Advertisement

Radiofrequency Energy Harvesting

  • María Teresa Penella-López
  • Manuel Gasulla-Forner

Abstract

Chapter 6 is dedicated to remote RF powering of autonomous sensors and in particular to RF energy harvesters. The RF energy transducer (antenna), matching networks, and ensuing rectifiers are presented. Based on circuits proposed in the literature, extensive simulations for several incoming power levels at the antenna (from −10 dBm to 10 dBm) were performed. We determine that circuit efficiency slightly depends on the number of stages used for the voltage rectifier multiplier, but varies widely with the received power (ranging, when using a shunt-inductor matching network, from 10% at −10 dBm to 80% at 10 dBm). Additionally, as the power level increases, so does the output voltage corresponding to maximum efficiency. For low power levels, LC matching networks provided higher efficiencies than shunt-inductor networks, at the cost of greater sensitivity to output voltage variations and to the value of the inductor. Experimental tests were performed with a folded dipole antenna (about 300 Ω), shunt inductor matching, a three-stage rectifier, and a storage unit composed of two series connected NiMH batteries.

Keywords

Output Voltage Storage Unit Boost Converter Match Network Matching Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K. Finkenzeller, RFID Handbook Fundamentals and Applications in Contactless Smart Cards and Identification, 2nd edn. RFID Handbook. Fundamentals and Applications in Contactless Smart Cards and Identification (John Wiley and Sons, West Sussex, 2003) Google Scholar
  2. 2.
    J.-P. Curty, M. Declercq, C. Dehollain, N. Joehl, Design and Optimization of Passive UHF RFID Systems, 1st edn. (Springer Science+Business Media, New York, 2007) Google Scholar
  3. 3.
    M. Minhong, M.H. Mickle, C. Capelli, H. Swift, RF energy harvesting with multiple antennas in the same space. IEEE Antennas and Propagation Magazine 47, 100–106 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    M. Ali, G. Yang, R. Dougal, A new circularly polarized rectenna for wireless power transmission and data communication. IEEE Antennas and Wireless Propagation Letters 4, 205–208 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    J.O. McSpadden, T. Yoo, K. Chang, Theoretical and experimental investigation of a rectenna element for microwave power transmission. IEEE Trans. Microwave Theory and Techniques 40, 2359–2366 (1992) ADSCrossRefGoogle Scholar
  6. 6.
    S.A. Bhalerao, A.V. Chaudhary, R.B. Deshmukh, R.M. Patrikar, Powering wireless sensor nodes using ambient RF energy, in Proceedings of IEEE International Conference on Systems, Man and Cybernetics, SMC (2006), pp. 2695–2700 Google Scholar
  7. 7.
    D.M. Dobkin, The RF in RFID. Passive UHF RFID in Practice (Elsevier, Burlington, 2008) Google Scholar
  8. 8.
    T. Le, K. Mayaram, T. Fiez, Efficient far-field radio frequency energy harvesting for passively powered sensor networks. IEEE Journal of Solid-State Circuits 43, 1287–1302 (2008) CrossRefGoogle Scholar
  9. 9.
    J.A. Hagerty, F.B. Helmbrecht, W.H. McCalpin, R. Zane, Z.B. Popovic, Recycling ambient microwave energy with broad-band rectenna arrays. IEEE Trans. on Microwave Theory and Techniques 52, 1014–1024 (2004) ADSCrossRefGoogle Scholar
  10. 10.
    W.C. Brown, An experimental low power density rectenna, in Proceedings of IEEE MTT-S International Microwave Symposium Digest, vol. 1 (1991), pp. 197–200 Google Scholar
  11. 11.
    R.E. Barnett, L. Jin, S. Lazar, A RF to DC voltage conversion model for multi-stage rectifiers in UHF RFID transponders. IEEE Journal of Solid-State Circuits 44, 354–370 (2009) CrossRefGoogle Scholar
  12. 12.
    J.P. Curty, N. Joehl, C. Dehollain, M.J. Declercq, Remotely powered addressable UHF RFID integrated system. IEEE Journal of Solid-State Circuits 40, 2193–2202 (2005) CrossRefGoogle Scholar
  13. 13.
    F. de Dieuleveult, Electrónica aplicada a las altas frecuencias (Paraninfo, 2001) Google Scholar
  14. 14.
    S. Young-Ho, C. Kai, A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission. IEEE Trans. Microwave Theory and Techniques 50, 1784–1789 (2002) ADSCrossRefGoogle Scholar
  15. 15.
    M. Ghovanloo, K. Najafi, Fully integrated wideband high-current rectifiers for inductively powered devices. IEEE Journal of Solid-State Circuits 39, 1976–1984 (2004) CrossRefGoogle Scholar
  16. 16.
    J.P. Curty, N. Joehl, F. Krummenacher, C. Dehollain, M.J. Declercq, A model for u-power rectifier analysis and design. IEEE Trans. Circuits and Systems I: Regular Papers 52, 2771–2779 (2005) CrossRefGoogle Scholar
  17. 17.
    U. Karthaus, M. Fischer, Fully integrated passive UHF RFID transponder IC with 16.7 uW minimum RF input power. IEEE Journal of Solid-State Circuits 38, 1602–1608 (2003) CrossRefGoogle Scholar
  18. 18.
    T. Umeda, H. Yoshida, S. Sekine, Y. Fujita, T. Suzuki, S. Otaka, A 950-MHz rectifier circuit for sensor network tags with 10-m distance. IEEE Journal of Solid-State Circuits 41, 35–41 (2006) CrossRefGoogle Scholar
  19. 19.
    P. Spies, F. Förster, L. Mateu, M. Pollak, Power management in energy harvesting power supplies. Presented at 1st International Workshop on Power Supply on Chip (PwrSoC), Cork, Ireland, September 22. Google Scholar
  20. 20.
    T. Paing, J. Shin, R. Zane, Z. Popovic, Resistor emulation approach to low-power rf energy harvesting. IEEE Trans. Power Electronics 23, 1494–1501 (2008) CrossRefGoogle Scholar
  21. 21.
    J.R. Smith, A.P. Sample, P.S. Powledge, S. Roy, A. Mamishev, A wirelessly-powered platform for sensing and computation. Available on: http://web.media.mit.edu/~jrs/WISP-Ubicomp-06.pdf. Accessed June 2007
  22. 22.
    F. Kocer, M.P. Flynn, An RF-powered, wireless CMOS temperature sensor. IEEE Sensors Journal 6, 557–564 (2006) CrossRefGoogle Scholar
  23. 23.
    T. Paing, J. Morroni, A. Dolgov, J. Shin, J. Brannan, R. Zane, Z. Popovic, Wirelessly-powered wireless sensor platform, in Proceedings of European Microwave Conference (2007), pp. 999–1002 Google Scholar
  24. 24.
    P. Singh, W. Xiquan, R. Lafollette, D. Reisner, RF-recharged microbattery for powering miniature sensors, in Proceedings of IEEE Sensors, vol. 1 (2004), pp. 349–352 Google Scholar
  25. 25.
    P. Mars, C. Greene, RF energy harvesting and battery-free wireless sensors. Available on: http://www.cap-xx.com/resources/docs/CAP-XX&Powercast_RF_Energy.pdf. Accessed January 2010
  26. 26.
    C.A. Balanis, Antenna Theory: Analysis and Design, 3rd edn. (2005) Google Scholar
  27. 27.
    R.W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, 2nd edn. (Kluwer Academic, Norwell, 2001) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • María Teresa Penella-López
    • 1
  • Manuel Gasulla-Forner
    • 2
  1. 1.Electrical EngineeringUniv. Politecnica de Catalunya (UPC)HuescaSpain
  2. 2.Electronic EngineeringUniv. Politecnica de Catalunya (UPC)BarcelonaSpain

Personalised recommendations