CAS  Google Scholar 

  • Vass I and Aro E-M (2008) Photoinhibition of photosynthetic electron transport. In: Renger G (ed) Primary Processes of Photosynthesis: Basic Principles and Apparatus, Part 1: Photophysical Principles, Pigments Light Harvesting/Adaptation/Stress, pp 393–425. Royal Society Chemistry, Cambridge

    Google Scholar 

  • Vass I, Turcsányi E, Touloupakis E, Ghanotakis D and Petrouleas V (2002) The mechanism of UV-A radiation-induced inhibition of photosystem II electron transport studied by EPR and chlorophyll fluorescence. Biochemistry 41: 10200–10208

    PubMed  CAS  Google Scholar 

  • Vavilin D, Xu H, Lin S and Vermaas W (2002) Energy and electron transfer in photosystem II of a chlorophyll b-containing Synechocyste sp. PCC 6803 mutant. Biochemistry 42: 1731–1746

    PubMed  CAS  Google Scholar 

  • Velthuys B (1981) Spectroscopis studies of the S-state transitions of photosystem II and of the interaction of its charged donor chains with lipid-soluble anions. In: Akoyunoglou G (ed) Photosynthesis II. Electron Transport and Photophosphorylation, pp 75–85. Balaban, Philadelphia

    Google Scholar 

  • Vermaas WFJ, Renger G and Dohnt G (1984) The reduction of the oxygen-evolving system in chloroplasts by thylakoid components. Biochim Biophys Acta 764: 194–202

    PubMed  CAS  Google Scholar 

  • Vermeglio A (2008) Anoxygenic Bacteria. In: Renger G (ed) Primary Processes of Photosynthesis: Basic Principles and Apparatus, Part II. Reaction Centers/Photosystems, Electron Transport Chains, Photophosphorylation and Evolution, pp 353–382. Royal Society Chemistry, Cambridge

    Google Scholar 

  • Verméglio A, Joliot A and Joliot P (1998) Supramolecular organization of the photosynthetic chain in mutants of Rhodobacter capsulatus deleted in cytochrome c2. Biochim Biophys Acta 1318: 374–38

    Google Scholar 

  • Vos MH, Van Gorkom HJ and Van Leeuwen PJ (1991) An electroluminescence study of stabilization reactions in the oxygen-evolving complex of photosystem II. Biochim Biophys Acta 1056: 27–39

    PubMed  CAS  Google Scholar 

  • Vrettos JS, Limburg J and Brudvig GW (2001) Mechanism of photosynthetic water oxidation: combining biophysical studies of photosystem II with inorganic model chemistry. Biochim Biophys Acta 1503: 229–245

    PubMed  CAS  Google Scholar 

  • Wakeham MC, Goodwin MG, McKibbin C and Jones MR (2003) Photo-accumulation of the \( {\text{P}}^{+}{\text{Q}}_{\text{B}}^{-}\) radical pair state in purple bacterial reaction centres that lack the \( {\text{Q}}_{\text{A}}\) ubiquinone. FEBS Lett 540: 234–240

    PubMed  CAS  Google Scholar 

  • Walz D (1997) Nonequilibrium thermodynamics applied to energy conversion in biological systems. In: Gräber P and Milazzo G (eds) Bioenergetics, pp 1–56. Birkhäuser Verlag, Basel

    Google Scholar 

  • Wang D, Zheng J, Shaik S and Thiel W (2008) Quantum and molecular mechanical study of the first proton transfer in the catalytic cycle of cytochrome P450cam and its mutant D251N. J Phys Chem B 112: 5126–5138

    PubMed  CAS  Google Scholar 

  • Wang H, Lin S, Allen JP, Williams JAC, Blankert S, Laser C and Woodbury NW (2007) Protein dynamics control the kinetics of initial electron transfer in photosynthesis. Science 316: 747–750

    PubMed  CAS  Google Scholar 

  • Warncke K and Dutton PS (1993) Influence of \( {\text{Q}}_{\text{A}}\) site redox cofactor structure on equilibrium binding, in situ electrochemistry, and electron-transfer performance in the photosynthetic reaction center protein. Biochemistry 32: 4769–4779

    PubMed  CAS  Google Scholar 

  • Warshel A and Parson WW (1987) Spectroscopic properties of photosynthetic reaction centers. 1. Theory. J Am Chem Soc 109: 6143–6152

    PubMed  CAS  Google Scholar 

  • Watanabe T and Kobayashi M (1991) Electrochemistry of chlorophylls. In: Scheer H (ed) Chlorophylls, pp 287–315. CRC Press, Boca Raton

    Google Scholar 

  • Weiss W and Renger G (1984) Analysis of the system II reaction by UV-absorption changes in tris-washed chloroplasts. In: Sybesma C (ed) Advances in Photosynthesis Research, Vol 1, pp 167–170. Marinus Nijhoff/Dr. W. Junk Publishers, The Hague

    Google Scholar 

  • Weng TC, Hsieh WY, Uffelman ES, Gordon-Wylie SW, Collins TJ, Pecoraro VL and Penner-Hahn JE (2004) XANES evidence against a manganyl species in the \( {\text{S}}_{3}\) state of the oxygen-evolving complex. J Am Chem Soc 126: 8070–8071

    PubMed  CAS  Google Scholar 

  • Westphal KL, Lydakis-Simantiris N, Cukier RI and Babcock GT (2000) Effects of \( {\text{Sr}}^{2+}\) substitution on the reduction rates of \( {\text{Y}}_{\text{Z}}^{•}\) in PSII membranes: Evidence for concerted hydrogen atom transfer in oxygen evolution. Biochemistry 39: 16220–16229

    PubMed  CAS  Google Scholar 

  • Wikström M (2004) Cytochrome c oxidase: 25 years of the elusive proton pump. Biochim Biophys Acta 1655: 241–247

    PubMed  CAS  Google Scholar 

  • Williams RJP (1995) Energised (entatic) states of groups and of secondary structures in proteins and metalloproteins. Eur J Biochem 234: 363–381

    PubMed  CAS  Google Scholar 

  • Witt HT (1971) Coupling of quanta, electrons, fields, ions and phosphorylation in the functional membrane of photosynthesis. Quart Res Biophys 4: 365–477

    PubMed  CAS  Google Scholar 

  • Woodbury NW, Parson WW, Gunner MR, Prince RC and Dutton PL (1986) Radical-pair energetics and decay mechanisms in reaction centers containing anthraquinones, naphtoquinones or benzoquinones in place of ubiquinone. Biochim Biophys Acta 851: 6–22

    PubMed  CAS  Google Scholar 

  • Wraight CA (1985) Modulation of herbicide binding by the redox state of \( {\text{Q}}_{400}\), an endogenous component of photosystem II. Biochim Biophys Acta 809: 320–330

    PubMed  CAS  Google Scholar 

  • Xiong J and Bauer CE (2002) Complex evolution of photosynthesis. Annu Rev Plant Biol 53: 503–521

    PubMed  CAS  Google Scholar 

  • Xiong L, Seibert M, Gusev AV, Wasielewski MR, Hemann C, Hille CR and Sayre RT (2004) Substitution of a chlorophyll into the inactive branch pheophytin-binding site impairs charge separation in photosystem II. J Phys Chem 108: 16904–16911

    PubMed  CAS  Google Scholar 

  • Yachandra VK (2005) The catalytic manganese cluster: organisation of the metal ions. In: Wydrzynski TJ and Satoh K (eds) Photosystem II. The Light-Driven Water: Plastoquinone Oxidoreductase, Advances in Photosynthesis and Respiration, Vol 22, pp 235–260. Springer, Dordrecht

    Google Scholar 

  • Yachandra VK and Yano J (2011) Calcium in the oxygen-evolving complex: Structural and mechanistic role determined by X-ray spectroscopy. J Photochem Photobiol B: Biol 104: 51–59

    Google Scholar 

  • Yachandra VK, Sauer K and Klein MP (1996) Manganese cluster in photosynthesis: where plants oxidize water to dioxygen. Chem Rev 96: 2927–2950

    PubMed  CAS  Google Scholar 

  • Yamauchi T, Mino H, Matsukawa T, Kawamori A and Ono T (1997) Parallel polarization electron paramagnetic resonance studies of the \( {\text{S}}_{1}\)-state manganese cluster in the photosynthetic oxygen-evolving system. Biochemistry 36: 7520–7526

    PubMed  CAS  Google Scholar 

  • Yano J, Kern J, Irrgang K-D, Latimer MJ, Bergmann U, Glatzel P, Pushkar Y, Biesiadka J, Loll B, Sauer K, Messinger J, Zouni A and Yachandra VK (2005a) X-ray damage to the \( {\text{Mn}}_{4}\text{Ca}\) complex in single crystals of photosystem II: A case study for metalloprotein crystallography. Proc Natl Acad Sci USA 102: 12047–12052

    PubMed  CAS  Google Scholar 

  • Yano J, Pushkar Y, Glatzel P, Lewis A, Sauer K, Messinger J, Bergmann U and Yachandra VK (2005b) High-resolution Mn EXAFS of the oxygen-evolving complex in photosystem II: Structural implications for the \( {\text{Mn}}_{4}\text{Ca}\) cluster. J Am Chem Soc 127: 14974–14975

    PubMed  CAS  Google Scholar 

  • Yano J, Kern J, Sauer K, Latimer JM, Pushkar Y, Biesiadka J, Loll B, Saenger W, Messinger J, Zouni A and Yachandra VK (2006) Where water is oxidized to dioxygen: Structure of the photosynthetic \( {\text{Mn}}_{4}\text{Ca}\) cluster. Science 314: 821–825

    PubMed  CAS  Google Scholar 

  • Yano J, Walker LM, Strickler MA, Service RJ, Yachandra VK and RJ Debus (2011)Altered structure of the Mn4Ca cluster in the oxygen-evolving complex of photosystem II by a histidine ligand mutation. J Biol Chem 286: 9257–9267

    Google Scholar 

  • Yikilmaz E, Rodgers DW and Miller A-F (2006) The crucial importance of chemistry in the structure-function link: Manipulating hydrogen bonding in iron-containing superoxide dismutase. Biochemistry 45: 1151–1161

    PubMed  CAS  Google Scholar 

  • Zaks A and Klibanov AM (1984) Enzymatic catalysis in organic media at 100 degrees C. Science: 1249–1251

    Google Scholar 

  • Zamaraev KI and Parmon VN (1980) Potential methods and perspectives of solar energy conversion via photocatalytic processes. Rev Sci Eng 22: 261–324

    PubMed  CAS  Google Scholar 

  • Zein S, Kulik LV, Yano J, Kern J, Pushkar Y, Zouni A, Yachandra VK, Lubitz W, Neese F and Messinger J (2008) Focusing the view on nature’s water-splitting catalyst. Phil Trans R Soc B 363: 1167–1177

    PubMed  CAS  Google Scholar 

  • Zinth W and Kaiser W (1993) Time-resolved spectroscopy of the primary electron transfer in reaction centers of Rhodobacter sphaeroides and Rhodopseudomonas viridis. In: Deisenhofer J and Norris JR (eds) The Photosynthetic Reaction Center, Vol II, pp 71–88. Academic Press, San Diego

    Google Scholar 

  • Zouni A (2008) In: Renger G (ed) Primary Processes of Photosynthesis: Basic Principles and Apparatus, Part II Reaction Centers/Photosystems, Electron Transport Chains, Photophosphorylation and Evolution, pp 193–236. Royal Society Chemistry, Cambridge

    Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauß N, Saenger W and Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8  Å resolution. Nature 409: 739–743

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I am very grateful to J. Eaton-Rye for critical reading of the manuscript and competent help in editing. Likewise, many thanks to J. Kern for ­providing Fig. 17.2 and together with J. Messinger for fruitful discussions, J.-R. Shen for providing Fig. 17.6, P. Kühn for the electronic version of Figs. 17.417.6, 17.9, J. Pieper for Fig. 17.10 and S. Renger for Figs. 17.1, 17.3, 17.7 and 17.8. I also thank S. Nothing for competent typing of the manuscript. The financial support by Deutsche Forschungsgemeinschaft (Sfb 429, TP A1) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Renger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Renger, G. (2012). Photosynthetic Water Splitting: Apparatus and Mechanism. In: Eaton-Rye, J., Tripathy, B., Sharkey, T. (eds) Photosynthesis. Advances in Photosynthesis and Respiration, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1579-0_17

Download citation

Publish with us

Policies and ethics