Advertisement

The Photosynthetic World

  • Martin F. Hohmann-Marriott
  • Robert E. Blankenship
Chapter
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 34)

Summary

Photosynthesis, the conversion of sunlight into energy that is available to sustain cellular metabolism, is accomplished by a diverse group of organisms. The present photosynthetic diversity has been shaped over billions of years through the interactions of the genetic makeup and metabolic capabilities of each organism with its environment. Some photosynthetic bacteria found today can live in anaerobic conditions as must have been the case with the first photosynthetic organisms found on the primordial Earth. The oxygen of our present atmosphere was generated by ancient cyanobacteria. Cyanobacteria were incorporated into non-photosynthetic organisms in a process called endosymbiosis, giving rise to all the photosynthetic eukaryotes. Competition for light led to the development of a multitude of pigments that together span the entire solar spectrum. These pigments are arranged in special light-harvesting antenna systems that have evolved to efficiently channel excited-state energy to the reaction centers. In reaction centers, electrons are stripped away from donor molecules. This charge separation event, and successive electron transfer reactions, are catalyzed by multisubunit membrane-embedded protein complexes that are connected together via mobile electron carriers. The electron transfer reactions are ultimately used to convert inorganic carbon into organic carbon compounds. Most ecosystems rely on consuming photosynthesis-derived organic molecules and photosynthesis-derived oxygen to sustain life.

Keywords

Reaction Center Antenna System Crassulacean Acid Metabolism Purple Bacterium Oxygenic Photosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations:

BChl

– Bacteriochlorophyll;

C3

– The pathway where CO2 is fixed to ribulose 1,5 bisphosphate to produce a three-carbon sugar;

C4

– The pathway where CO2 is fixed to phosphoenolpyruvate to produce oxaloacetate;

CAM

– Crassulacean acid metabolism;

Chl

– Chlorophyll;

FAP

– Filamentous anoxygenic phototrophs;

FeS

– Iron-sulfur;

FMO

– Fenna-Matthews-Olson;

LHCI

– Light-harvesting complex I of oxygenic phototrophs;

LHCII

– Light-harvesting complex II of oxygenic phototrophs;

LHI

– Light-harvesting complex I of purple bacteria and filamentous anoxygenic phototrophs;

LHII

– Light-harvesting complex II of purple bacteria and filamentous anoxygenic phototrophs;

PBP

– Phycobilisome proteins of cyanobacteria and red algae;

Pcb

Prochlorococcus chlorophyll-binding protein;

PS I

– Photosytem I;

PS II

– Photosystem II;

Q

– Quinone

Notes

Acknowledgements

REB is grateful for continuing research support from National Science Foundation (USA), Department of Energy (USA) and the National Aeronautics and Space Administration (USA). MFH-M acknowledges support through the National Research Council Postdoctoral Associateship Program (USA), the Foundation for Research, Science & Technology Postdoctoral Fellowship program (NZ) and the Marsden Fund (NZ).

References

  1. Adachi K, Oiwa K, Nishizaka T, Furuike S, Noji H, Itoh H, Yoshida M and Kinosita K Jr (2007) Coupling of rotation and catalysis in F1-ATPase revealed by single-molecule imaging and manipulation. Cell 130: 309–321.PubMedGoogle Scholar
  2. Allen JF (2003) Why chloroplasts and mitochondria contain genomes? Comp Funct Genom 4: 31–36Google Scholar
  3. Allen JF (2004) Cytochrome b 6 f: structure for signalling and vectorial metabolism. Trends Plant Sci 9: 130–137PubMedGoogle Scholar
  4. Allen JF (2005) A redox switch hypothesis for the origin of two light reactions in photosynthesis. FEBS Lett 579: 963–968PubMedGoogle Scholar
  5. Allen JF and Martin W (2007) Evolutionary biology: out of thin air. Nature 445: 610–612PubMedGoogle Scholar
  6. Archibald JM (2007) Nucleomorph genomes: Structure, function, origin and evolution. Bioessays 29: 392–402PubMedGoogle Scholar
  7. Archibald JM and Keeling (2002). Recycled plastids: a green movement in eukaryotic evolution. Trends Genet 18: 577–584PubMedGoogle Scholar
  8. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306: 79–86PubMedGoogle Scholar
  9. Baird AH, Bhagooli R, Ralph PJ and Takahashi S (2008) Coral bleaching: the role of the host. Trends Ecol Evol 24: 16–20PubMedGoogle Scholar
  10. Barz WP, Vermeglio A, Francia F, Venturoli G, Melandri BA and Oesterhelt D (1995) Role of the PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 2. PufX is required for the efficient ubiquinone/ubiquinol exchange between the reaction center QB site and the cytochrome bc 1 complex. Biochemistry 34: 15248–15258PubMedGoogle Scholar
  11. Beatty JT, Overmann J, Lince MT, Manske AK, Lang AS, Blankenship RE, Van Dover CL, Martinson TA, and Plumley FG (2005) An obligately photosynthetic bacterial anaerobe from a deepsea hydrothermal vent. Proc Natl Acad Sci USA 102: 9306–9310PubMedGoogle Scholar
  12. Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN and DeLong EF (2000) Bacterial rhodopsin: Evidence for a new type of phototrophy in the sea. Science 289: 1902–1906PubMedGoogle Scholar
  13. Bekker A, Holland HD, Wang PL, Rumble D 3rd, Stein HJ, Hannah JL, Coetzee LL and Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427: 117–120PubMedGoogle Scholar
  14. Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant photosystem I. Nature: 426: 630–635PubMedGoogle Scholar
  15. Berg IA, Kockelkorn D, Buckel W and Fuchs G (2007) A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318: 1782–1786PubMedGoogle Scholar
  16. Bhattacharya D and Medlin L (1995) The phylogeny of plastids: a review based on comparisons of small-subunit ribosomal RNA coding regions. J Phycol 31: 489–498Google Scholar
  17. Bhattacharya D, Yoon HS and Hackett JD (2004) Photosynthetic eukaryotes unite: endosymbiosis connects the dots. Bioessays 26: 50–60PubMedGoogle Scholar
  18. Bibby TS, Nield J and Barber J (2001) Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412: 743–745PubMedGoogle Scholar
  19. Björn LO and Govindjee (2009) The evolution of photosynthesis and chloroplasts. Curr Sci 96: 1466–1474Google Scholar
  20. Black CC and Osmond CB (2003) Crassulacean acid metabolism photosynthesis: working the night shift’. Photosynth Res 76: 329–341PubMedGoogle Scholar
  21. Blair JE, Shah P and Hedges SB (2005) Evolutionary sequence analysis of complete eukaryote genomes. BMC Bioinformatics 6: 53–56PubMedGoogle Scholar
  22. Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 51: 91–111Google Scholar
  23. Blankenship RE (2002) Molecular Mechanisms of Photo­synthesis, Blackwell, LondonGoogle Scholar
  24. Blankenship RE and Matsuura K (2003) Antenna complexes from green photosynthetic bacteria. In: Green BR and Parson WW (eds) Light Harvesting Antennas in Photosynthesis, Advances in Photosynthesis and Respiration, Vol 13, pp 195–217. Kluwer Academic Publishing, DordrechtGoogle Scholar
  25. Blankenship RE, Miller M and Olson JM (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, Advances in Photosynthesis, Vol 2, pp 399–435. Kluwer Academic Publishing, DordrechtGoogle Scholar
  26. Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel K-P, Pistorius EK and Kruip J (2001) A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 412: 745–748PubMedGoogle Scholar
  27. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret JP, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJJf, Jenkins B, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kroger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jezequel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Secq M-PO-L, Napoli C, Obornik M, Parker MS, Petit J-L, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van De Peer Y and Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456: 239–244PubMedGoogle Scholar
  28. Briggs LM, Pecoraro VL and McIntosh L (1990) Copper-induced expression, cloning, and regulatory studies of the plastocyanin gene from the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 15: 633–642PubMedGoogle Scholar
  29. Bryant DA, Garcia Costas AM, Maresca JA, Gomez Maqueo Chew A, Klatt CG, Bateson MM, Tallon LJ, Hostetler J, Nelson WC, Heidelberg JF and Ward DM (2007) Candidatus Chloracidobacterium thermophilum: An aerobic phototrophic acidobacterium. Science 317: 523–526PubMedGoogle Scholar
  30. Buchanan BB and Arnon DI (1990) A reverse Krebs cycle in photosynthesis: consensus at last. Photosynth Res 24: 47–53PubMedGoogle Scholar
  31. Bullerjahn GS and Post AF (1993) The prochlorophytes: are they more than just chlorophyll a/b-containing cyanobacteria? Crit Rev Microbiol 19: 43–59PubMedGoogle Scholar
  32. Burger G, Saint-Louis D, Gray MW and Lang BF (1999) Complete sequence of the mitochondrial DNA of the red alga Porphyra purpurea. Cyanobacterial introns and shared ancestry of red and green algae. Plant Cell 11: 1675–1694PubMedGoogle Scholar
  33. Burger-Wiersma T, Veenhuis M, Korthals HJ, Van de Wiel CCM and Mur LR (1986) A new prokaryote containing chlorophylls a and b. Nature 320: 262–264Google Scholar
  34. Calvin M and Benson AA (1948) The path of carbon in photosynthesis. Science 107: 476-480PubMedGoogle Scholar
  35. Cardona T, Sedoud A, Cox N and Rutherford AW (2011) Charge separation in photosystem II: A comparative and evolutionary overview. Biochim Biophys Acta, doi: 10.1016/j.bbabio.2011.07.012Google Scholar
  36. Cavalier-Smith T (2006) Origin of mitochondria by intracellular enslavement of a photosynthetic purple bacterium. Proc Royal Soc B 273: 1943–1952Google Scholar
  37. Chapman DJ (1966) The pigments of the symbiotic algae (cyanomes) of Cyanophora paradoxa and Glaucocystis ostochinearum and two Rhodophyceae, Porphyridium aerugineum and Asterocytis ramosa. Arch Mikrobiol 55: 17–25Google Scholar
  38. Chen M, Telfer A, Lin S, Pascal A, Larkum AW, Barber J and Blankenship RE (2005) The nature of the photosystem II reaction centre in the chlorophyll d-containing prokar­yote, Acaryochloris marina. Photochem Photobiol Sci 4:1060–1064PubMedGoogle Scholar
  39. Chen M, Zhang Y and Blankenship RE (2008) Nomenclature for membrane-bound light-harvesting complexes of cyanobacteria. Photosynth Res 95: 147–54PubMedGoogle Scholar
  40. Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB and Welschmeyer NA (1988) A novel free-living Prochlorophyte abundant in the oceanic euphotic zone. Nature 334: 340–343Google Scholar
  41. Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS, Desantis TZ, Gihring TM, Lapidus A, Lin LH, Lowry SR, Moser DP, Richardson PM, Southam G, Wanger G, Pratt LM, Andersen GL, Hazen TC, Brockman FJ, Arkin AP and Onstott TC (2008) Environmental genomics reveals a single-species ecosystem deep within Earth. Science 322: 275–278PubMedGoogle Scholar
  42. Cogdell RJ, Gardiner AT, Roszak AW, Law CJ, Southall J and Isaacs NW (2004) Rings, ellipses and horseshoes: how purple bacteria harvest solar energy. Photosynth Res 81: 207–214PubMedGoogle Scholar
  43. Crofts AR (2004) Proton-coupled electron transfer at the Q0-site of the bc 1 complex controls the rate of ubihydroquinone oxidation. Biochim Biophys Acta 1655: 77–92PubMedGoogle Scholar
  44. Cushman JC (2001) Crassulacean acid metabolism. A plastic photosynthetic adaptation to arid environments. Plant Physiol 127: 1439–1448PubMedGoogle Scholar
  45. Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1984) X-ray structure analysis of a membrane protein complex. Electron density map at 3  Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180: 385–398PubMedGoogle Scholar
  46. Derelle E, Ferraz C, Rombauts S, Rouze P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynie S, Cooke R, Saeys Y, Wuyts J, Jabbari K, Bowler C, Panaud O, Piegu B, Ball SG, Ral J-P, Bouget F-Y, Piganeau G, De Baets B, Picard A, Delseny M, Demaille J, Van De Peer Y and Moreau H (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA 103: 11647–11652PubMedGoogle Scholar
  47. Dolganov NA, Bhaya D and Grossman AR (1995) Cyanobacterial protein with similarity to the chlorophyll a/b-binding proteins of higher plants: Evolution and regulation. Proc Natl Acad Sci USA 92: 636–640PubMedGoogle Scholar
  48. Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT, Wu X, Reith M, Cavalier-Smith T and Maier UG (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410: 1091–1096PubMedGoogle Scholar
  49. Eaton-Rye JJ and Putnam-Evans C (2005) The CP47 and CP43 core antenna components. In: Wydrzynski TJ and Satoh K (eds) Photosystem II: The Light-Driven Water:Plastoquinone Oxidoreductase, Advances in Photosyn­thesis and Respiration, Vol 22, pp 45–70. Springer, DordrechtGoogle Scholar
  50. Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, Dodson RJ, Deboy R, Gwinn ML, Nelson WC, Haft DH, Hickey EK, Peterson JD, Durkin AS, Kolonay JL, Yang F, Holt I, Umayam LA, Mason T, Brenner M, Shea TP, Parksey D, Nierman WC, Feldblyum TV, Hansen CL, Craven MB, Radune D, Vamathevan J, Khouri H, White O, Gruber TM, Ketchum KA, Venter JC, Tettelin H, Bryant DA and Fraser CM (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci USA 99: 9509–9514PubMedGoogle Scholar
  51. Eisenreich W, Strauss G, Werz U, Fuchs G and Bacher A (1993) Retrobiosynthetic analysis of carbon fixation in the phototrophic eubacterium Chloroflexus aurantiacus. Eur J Biochem 215: 619–32PubMedGoogle Scholar
  52. Evans MC, Buchanan BB and Arnon DI (1966) A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci USA 55: 928–34PubMedGoogle Scholar
  53. Evrard JL, Johnson C, Janssen I, Löffelhardt W, Weil JH and Kuntz M (1990) The cyanelle genome of Cyanophora paradoxa, unlike the chloroplast genome, codes for the ribosomal L3 protein. Nucleic Acids Res 18: 1115–1119PubMedGoogle Scholar
  54. Fairclough WV, Forsyth A, Evans MCW, Rigby SEJ, Purton S and Heathcote P (2003) Bidirectional electron transfer in photosystem I: electron transfer on the PsaA side is not essential for phototrophic growth in Chlamydomonas. Biochim Biophys Acta 1606: 43–55PubMedGoogle Scholar
  55. Falkowski PG and Raven JA (2007) Aquatic Photosynthesis, 2nd edition, Princeton University Press, PrincetonGoogle Scholar
  56. Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56: 340–364PubMedGoogle Scholar
  57. Fenna RE and Matthews BW (1975) Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola. Nature 258: 573–577Google Scholar
  58. Field CB, Behrenfeld MJ, Randerson JT and Falkowski PG (1998) Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281: 237–240PubMedGoogle Scholar
  59. Frigaard N-U, Martinez A, Mincer TJ and DeLong EF (2006) Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature: 439: 847–850PubMedGoogle Scholar
  60. Funk C and Vermaas WFJ (1999) Expression of cyanobacterial genes coding for single-helix polypeptides resembling regions of light-harvesting proteins from higher plants. Biochemistry 38: 9397–9404PubMedGoogle Scholar
  61. Gantt E (1996) Pigment protein complexes and the concept of the photosynthetic unit: chlorophyll complexes and phycobilisomes. Photosynth Res 48: 47–53Google Scholar
  62. Gantt E, Edwards MR and Provasoli L (1971) Chloroplast structure of the Cryptophyceae. Evidence for phycobiliproteins within intrathylakoidal spaces. J Cell Biol 48: 280–290PubMedGoogle Scholar
  63. Garczarek L, Poupon A and Partensky F (2003) Origin and evolution of transmembrane Chl-binding proteins: hydrophobic cluster analysis suggests a common one-helix ancestor for prokaryotic (Pcb) and eukaryotic (LHC) antenna protein superfamilies. FEMS Microbiol Lett 222: 59–68PubMedGoogle Scholar
  64. Gest H (1994) Discovery of the heliobacteria. Photosynth Res 41: 17–21Google Scholar
  65. Gest H (2002) History of the word photosynthesis and evolution of its definition. Photosynth Res 73: 7–10PubMedGoogle Scholar
  66. Gest H and Favinger JL (1983) Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a “new” form of bacteriochlorophyll. Arch Microbiol 136: 11–16Google Scholar
  67. Gillot MA and Gibbs SP (1980) The cryptomonad nucleomorph: its ultrastructure and evolutionary significance. Phycology 16: 558–568Google Scholar
  68. Golbeck JH (ed) (2006) Photosystem I: The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase, Advances in Photosynthesis and Respiration, Vol 24. Springer, DordrechtGoogle Scholar
  69. Gómez-Consarnau L, Gonzalez JM, Coll-Lladó M, Gourdon P, Pascher T, Neutze R, Pedrós-Alió C and Pinhassi J (2007) Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445: 210–213PubMedGoogle Scholar
  70. Govindjee (1999) On the requirement of minimum number of four versus eight quanta of light for the evolution of one molecule of oxygen in photosynthesis: A historical note. Photosynth Res 59: 249–254Google Scholar
  71. Green BJ, Li W-Y, Manhart JR, Fox TC, Summer EJ, Kennedy RA, Pierce SK and Rumpho ME (2000) Mollusc-algal chloroplast endosymbiosis. Photosynthesis, thylakoid protein maintenance, and chloroplast gene expression continue for many months in the absence of the algal nucleus. Plant Physiol 124: 331–342PubMedGoogle Scholar
  72. Green BR (2001) Was “molecular opportunism” a factorin the evolution of different photosynthetic light-harvesting pigment systems? Proc Natl Acad Sci USA 98: 2119–2121PubMedGoogle Scholar
  73. Green BR (2003) The evolution of light-harvesting antennas. In: Green BR and Parson WW (eds) Light-harvesting Antennas in Photosynthesis, Advances in Photosynthesis and Respiration, Vol 13, pp 129–168. Kluwer Academic Publishers, DordrechtGoogle Scholar
  74. Green BR and Durnford D (1996) Chlorophyll-carotenoid proteins in oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47: 685–714PubMedGoogle Scholar
  75. Green BR, Anderson JM and Parson WW (2003) Photosynthetic membranes and their light harvesting antennas. In: Green BR and Parson WW (eds) Light Harvesting Antennas in Photosynthesis, Advances in Photosynthesis and Respiration, Vol 13, pp 1–28. Kluwer Academic Publishers, DordrechtGoogle Scholar
  76. Guergova-Kuras M, Boudreaux B, Joliot A, Joliot P and Redding K (2001) Evidence for two active branches for electron transfer in photosystem I. Proc Natl Acad Sci USA 98: 4437–4442PubMedGoogle Scholar
  77. Hackett JD, Anderson DM, Erdner DL and Bhattacharya D (2004) Dinoflagellates: A remarkable evolutionary expe­riment. Am J Bot 91: 1523–1534PubMedGoogle Scholar
  78. Hager-Braun C, Jarosch U, Hauska G, Nitschke W and Riedel A (1997) EPR studies of the terminal electron acceptors of the green sulfur bacterial reaction center. Revisited. Photosynth Res 51: 127–36Google Scholar
  79. Hagopian JC, Reis M, Kitajima JP, Bhattacharya D and De Oliveira MC (2004) Comparative analysis of the complete plastid genome sequence of the red alga Gracilaria tenuistipitata var. liui provides insights into the evolution of rhodoplasts and their relationship to other plastids. J Mol Evol 59: 464–477PubMedGoogle Scholar
  80. Hannaert V, Saavedra E, Duffieux F, Szikora JP, Rigden DJ, Michels PA and Opperdoes FR (2003) Plant-like traits associated with metabolism of Trypanosoma parasites. Proc Natl Acad Sci USA 100: 1067–1071PubMedGoogle Scholar
  81. Harris EH (ed) (1989) The Chlamydomonas Sourcebook. A Comprehensive Guide to Biology and Laboratory Use. Academic Press, San DiegoGoogle Scholar
  82. Haselkorn R, Lapidus A, Kogan Y, Vlcek C, Paces J, Paces V, Ulbrich P, Pecenkova T, Rebrekov D, Milgram A, Mazur M, Cox R, Kyrpides N, Ivanova N, Kapatral V, Los T, Lykidis A, Mikhailova N, Reznik G, Vasieva O and Fonstein M (2001) The Rhodobacter capsulatus genome. Photosynth Res 70: 43–45PubMedGoogle Scholar
  83. Hatch MD (1987) C4 photosynthesis – a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim Biophys Acta 895: 81–106Google Scholar
  84. Hauska G, Schoedl T, Remigy H and Tsiotis G (2001) The reaction center of green sulfur bacteria. Biochim Biophys Acta 1507: 260–277PubMedGoogle Scholar
  85. Heddad M and Adamska I (2002) The evolution of light stress proteins in photosynthetic organisms. Comp Funct Genomics 3: 504–510PubMedGoogle Scholar
  86. Hess WR, Partensky F, Van Der Staay GWM, Garcia-Fernandez JM, Borner T and Vaulot D (1996) Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote. Proc Natl Acad Sci USA 93: 11126–11130PubMedGoogle Scholar
  87. Hess WR, Rocap G, Ting CS, Larimer F, Stilwagen S, Lamerdin J and Chisholm SW (2001) The photosynthetic apparatus of Prochlorococcus: Insights through comparative genomics. Photosynth Res 70: 53–71PubMedGoogle Scholar
  88. Heyne B (1815) On the deoxidation of the leaves of Coltyledon calycina. Trans Linn Soc Lond 11: 213–215Google Scholar
  89. Hiller RG, Anderson JM and Larkum AWD (1991) The chlorophyll-protein complexes of algae. In: Scheer H (ed) Chlorophylls, pp 529–547. CRC Press, Baton RougeGoogle Scholar
  90. Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W and Diederichs K. (1996) Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Science 272: 1788–1791PubMedGoogle Scholar
  91. Hohmann-Marriott MF and Blankenship RE (2008) Anoxygenic type I photosystems and evolution of photosynthetic reaction centers. In: Fromme P (ed) Photosynthetic Protein Complexes: A Structural Approach, pp 295–324 Wiley-VCH, HobokenGoogle Scholar
  92. Hohmann-Marriott MF and Blankenship RE (2011) Evolution of photosynthesis. Annu Rev Plant Biol 62: 515–548Google Scholar
  93. Howe CJ, Nisbet RER and Barbrook AC (2008) The remarkable chloroplast genome of dinoflagellates. J Exp Bot 59: 1035–1045PubMedGoogle Scholar
  94. Hunter CN, Daldal F, Thurnauer MC and Beatty JT (eds) (2008) The Purple Phototrophic Bacteria, Advances in Photosynthesis and Respiration, Vol 28, Springer, DordrechtGoogle Scholar
  95. Inaba T and Schnell DJ (2008) Protein trafficking to plastids: one theme, many variations. Biochem J 413: 15–28PubMedGoogle Scholar
  96. Iwasaki H and Kondo T (2004) Circadian timing mechanism in the prokaryotic clock system of cyanobacteria. J Biol Rhythms 19: 436–444PubMedGoogle Scholar
  97. Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, Hintz M, Türbachova I, Eberl M, Zeidler J, Lichtenthaler HK, Soldati D and Beck E (1999) Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285: 1573–1576PubMedGoogle Scholar
  98. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5  Å resolution. Nature 411: 909–917PubMedGoogle Scholar
  99. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A and Nakazaki N (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3: 109–136PubMedGoogle Scholar
  100. Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakazaki N, Shimpo S, Sugimoto M, Takazawa M, Yamada M, Yasuda M, and Tabata S (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8: 205–213PubMedGoogle Scholar
  101. Kjaer B, Frigaard NU, Yang F, Zybailov B, Miller M, Golbeck JH and Scheller HV (1998) Menaquinone-7 in the reaction center complex of the green sulfur bacterium Chlorobium vibrioforme functions as the electron acceptor A1. Biochemistry 37: 3237–3242PubMedGoogle Scholar
  102. Kleinherenbrink FAM, Ikegami I, Hiraishi A, Otte SCM and Amesz J (1993) Extraction of menaquinone does not change electron transport considerably. Biochim Biophys Acta 1142: 69–73Google Scholar
  103. Knoll AH (2003) The geological consequences of evolution. Geobiology 1: 3–14Google Scholar
  104. Kott P, Parry DL and Cox GC. (1984) Prokaryotic symbionts with a range of ascidian hosts. Bull Mar Sci 34: 308–312Google Scholar
  105. Koziol AG, Borza T, Ishida K-I, Keeling P, Lee RW and Durnford DG (2007) Tracing the evolution of the light-harvesting antennae in chlorophyll a/b-containing organisms. Plant Physiol 143: 1802–1816PubMedGoogle Scholar
  106. Krajcovic J, Ebringer L, Polónyi J (1989) Quinolones and coumarins eliminate chloroplasts from Euglena gracilis. Antimicrob Agents Chemother 33: 1883–1889PubMedGoogle Scholar
  107. Larkum T (1996) How dinoflagellates make light work with peridinin. Trends Plant Sci 1: 247–248Google Scholar
  108. Larkum AWD, Douglas SE and Raven JA (2003) Photo­syn­thesis in Algae, Advances in Photosynthesis and Respira­tion, Vol. 14, Kluwer Academic Publishers, DordrechtGoogle Scholar
  109. Larkum AWD, Lockhart PJ and Howe CJ (2007) Shopping for plastids. Trends Plant Sci 12: 189–195PubMedGoogle Scholar
  110. La Roche J, Van der Staay GW, Partensky F, Ducret A, Aebersold R, Li R, Golden SS, Hiller RG, Wrench PM, Larkum AWD and Green BR (1996) Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. Proc Natl Acad Sci USA 93: 15244–15248PubMedGoogle Scholar
  111. Lawlor DW (2000), Photosynthesis, 3rd edition, Springer, New YorkGoogle Scholar
  112. Lewin RA (1976) Prochlorophyta as a proposed new division of algae. Nature 261: 697–698PubMedGoogle Scholar
  113. Lewin RA (2002) Prochlorophyta – a matter of class distinctions. Photosynth Res 73: 59–61PubMedGoogle Scholar
  114. Lewin RA and Cheng L (1975) Associations of microscopic algae with didemnid ascidians. Phycologia 14: 149–152Google Scholar
  115. Li S, Nosenko T, Hackett JD and Bhattacharya D (2006) Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the Chromalveolates. Mol Biol Evol 23: 663–674PubMedGoogle Scholar
  116. MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124: 311–334PubMedGoogle Scholar
  117. Mackey SR and Golden SS (2007) Winding up the cyanobacterial circadian clock. Trends Microbiol 15: 381–388PubMedGoogle Scholar
  118. Margulis L (1970) Origin of Eukaryotic Cells. Yale University Press, New HavenGoogle Scholar
  119. Martin W and Kowallik KV (1999) Annotated English translation of Mereschkowsky’s 1905 paper ‘Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Europ J Phycol 34: 287–295Google Scholar
  120. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M and Penny D (2002) Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid evolutionary analysis of phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99: 12246–12251PubMedGoogle Scholar
  121. Mathis P (1990) Compared structure of plant and bacterial photosynthetic reaction centers. Evolutionary implications. Biochim Biophys Acta 1018: 163–167Google Scholar
  122. McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37: 951–959Google Scholar
  123. McFadden GI and Roos DS (1999) Apicomplexan plastids as drug targets. Trends Microbiol 6: 328–333Google Scholar
  124. McFadden GI and Van Dooren GG (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14: R514–R516PubMedGoogle Scholar
  125. Meeks JC, Elhai J, Theil T, Potts M, Larimer F, Lameridin J, Predki P and Atlas R (2001) An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth Res 70: 85–106PubMedGoogle Scholar
  126. Merchant S and Bogorad L (1987) Metal ion regulated gene expression: use of a plastocyanin-less mutant of Chlamydomonas reinhardtii to study the Cu(II)-dependent expression of cytochrome c-552. EMBO J 6: 2531–2535PubMedGoogle Scholar
  127. Merchant S, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu L-H, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Grimwood J, Schmutz J, Lucas S, Chlamydomonas Community Annotation Team, JGI Annotation Team, Grigoriev IV, Rokhsar DS and Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318: 245–250Google Scholar
  128. Mereschkowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25: 593–604Google Scholar
  129. Meyer A (1883) Über Krystalloide der Trophoplasten and über die Chromoplasten der Angiospermen. Bot Zeit 39: 841–846, 857–864Google Scholar
  130. Minoda A, Sakagami R, Yagisawa F, Kuroiwa T and Tanaka K (2004) Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 45: 667–671PubMedGoogle Scholar
  131. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191: 144–148PubMedGoogle Scholar
  132. Mitchell P (1970) Aspects of the chemiosmotic hypothesis. Biochem J 116: 5P–6PPubMedGoogle Scholar
  133. Miyagishima S-Y, Nishida K and Kuroiwa T (2003) An evolutionary puzzle: chloroplast and mitochondrial division rings. Trends Plant Sci: 8: 432–438PubMedGoogle Scholar
  134. Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M and Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383: 402Google Scholar
  135. Montaño GA, Bowen BP, LaBelle JT, Woodbury NW, Pizziconi VB and Blankenship RE (2003) Characterization of Chlorobium tepidum chlorosomes: A calculation of bacteriochlorophyll c per chlorosome and oligomer modeling. Biophys J 85: 2560–2565PubMedGoogle Scholar
  136. Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K and Bhattacharya D (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324: 1724–1726PubMedGoogle Scholar
  137. Muhiuddin IP, Heathcote P, Carter S, Purton S, Rigby SEJ and Evans MCW (2001) Evidence from timeww resolved studies of the P700+/A1 radical pair for photosynthetic electron transfer on both the PsaA and PsaB branches of the Photosystem I reaction centre. FEBS Lett 503: 56–60PubMedGoogle Scholar
  138. Mullineaux CW (2005) Function and evolution of grana. Trends Plant Sci 10: 521–525PubMedGoogle Scholar
  139. Mullineaux CW (2008) Phycobilisome-reaction centre interaction in cyanobacteria. Photosynth Res 95: 175–182PubMedGoogle Scholar
  140. Nagel G, Szellas T, Kateriya S, Adeishvili N, Hegemann P and Bamberg E (2005) Channel rhodopsins: directly light-gated cation channels. Biochem Soc Trans 33: 863–866PubMedGoogle Scholar
  141. Oh-Oka H (2007) Type 1 reaction center of photosynthetic heliobacteria. Photochem Photobiol 83: 177–186PubMedGoogle Scholar
  142. Olson JM (1970) Evolution of photosynthesis. Science 168: 438–446PubMedGoogle Scholar
  143. Olson JM (2004) The FMO protein. Photosynth Res 80: 181–187PubMedGoogle Scholar
  144. Olson JM and Pierson BK (1987a) Evolution of reaction centers in photosynthetic prokaryotes. Ann Rev Cytol 108: 209–248Google Scholar
  145. Olson JM and Pierson BK (1987b) Origin and evolution of photosynthetic reaction centers. Orig Life 17: 419–430Google Scholar
  146. Ormerod, JG, Kimble LK, Nesbakken T, Torgersen, YA, Woese CR and Madigan MT (1996) Heliophilum fasciatum gen. nov. sp. nov. and Heliobacterium gestii sp. nov.: endospore-forming heliobacteria from rice field soils. Arch Microbiol 165: 226–234PubMedGoogle Scholar
  147. Overmann J and Tuschak C (1997) Phylogeny and molecular fingerprinting of green sulfur bacteria. Arch Microbiol 167: 302–309PubMedGoogle Scholar
  148. Peters, AF, Marie D, Scornet D, Kloareg B, Cock JM (2004) Proposal of Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) as a model organism for brown algal genetics and genomics. J Phycol 40: 1079–1088Google Scholar
  149. Pfanzagl B, Allmaier G, Schmid ER, De Pedro MA, Löffelhardt W (1996) N-acetylputrescine as a characteristic constituent of cyanelle peptidoglycan in Glaucocystophyte algae. J Bacteriol 178: 6994–6997PubMedGoogle Scholar
  150. Pierce SK, Biron RW and Rumpho ME (1996) Endosymbiotic chloroplasts in molluscan cells contain proteins synthesized after plastid capture. J Exp Biol 199: 2323–2330PubMedGoogle Scholar
  151. Puerta MVS, Bachvaroff TR and Delwiche CF (2005) The complete plastid genome sequence of the haptophyte Emiliania huxleyi: A comparison to other plastid genomes. DNA Res 12: 151–156.Google Scholar
  152. Ragsdale SW (1991) Enzymology of the acetyl-CoA pathway of autotrophic CO2 fixation. Crit Rev Biochem Mol Biol 26: 261–300PubMedGoogle Scholar
  153. Rai AN, Söderbäck E and Bergman B (2000) Cyanobacterium–plant symbioses. New Phytol 147: 449–481Google Scholar
  154. Rambold, G, Friedl T and Beck A (1998) Photobionts in lichens: possible indicators of phylogenetic relationships? Bryologist 101: 392–397Google Scholar
  155. Rasmussen U and Nilsson M (2002) Cyanobacterial diversity and specificity in plant symbiosis. In: Rai AN, Bergman B and Rasmussen U (eds) Cyanobacteria in Symbiosis, pp 313–328. Kluwer Academic Publishers, DordrechtGoogle Scholar
  156. Reith ME and Munholland J (1995) Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. Plant Mol Biol 13: 333–335Google Scholar
  157. Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin-I T, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS and Boore JL. (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319: 64–69PubMedGoogle Scholar
  158. Robbens S, Derelle E, Ferraz C, Wuyts J, Moreau H and Van De Peer Y (2007) The complete chloroplast and mitochondrial DNA sequence of Ostreococcus tauri: Organelle genomes of the smallest eukaryote are examples of compaction. Mol Biol Evol, 24: 956–968PubMedGoogle Scholar
  159. Roberts DL, Zhao S, Doukov T and Ragsdale SW (1994) The reductive acetyl coenzyme A pathway: Sequence and heterologous expression of active methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase from Clostridium thermoaceticum. J Bacteriol 176: 6127–6130PubMedGoogle Scholar
  160. Rochaix JD, Goldschmidt-Clermont M, Merchant S (eds) (1998) The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas, Advances in Photosynthesis, Vol 7. Kluwer Academic Publishers, DordrechtGoogle Scholar
  161. Rumpho ME, Summer EJ and Manhart JR (2000) Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis. Plant Physiol 123: 29–38PubMedGoogle Scholar
  162. Rumpho ME, Dastoor FP, Manhart JR and Lee J (2006) The kleptoplast. In: Wise RR and Hoober JK (eds) The Structure and Function of Plastids, Advances in Photosynthesis and Respiration, Vol 23, pp 451–473. Springer, DordrechtGoogle Scholar
  163. Sadekar S, Raymond J and Blankenship RE (2006) Conservation of distantly related membrane proteins: Photosynthetic reaction centers share a common structural core. Mol Biol Evol 23: 2001–2007PubMedGoogle Scholar
  164. Sanchez Puerta MV, Bachvaroff TR and Delwiche CF (2004) The complete mitochondrial genome sequence of the haptophyte Emiliania huxleyi and its relation to heterokonts. DNA Res 11: 1–10PubMedGoogle Scholar
  165. Sattley WM, Madigan MT, Swingley WD, Chen M, Cheung PC, Clocksin KM, Conrad AL, Dejesa LC, Honchak BM, Jung DO, Karbach LE, Kurdoglu A, Lahiri S, Mastrian SD, Page LE, Taylor HL, Wang ZT, Raymond J, Blankenship RE and Touchman JW (2008) The genome of Heliobacterium modesticaldum, a phototrophic representative of the Firmicutes containing the simplest photosynthetic apparatus. J Bacteriol 190: 4687–4696PubMedGoogle Scholar
  166. Schimper AFW (1883) Über die Entwicklung der Chlorophyllkörner and Farbkörper. Bot Zeit 41: 105–114, 121–131, 137–146, 153–162Google Scholar
  167. Schliep M, Crossett B, Willows RD and Chen M (2010) 18O labeling of chlorophyll d in Acaryochloris marina reveals that chlorophyll a and molecular oxygen are precursors. J Biol Chem 285: 28450–28456Google Scholar
  168. Schmidt VB, Kies L and Weber A (1979) Die Pigmente von Cyanophora paradoxa, Gloechaete wittrockiana und Glaucocystis nostochinearum. Arch Protistenk 122: 164–170Google Scholar
  169. Senior AE, Nadanaciva S and Weber J (2002) The molecular mechanism of ATP synthesis by F1F0-ATP synthase. Biochim Biophys Acta 1553: 188–211PubMedGoogle Scholar
  170. Sinha RP and Häder D-P (1996) Photobiology and ecophysiology of rice field cyanobacteria. Photochem Photobiol 64: 887–896Google Scholar
  171. Six C, Worden AZ, Rodríguez F, Moreau H and Partensky F (2005) New insights into the nature and phylogeny of Prasinophyte antenna proteins: Ostreococcus tauri, a case study. Mol Biol Evol 22: 2217–2230PubMedGoogle Scholar
  172. Steiner JM, and Löffelhardt W (2002) Protein import into cyanelles. Trends Plant Sci 7: 72–77PubMedGoogle Scholar
  173. Stoppani AOM, Fuller RC and Calvin M (1955) Carbon dioxide fixation by Rhodospeudomonas capsulatus. J Bacteriol 69: 491–501PubMedGoogle Scholar
  174. Stout SC, Clark GB, Archer-Evans S and Roux SJ (2003) Rapid and efficient suppression of gene expression in a single-cell model system, Ceratopteris richardii. Plant Physiol 131: 1165–1168PubMedGoogle Scholar
  175. Stransky H and Hager A (1970) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen V. Einzelne Vertreter der Cryptophyceae, Euglenophyceae, Bacillariophyceae, Chrysophyceae und Phaeophyceae. Arch Microbiol 73: 77–89Google Scholar
  176. Strauss G and Fuchs G (1993) Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. Eur J Biochem 215: 633–643PubMedGoogle Scholar
  177. Strepp R, Scholz S, Kruse S, Speth V and Reski R (1998) Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci USA 95: 4368–4373PubMedGoogle Scholar
  178. Swingley WD, Sadekar S, Mastrian SD, Matthies HJ, Hao J, Ramos H, Acharya CR, Conrad AL, Taylor HL, Dejesa LC, Shah MK, O’huallachain ME, Lince MT, Blankenship RE, Beatty JT and Touchman JW (2007) The complete genome sequence of Roseobacter denitrificans reveals a mixotrophic rather than photosynthetic metabolism. J Bacteriol 89: 683–690Google Scholar
  179. Swingley WD, Blankenship RE and Raymond J (2008) Integrating Markov clustering and molecular phylogenetics to reconstruct the cyanobacterial species tree from conserved protein families. Mol Biol Evol 25: 643–654PubMedGoogle Scholar
  180. Tabita FR (1988) Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol Mol Biol Rev 52: 155–189Google Scholar
  181. Thauer RK (2007) A fifth pathway of carbon fixation. Science 318: 1732–1733PubMedGoogle Scholar
  182. Thornton LE, Keren N, Ohad I and Pakrasi HB (2005) Physcomitrella patens and Ceratodon purpureus, mosses as model organisms in photosynthesis studies. Photosynth Res 83: 87–96PubMedGoogle Scholar
  183. Tomo T, Okubo T, Akimoto S, Yokono M, Miyashita H, Tsuchiya T, Noguchi T and Mimuro M (2007) Identification of the special pair of photosystem II in a chlorophyll d-dominated cyanobacterium. Proc Natl Acad Sci USA 104: 7283–7288PubMedGoogle Scholar
  184. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y and Rokhsar D (2006) The genome of black cottonwood Populus trichocarpa (Torr. & Gray). Science 313: 1596–1604PubMedGoogle Scholar
  185. Umena Y, Kawakami K, Shen J-R and Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473: 55–60Google Scholar
  186. Urbach E, Robertson DL and Chishholm SW (1992) Multiple evolutionary origins of Prochlorophytes within the cyanobacterial radiation. Nature 355: 267–270PubMedGoogle Scholar
  187. Usher KM, Bergman B and Raven JA (2007) Exploring cyanobacterial mutualisms. Annu Rev Ecol Evol and Syst 38: 255–273Google Scholar
  188. Waller RF and McFadden GI (2005) The apicoplast: A review of the derived plastid of apicomplexan parasites. Curr Issues Mol Biol 7: 57–80PubMedGoogle Scholar
  189. Wedemayer GJ, Kidd DG and Glazer AN (1996) Crypto­monad biliproteins: Bilin types and locations. Photosynth Res 48: 163–170Google Scholar
  190. West HH (1979) Chloroplast symbiosis and development of the ascoglossan opisthobranch Elysia chlorotica. PhD thesis, Northeastern University, BostonGoogle Scholar
  191. Whitton BA and Potts M (eds) (2000) The Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer Academic Press, DordrechtGoogle Scholar
  192. Xu H, Vavilin D, Funk C and Vermaas W (2002) Small CAB-like proteins regulating tetrapyrrole biosynthesis. Plant Mol Biol 49: 149–160PubMedGoogle Scholar
  193. Xu W, Chitnis PR, Valieva A, Van der Est A, Pushkar YN, Krzystyniak M, Teutloff C, Zech SG, Bittl R, Stehlik D, Zybailov B, Shen G and Golbeck JH (2003a) Electron transfer in cyanobacterial photosystem I: I. Physiological and spectroscopic characterization of site-directed mutants in a putative electron transfer pathway from A0 through A1 to FX. J Biol Chem 278: 27864–278675PubMedGoogle Scholar
  194. Xu W, Chitnis PR, Valieva A, Van der Est A, Brettel K, Guergova-Kuras M, Pushkar Y N, Zech SG, Stehlik D, Shen G, Zybailov B and Golbeck JH (2003b) Electron transfer in cyanobacterial Photosystem I. II. Determination of forward electron transfer rates of site-directed mutants in a putative electron transfer pathway from A0 through A1 to FX. J Biol Chem 27: 27876–27887Google Scholar
  195. Yanyushin MF, del Rosario MC, Brune DC and Blankenship RE (2005) New class of bacterial membrane oxidoreductases. Biochemistry 44: 10037–10045PubMedGoogle Scholar
  196. Yoon HS, Hackett JD, Ciniglia C, Pinto C and Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21: 809–818PubMedGoogle Scholar
  197. Yoon HS, Hackett JD, Van Dolah FM, Nosenko T, Lidie KL and Bhattacharya D (2005) Tertiary endosymbiosis driven genome evolution in dinoflagellate algae. Mol Biol Evol 22: 1299–1308PubMedGoogle Scholar
  198. Zhang Z, Green BR and Cavalier-Smith T (1999) Single gene circles in dinoflagellate chloroplast genomes. Nature 400: 155–159PubMedGoogle Scholar
  199. Zhao F and Qin S (2006) Evolutionary analysis of phycobiliproteins: Implications for their structural and functional relationships. J Mol Evol 63: 330–340PubMedGoogle Scholar
  200. Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W and Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409: 739–743PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Martin F. Hohmann-Marriott
    • 1
  • Robert E. Blankenship
    • 2
  1. 1.Department of BiochemistryUniversity of OtagoDunedinNew Zealand
  2. 2.Departments of Biology and ChemistryWashington UniversitySt. LouisUSA

Personalised recommendations