Synthetic Biology and Perspectives

  • Toru Yao
  • Frederick B. Marcus


This chapter describes synthetic biology and associated technologies in the context of establishing perspectives for future systems approaches to cancer. We focus on long term advances made possible by new technologies that operate at the molecular, cellular, and microorganism levels. World trends in synthetic biology are described, plus examples of a highly integrated program in Japan. Detailed possibilities for application to cancer research and clinical applications are explored. These promising technological and research developments establish a basis for translation to clinical applications, allowing us to summarize and evaluate future perspectives and their infrastructure requirements elaborated in workshops and related publications, including those organized by US/NCI-EU-Germany-Japan, BBSRC/UK, and JST/Japan collaborations.


System Biology Synthetic Biology Development Development Data Data Research Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abeloff et al. (2008) Abeloff’s clinical oncology, 4th edn. Elsevier, Churchill Livingston, LondonGoogle Scholar
  2. Abersold R et al (2009) How systems biology can advance cancer research. Mol Oncol 3(1):9–17CrossRefGoogle Scholar
  3. Altinok A, Lévi F, Goldbeter A (2007a) A cell cycle automaton model for probing circadian patterns of anticancer drug delivery. Adv Drug Deliv Rev 59:1036–1053CrossRefGoogle Scholar
  4. Altinok A, Lévi F, Goldbeter A (2007b) Optimizing temporal patterns of anticancer drug delivery by simulations of a cell cycle automaton. In: Bertau M, Mosekilde E, Westerhoff HV (eds) Biosimulation in drug development. Wiley, Weinheim, pp 275–297Google Scholar
  5. Altinok A, Lévi F, Goldbeter A (2009) Identifying mechanisms of chronotolerance and chronoefficacy for the anticancer drugs 5-fluorouracil and oxaliplatin by computational modeling. Eur J Pharmaceut Sci 36:20–38CrossRefGoogle Scholar
  6. Anderson JC, Clarke EJ, Arkin AP, Voigt CA (2006) Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol 355(4):619–627PubMedCrossRefGoogle Scholar
  7. Anderson JC, Voigt CA, Arkin AP (2007) Environmental signal integration by a modular AND gate. Mol Syst Biol 3:133PubMedCrossRefGoogle Scholar
  8. APO-SYS (2009) Apoptosis systems biology applied to cancer and AIDS. Accessed 11 Mar 2009Google Scholar
  9. Auffray C, Chen Z, Hood L (2009) Systems medicine: the future of medical genomics and healthcare. Genome Med 1:2PubMedCrossRefGoogle Scholar
  10. Ayukawa S, Kiga D et al (2007) SYANAC: SYnthetic biological Automaton for Noughts And Crosses. IET Synthetic Biol 1(1–2):64–67CrossRefGoogle Scholar
  11. Babu MM (2008) Computational approaches to study transcriptional regulation. Biochem Soc Trans 36(Pt 4):758–765 ReviewPubMedCrossRefGoogle Scholar
  12. Batt G, Yordanov B, Weiss R, Belta C (2007) Robustness analysis and tuning of synthetic gene networks. Bioinformatics 23:2415–2422PubMedCrossRefGoogle Scholar
  13. Bloom JD, Arnold FH (2009) In the light of directed evolution: pathways of adaptive protein evolution. Proc Natl Acad Sci U S A 106(Suppl 1):9995–10000 Epub 2009PubMedCrossRefGoogle Scholar
  14. Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26(9):483–489. Epub 2008 Jul 31. ReviewPubMedCrossRefGoogle Scholar
  15. Cao L, Yu W, Wu Y, Yu L (2009) The evolution, complex structures and function of septin proteins. Biochem Soc Trans 37(Pt 4):717–721Google Scholar
  16. caBIG (2009) Cancer Biomedical Information Grid (caBIG™) of the NCI (2009) Accessed 12 Jan 2009
  17. Cancer Research UK (2006) “Virtual cancer patient” predicts how breast cancer patients respond to treatment. Scholar
  18. Cassman M, Brunak S (2007) The US-EC Workshop on Infrastructure needs for Systems Biology. and Accessed 1 Dec 2007
  19. Cell Factory (2009) Cell factory fifth framework programme project resutls.
  20. Chames P, Baty D (2009) Bispecific antibodies for cancer therapy. Curr Opin Drug Discov Devel 12(2):276–283. ReviewPubMedGoogle Scholar
  21. Chan DA, Giaccia AJ (2008) Targeting cancer cells by synthetic lethality: autophagy and VHL in cancer therapeutics. Cell Cycle 7(19):2987–2990. Epub 2008 Oct 12. ReviewPubMedCrossRefGoogle Scholar
  22. CVIT (2009) The Center for the Development of a Virtual Tumour. Accessed 12 Jan 2009Google Scholar
  23. De Duve Institute (2010) Accessed 20 July 2010Google Scholar
  24. FCSB (2008) FCSB first future challenge for systems biology. AccessedGoogle Scholar
  25. Friedman M, Ståhl S (2009) Engineered affinity proteins for tumour-targeting applications. Biotechnol Appl Biochem 53(Pt 1):1–29. ReviewPubMedCrossRefGoogle Scholar
  26. Friedland AE, Lu TK, Wang X, Shi D, Church GM, Collins J (2009) Synthetic gene networks that count. Science 324(5931):1199–1202PubMedCrossRefGoogle Scholar
  27. Gatenby R(2009) A change of strategy in the war on cancer. Nature, Vol. 459, pp. 508–9.28 May 2009Google Scholar
  28. GEN2PHEN (2009) Genotype to phenotype databases. http://www.gen2phen.orgGoogle Scholar
  29. Gibson D, Venter C, Hutchison C, Smith H et al (2008) Complete chemical synthesis, assembly and cloning of a mycoplasma genitalium genome. Science 319:1215PubMedCrossRefGoogle Scholar
  30. Goler J, Peccoud J et al (2008) Genetic design: rising above the sequence. Trends Biotechnol 26:538–544PubMedCrossRefGoogle Scholar
  31. Harris A (2005) REporting recommendations for tumour MARKer prognostic studies (REMARK) Editorial. Br J Cancer 93:385–386. doi:10.1038/sj.bjc.6602730 Published online 16 Aug 2005Google Scholar
  32. Haseloff J, Ajioka J (2009) Synthetic biology: history, challenges and prospects. J R Soc Interface 6(Suppl 4):S389–S391. Epub 2009 Jun 3. PubMed PMID:19493895PubMedCrossRefGoogle Scholar
  33. Heath JR, Davis ME, Hood L (2009) Nanomedicine targets cancer. Sci Am 300(2):44–51PubMedCrossRefGoogle Scholar
  34. Heng HH, Bremer SW, Stevens JB, Ye KJ, Liu G, Ye CJ (2009) Genetic and epigenetic heterogeneity in cancer: a genome-centric perspective. J Cell Physiol 220(3):538–547. ReviewPubMedCrossRefGoogle Scholar
  35. ICGC (2009) International cancer genome consortium. AccessedGoogle Scholar
  36. Ioerger TR, Sacchettini JC (2007) Structural genomics approach to drug discovery for Mycobacterium tuberculosis. Curr Opin Microbiol 12(3):318–325. Epub 2009 May 28. ReviewCrossRefGoogle Scholar
  37. Itaya M (1995) Toward a bacterial genome technology: integration of the Escherichia coli prophage lambda genome into the Bacillus subtilis 168 chromosome. Mol Gen Genet 248:9–16PubMedCrossRefGoogle Scholar
  38. Itaya M, Fujita K, Kuroki A, Tsuge K (2008) Bottom-up genome assembly using the Bacillus subtilis genome vector. Nat Methods 5(1):41–43PubMedCrossRefGoogle Scholar
  39. Jewett MC, Church GM (2011) In vitro integration of ribosomal RNA synthesis, ribosome self-assembly and protein synthesis. Nature for publicationGoogle Scholar
  40. Jones DS, Silverman AP, Cochran JR (2008) Developing therapeutic proteins by engineering ligand-receptor interactions. Trends Biotechnol 26(9):498–505. Epub 2008 Jul 31. ReviewPubMedCrossRefGoogle Scholar
  41. Jorgensen TJ (2009) Enhancing radiosensitivity: targeting the DNA repair pathways. Cancer Biol Ther 8(8):665–670. Epub 2009 Apr 27. ReviewPubMedCrossRefGoogle Scholar
  42. Keasling J, Chou H (2008) Metabolic engineering delivers next-generation biofuels. Nat Biotechnol 26:298–299. doi:10.1038/nbt0308–298PubMedCrossRefGoogle Scholar
  43. Kitano H (2004) Opinion: cancer as a robust system: implications for anticancer therapy. Nat Rev Cancer 4:227–235. doi:10.1038/nrc1300PubMedCrossRefGoogle Scholar
  44. Knight TF (2003) Idempotent vector design for standard assembly of BioBricks. Tech. rep, MITGoogle Scholar
  45. Kolar P, Francis E (2009) Virtual tissues. Report on the EC-US Workshop on virtual tissues. Accessed 20 Dec 2009
  46. Lartigue C, Hutchison C, Smith H, Venter C et al (2009) Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 325:1693–1696PubMedCrossRefGoogle Scholar
  47. Le Meur N, Gentleman R (2008) Modeling synthetic lethality. Genome Biol 9(9):R135. Epub 2008 Sept 12CrossRefGoogle Scholar
  48. Lévi F, Schibler U (2007) Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol 47:593–628PubMedCrossRefGoogle Scholar
  49. Maherali N, Hochedlinger K (2008) Induced pluripotency of mouse and human somatic cells. Cold Spring Harb Symp Quant Biol 73:157–162. Epub 2008 Nov 6. ReviewPubMedCrossRefGoogle Scholar
  50. Makarow M et al (2008) Advancing systems biology for medical applications. Accessed
  51. Marcus FB (2008) Bioinformatics and systems biology: collaborative research and resources. Springer, BerlinCrossRefGoogle Scholar
  52. Martin V, Keasling J et al (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802. Published online: 1 June 2003. doi:10.1038/nbt833PubMedCrossRefGoogle Scholar
  53. Michielin O (2007) Application of molecular modelling to new therapeutic cancer approaches. Bull Cancer 94(9):763–768. ReviewPubMedGoogle Scholar
  54. Mizoguchi H, Mori H, Fujio T (2007) Escherichia coli minimum genome factory. Biotechnol Appl Biochem 46:157–167PubMedCrossRefGoogle Scholar
  55. Mizuarai S, Irie H, Schmatz DM, Kotani H (2008) Integrated genomic and pharmacological approaches to identify synthetic lethal genes as cancer therapeutic targets. Curr Mol Med 8(8):774–783. ReviewPubMedCrossRefGoogle Scholar
  56. Moss AJ, Sharma S, Brindle NP (2009) Rational design and protein engineering of growth factors for regenerative medicine and tissue engineering. Biochem Soc Trans. 2009 Aug 37 Pt4 717–21Google Scholar
  57. NEST (2005) NEST high-level expert group—synthetic biology—applying engineering to biology. European Commission ReportGoogle Scholar
  58. Nirmalanandhan VS, Sittampalam GS (2009) Stem cells in drug discovery, tissue engineering, and regenerative medicine: emerging opportunities and challenges. J Biomol Screen. 2009 Aug;14(7):755–68. Epub 2009 Aug 12Google Scholar
  59. Nishikawa S, Goldstein RA, Nierras CR (2008) The promise of human induced pluripotent stem cells for research and therapy. Nat Rev Mol Cell Biol 9(9):725–729. ReviewPubMedCrossRefGoogle Scholar
  60. Papait R, Monti E, Bonapace IM (2009) Novel approaches on epigenetics. Curr Opin Drug Discov Devel 12(2):264–275. ReviewPubMedGoogle Scholar
  61. Papapostolou D, Howorka S (2009) Engineering and exploiting protein assemblies in synthetic biology. Mol Biosyst 5(7):723–732. Epub 2009 May 7PubMedCrossRefGoogle Scholar
  62. Parliamentary Office (2008) Synthetic biology: postnote by parliamentary office of science and technology. Number 298. Scholar
  63. Peccoud J et al (2008) Targeted development of registries of biological parts. PLoS One 3(7):e2671CrossRefGoogle Scholar
  64. Platis D, Labrou NE (2008) Chemical and genetic engineering strategies to improve the potency of pharmaceutical proteins and enzymes. Curr Med Chem 15(19):1940–1955. ReviewPubMedCrossRefGoogle Scholar
  65. Prabhakar S, Noonan JP, Paabo S, Rubin EM (2006) Accelerated evolution of conserved noncoding sequences in humans. Science 314:786PubMedCrossRefGoogle Scholar
  66. Prather KL, Martin CH (2008) De novo biosynthetic pathways: rational design of microbial chemical factories. Curr Opin Biotechnol 19(5):468–474. Epub 2008 Sep 5. ReviewPubMedCrossRefGoogle Scholar
  67. Presta LG (2008) Molecular engineering and design of therapeutic antibodies. Curr Opin Immunol 20(4):460–470. ReviewPubMedCrossRefGoogle Scholar
  68. Purnick P, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10:410–422PubMedCrossRefGoogle Scholar
  69. Quaglia F (2008) Bioinspired tissue engineering: the great promise of protein delivery technologies. Int J Pharm 364(2):281–297. Epub 2008 Apr 26PubMedCrossRefGoogle Scholar
  70. Ringborg U (2008) The stockholm declaration. Mol Oncol 2:10–11PubMedCrossRefGoogle Scholar
  71. Robins H, Krasnitz M, Levine AJ (2008) The computational detection of functional nucleotide sequence motifs in the coding regions of organisms. Exp Biol Med (Maywood) 233(6):665–673. Epub 2008 Apr 11. ReviewCrossRefGoogle Scholar
  72. Rowe A (2009) Experimental drug makes the immune system revolt against cancer.
  73. Saito H, Inoue T (2007) RNA and RNP as new molecular parts in synthetic biology. J Biotechnol 132:1–7PubMedCrossRefGoogle Scholar
  74. Saito H, Inoue T (2009) Synthetic biology with RNA motifs. Int J Biochem Cell Biol 41:398–404PubMedCrossRefGoogle Scholar
  75. Saito H, Kashida S, Inoue T, Shiba K (2007) The role of peptide motifs in the evolution of a protein network. Nucleic Acids Res 35:6357–6366PubMedCrossRefGoogle Scholar
  76. Saito H, Minamisawa T, Yamori T, Shiba K (2008) A motif-programmed artificial protein induces apoptosis in several cancer cells by disrupting Mitochondria. Cancer Sci 99:398–406PubMedCrossRefGoogle Scholar
  77. Schmidt M, Böttcher D, Bornscheuer UT (2009) Protein engineering of carboxyl esterases by rational design and directed evolution. Protein Pept Lett Lett. 2009;16(10):1162–71Google Scholar
  78. Schwille P, Diez S (2009) Synthetic biology of minimal systems. Crit Rev Biochem Mol Biol 44(4):223–242PubMedCrossRefGoogle Scholar
  79. Semenza GL (2008) Hypoxia-inducible factor 1 and cancer pathogenesis. IUBMB Life 60(9):591–597. ReviewPubMedCrossRefGoogle Scholar
  80. Serrano L (2007) Editorial; synthetic biology: promises and challenges. Mol Syst Biol 3(158):1–5Google Scholar
  81. Shetty R, Endy D, Knight T (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2:5. doi:10.1186/1754-1611-2-5PubMedCrossRefGoogle Scholar
  82. Shimono K, Yokoyama S et al (2009) Production of functional bacteriorhodopsin by an E. Coli cell-free synthesis system. Protein Sci 18:2160–2171PubMedCrossRefGoogle Scholar
  83. Shoyele SA (2008) Engineering protein particles for pulmonary drug delivery. Methods Mol Biol 437:149–160. ReviewPubMedCrossRefGoogle Scholar
  84. Smailus DE, Warren RL, Holt RA (2007) Constructing large DNA segments by iterative clone recombination. Syst Synth Biol 1(3):139–144. Epub 2008 Jan 24PubMedCrossRefGoogle Scholar
  85. Stolnik S, Shakesheff K (2009) Formulations for delivery of therapeutic proteins. Biotechnol Lett 31(1):1–11. Epub 2008 Sep 11. ReviewPubMedCrossRefGoogle Scholar
  86. Stumpp MT, Binz HK, Amstutz P (2008) DARPins: a new generation of protein therapeutics. Drug Discov Today 13(15–16):695–701. Epub 2008 Jul 11. ReviewPubMedCrossRefGoogle Scholar
  87. Sybilla (2010) Sybilla project. Accessed 20 July 2010Google Scholar
  88. Synthetic Biology Working Group Technical Reports (2003) Scholar
  89. SYSBIOMED (2007) Systems biology for medical applications. Accessed 1 Dec 2007Google Scholar
  90. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  91. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human Fibroblasts by defined factors. Cell 131:861–872PubMedCrossRefGoogle Scholar
  92. Yao T (2003) Meeting report –symposium on the elucidation of “Strategy of Life” Kagaku. Science 73:925–927Google Scholar
  93. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920PubMedCrossRefGoogle Scholar
  94. Ulmer KM (1983) Protein engineering. Science 219(4585):666–671PubMedCrossRefGoogle Scholar
  95. Vázquez E, Ferrer-Miralles N, Mangues R, Corchero JL, Schwartz S Jr, Villaverde A (2009) Modular protein engineering in emerging cancer therapies. Curr Pharm Des 15(8):893–916. ReviewPubMedCrossRefGoogle Scholar
  96. Vucic D, Fairbrother WJ (2007) The inhibitor of apoptosis proteins as therapeutic targets in cancer. Clin Cancer Res 13(20):5995–6000. ReviewPubMedCrossRefGoogle Scholar
  97. Wada A (2009) Private communication. Message by AWGoogle Scholar
  98. Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460(7257):894–898. Epub 2009 Jul 26PubMedCrossRefGoogle Scholar
  99. Webb TJ, Bieler JG, Schneck JP, Oelke M (2009) Ex vivo induction and expansion of natural killer T cells by CD1d1-Ig coated artificial antigen presenting cells. J Immunol Methods 346(1–2):38–44. [Epub May 14 2009]PubMedCrossRefGoogle Scholar
  100. Weber W, Fussenegger M (2009) The impact of synthetic biology on drug discovery. Drug Discov Today. 2009 Oct;14(19-20):956–63. Epub 2009 Jul 4Google Scholar
  101. Weinberg RA (2007) The biology of cancer. Garland Science, New YorkGoogle Scholar
  102. Williams BR, Haque SJ (1997) Interacting pathways of interferon signaling. Semin Oncol 24(3 Suppl 9):S9-70–S9-77. ReviewPubMedGoogle Scholar
  103. Wolkenhauer O (2009) Cancer systems biology workshop. Warnemunde, GermanyGoogle Scholar
  104. Wolkenhauer O et al (2009) Sysbiomed report: advancing systems biology for medical applications. IET Syst Biol 3(3):131–136PubMedCrossRefGoogle Scholar
  105. Wu AM, Olafsen T (2008) Antibodies for molecular imaging of cancer. Cancer J 14(3):191–197. ReviewPubMedCrossRefGoogle Scholar
  106. Yang S, Yuan W, Jin T (2009) Formulating protein therapeutics into particulate forms. Expert Opin Drug Deliv. 2009 Oct; 6(10):1123–33Google Scholar
  107. Zhang J, Huang S, Zhang H, Wang H, Guo H, Qian G, Fan X, Lu J, Hoffman AR, Hu JF, Ge S (2009) Targeted knockdown of Bcl2 in tumor cells using a synthetic TRAIL 3’-UTR microRNA. Int J Cancer. 2010 May 1;126(9):2229–39Google Scholar
  108. Zhao R, Daley GQ (2008) From fibroblasts to iPS cells: induced pluripotency by defined factors. J Cell Biochem 105(4):949–955. ReviewPubMedCrossRefGoogle Scholar
  109. Zhou B, Zhang H, Damelin M, Geles K, Grindley J, Dirks P (2009) Tumour-initiating cells: challenges and opportunities foranticancer drug discovery. Nat Rev Drug Discov 8:806–823PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Genomic Sciences Center, RIKENYokohama (Major)Japan
  2. 2.Biomedicinal Information Research CenterAIST (National Institute of Advanced Industrial Science and Technology)TokyoJapan
  3. 3.Computational Biology Research CenterAISTTokyoJapan
  4. 4.Fellow, Center for Research and Development StrategyJST (Japan Science and Technology Agency)TokyoJapan
  5. 5.Visiting Professor, Bioinformatics and Omics MedicineTokyo Medical and Dental UniversityTokyoJapan
  6. 6.Visiting Senior Researcher at SFC LaboratoryKEIO UniversityKanagawaJapan
  7. 7.Scientific Expert, Advanced Therapies and Systems Medicine, Health ResearchEuropean CommissionBrusselsBelgium

Personalised recommendations