Introduction to Systems Approaches to Cancer

  • Frederick B. Marcus
  • Alfredo Cesario


Despite major advances in research into and treatment of cancer, there remain exceptional difficulties arising from the disease’s complexity and variability. These could be eased by integrated systems approaches to biology, bioinformatics and medicine. Such approaches have already proved successful in optimizing cancer-related research and clinical applications, building upon existing practice. In particular, they enhance the quantitative basis of knowledge and decisions; organize information in more accessible and applicable ways; extend understanding of complicated biological interactions; and provide numerical test beds for planning and implementing biomarker and drug development and treatment strategies.


Modelling Modelling Data Data Simulation Simulation Research Research Growth Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abeloff et al (2008) Abeloff’s clinical oncology, 4th edn. Elsevier, Churchill Livingston, LondonGoogle Scholar
  2. Aebersold R, Auffray C, Baney E, Barillot E, Brazma A, Brett C, Brunak S, Butte A, Califano A, Celis J, Cufer T, Ferrell J, Galas D, Gallahan D, Gatenby R, Goldbeter A, Hace N, Henney A, Hood L, Iyengar R, Jackson V, Kallioniemi O, Klingmuller U, Kolar P, Kolch W, Kyriakopoulou C, Laplace F, Lehrach H, Marcus F, Matrisian L, Nolan G, Pelkmans L, Potti A, Sander C, Seljak M, Singer D, Sorger P, Stunnenberg H, Superti-Furga G, Uhlen M, Vidal M, Weinstein J, Wigle D, Williams M, Wolkenhauer O, Zhivotovsky B, Zinovyev A, Zupan B (2009) Report on EU-USA workshop: how systems biology can advance cancer research (27 Oct 2008). Mol Oncol 3(1):9–17PubMedCrossRefGoogle Scholar
  3. Aherne GW, McDonald E, Workman P (2002) Finding the needle in the haystack: why high-throughput screening is good for your health. Breast Cancer Res 4:148–154PubMedCrossRefGoogle Scholar
  4. Anderson JC, Clarke EJ, Arkin AP, Voigt CA (2006) Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol 355(4):619–627PubMedCrossRefGoogle Scholar
  5. Anderson JC, Voigt CA, Arkin AP (2007) Environmental signal integration by a modular AND gate. Mol Syst Biol 3:133PubMedCrossRefGoogle Scholar
  6. ANGIOTARGETING (2010) Tumour angiogenesis research. Accessed 18 Oct 2010
  7. APO-SYS (2010) Apoptosis systems biology applied to cancer and AIDS. Accessed 18 Oct 2010
  8. Arnesen T et al (2008) The protein acetyltransferase ARD1: a novel cancer drug target? Curr Cancer Drug Targets 8(7):545–553Google Scholar
  9. Asset (2011) Analysis and striking the sensitivities of embryonal tumours. Accessed 30 Jan 2011
  10. ATTACK (2010) Adoptive engineered T cell targeting to activate cancer killing. Accessed 18 Oct 2010
  11. Auffray C, Chen Z, Hood L (2009) Systems medicine: the future of medical genomics and healthcare. Genome Med 2009, 1:2. doi:10.1186/gm2Google Scholar
  12. Beckman RA, Loeb LA (2005) Review—genetic instability in cancer: theory and experiment. Semin Cancer Biol 15:423–435PubMedCrossRefGoogle Scholar
  13. BioSapiens (2010) A European virtual institute for genome annotation. Accessed 18 Oct 2010. See also BioSapiens (2005) A European network for integrated genome annotation. Eur J Hum Genet 13:994–997
  14. BioSapiens-WP 109 (2010) BioSapiens work package 109—cancer. Accessed 18 Oct 2010Google Scholar
  15. BioSim (2010) Biosiumulation—a new tool in drug development. Accessed 18 Oct 2010
  16. BRECOSM (2010) Identification of molecular pathways that regulate the organ-specific metastasis of breast cancer.;jsessionid=397ae485b508dd6ec6d1b1106f19?show=Person. Accessed 18 Oct 2010
  17. Byrne HM, Leeuwen IMM van, Owen MR, Alarcon T, Maini PK (2008) Multiscale modelling of solid tumour growth. In: Selected topics in cancer modeling. Genesis, evolution, immune competition, & therapy. Birkhauser, Boston, pp 449–473. ISBN 978-0-8176-4712-4Google Scholar
  18. caBIG (2010) Cancer biomedical information grid (caBIG™) of the NCI (2010) Accessed 18 Oct 2010
  19. Cancer Facts (2010) Cancer facts and figures 2009. Accessed 18 Oct 2010
  20. Cancer Genome Project (2010) The WTSI (2010) Cancer genome project. Accessed 18 Oct 2010
  21. Cancer Research UK (2006) “Virtual cancer patient” predicts how breast cancer patients respond to treatment.
  22. Cancersys (2010) Cancersys project. Accessed 18 Oct 2010
  23. Carden C et al (2009) From darkness to light with biomarkers in early clinical trials of cancer drugs. Clin Pharmacol Ther 85(2):131–133. Issn 0009-9236PubMedCrossRefGoogle Scholar
  24. Cassidy J, Bissett D, Spence RAJ (2002) Oxford handbook of oncology. Oxford University Press, OxfordGoogle Scholar
  25. Cassman M, Brunak S (2007) The US-EC workshop on infrastructure needs for systems biology. Accessed 18 Oct 2010
  26. Cellis J (2008) Editorial. Mol Oncol 2(1):1CrossRefGoogle Scholar
  27. Cell lines (2010) Cell lines from high-risk breast tissue. Accessed 18 Oct 2010
  28. Cesario et al (2004) Non-small cell lung cancer: from cytotoxic systemic chemotherapy to molecularly targeted therapy. Curr Med Chem Anticancer Agents 4(3):231–245PubMedCrossRefGoogle Scholar
  29. Chan JK (2001) The new world health organization classification of lymphomas: the past, the present and the future. Hematol Oncol 19:129–150PubMedCrossRefGoogle Scholar
  30. Chassagnole C et al (2006) Using mammalian cell cycle simulation to interpret differential kinase inhibition in anti-tumour pharmaceutical development. Biosystems 83(2–3):91–97PubMedCrossRefGoogle Scholar
  31. CNIO Training (2010) Spanish national cancer institute. Accessed 18 Oct 2010
  32. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30(7):1073–1081. Epub 2009 May 25PubMedCrossRefGoogle Scholar
  33. COMBIO (2010) An integrative approach to cellular signalling and control processes: bringing computational biology to the bench. Accessed 18 Oct 2010
  34. CORDIS (2010) Community Research and Development Information Service (CORDIS) provides information on all EU-supported R&D activities. Accessed 18 Oct 2010
  35. CORDIS Projects (2010) Cordis project reference systems. Accessed 18 Oct 2010
  36. COSBICS (2010) Computational systems biology of cell signalling. Accessed 18 Oct 2010
  37. CVIT (2010) The center for the development of a virtual tumour. Accessed 18 Oct 2010
  38. Daskalaki A (2009) Handbook of research on systems biology applications in medicine. ISBN: 978-1-60566-076-9. doi: 10.4018/978-1-60566-076-9. IGI Global, Pennsylvania, pp 1–982Google Scholar
  39. De Duve (2009) De Duve Institute.
  40. Deisboeck TS, Stamatakos G (2010) Multiscale cancer modelling. CRC press. ISBN 9781439814406.Google Scholar
  41. Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAPK kinase signalling pathways in cancer. Oncogene 26(22):3279–3290PubMedCrossRefGoogle Scholar
  42. DIAMONDS (2010) Dedicated integration and modelling of novel data and prior knowledge to enable systems biology. Accessed 18 Oct 2010
  43. DNA Repair (2010) DNA damage response and repair mechanisms. Accessed 18 Oct 2010
  44. Druker BJ (2002) ST1571 (Gleevec) as a paradigm for cancer therapy. Trends Mol Med 8(Suppl):S14–S18PubMedCrossRefGoogle Scholar
  45. DTU-CBS Databases (2010) Danish technical university, centre for biological sequence analysis. Accessed 18 Oct 2010
  46. EBI (2010) European bioinformatics institute. Accessed 18 Oct 2010
  47. EMBRACE (2010) A European model for bioinformatics research and community education—bioinformatics grid. Accessed 18 Oct 2010
  48. ENFIN (2010) Enabling systems biology PP6 (2007) project. Accessed 18 Oct 2010
  49. ESBIC-D (2010) European systems biology initiative combating complex diseases. Accessed 18 Oct 2010
  50. Eriguchi M, Levi F, Hisa T,Yanagie H, Nonaka Y, Takeda Y (2003) Chronotherapy for cancer. Biomed Pharmacother 57:92s–95sPubMedCrossRefGoogle Scholar
  51. Faratian D et al (2009). Systems biology reveals new strategies for personalizing cancer medicine and confirms the role of PTEN in resistance to trastuzumab. Cancer Res 69(16):6713–6720. Accessed 18 Oct 2010
  52. FCSB (2008) FCSB 2008 first future challenge for systems biology.
  53. Fisher PB (2007) Cancer genomics and proteomics: methods and protocols. Humana Press, New YorkCrossRefGoogle Scholar
  54. FP7 (2010) EC framework programme for research. Accessed 18 Oct 2010
  55. Fulda S (2009) Apoptosis pathways and their therapeutic exploitation in pancreatic cancer. J Cell Mol Med Jul;13(7):1221–1227. Epub 2009 Mar 27Google Scholar
  56. Gatenby R (2009) A change of strategy in the war on cancer. Nature 459:508–509Google Scholar
  57. GEN2PHEN (2010) Genotype to phenotype databases. Accessed 18 Oct 2010
  58. Godoy P et al (2009) Extracellular matrix modulates sensitivity of hepatocytes to fibroblastoid dedifferentiation and transforming growth factor beta-induced apoptosis. Hepatology 49(6):2031–2043PubMedCrossRefGoogle Scholar
  59. Gogvadze V, Orrenius S, Zhivotovsky B (2009) Mitochondria as targets for chemotherapy. Apoptosis 14(4):624–640PubMedCrossRefGoogle Scholar
  60. Hache H et al (2009) GeNGe: systematic generation of gene regulatory networks. Bioinformatics 25(9):1205–1207PubMedCrossRefGoogle Scholar
  61. Hahn WC, Weinberg RA (2002) Modelling the molecular circuity of cancer. Nat Rev Cancer 2(5):331–341PubMedCrossRefGoogle Scholar
  62. Hainaut P, Wiman KG (eds) (2007) 25 years of p53 research. Springer, DordrechtGoogle Scholar
  63. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70CrossRefGoogle Scholar
  64. Harris AL (2005) Editorial—REporting recommendations for tumour MARKer prognostic studies (REMARK). Br J Cancer 93:385–386. doi:10.1038/sj.bjc.6602730 Published online. Accessed 16 Aug 2005Google Scholar
  65. Heath JR, Davis ME, Hood L (2009) Nanomedicine targets cancer. Sci Am 300(2):44–51PubMedCrossRefGoogle Scholar
  66. Hengstler JG et al (2006) Oncogene-blocking therapies: new insights from conditional mouse tumour models. Curr Cancer Drug Targets 6(7):603–612PubMedCrossRefGoogle Scholar
  67. HepatoSys (2010) German network systems biology hepatocyte programme. Accessed 18 Oct 2010
  68. Hoffmann J et al (2008) Improved cellular pharmacokinetics and pharmacodynamics underlie the wide anticancer activity of sagopilone. Cancer Res 68(13):5301–5308PubMedCrossRefGoogle Scholar
  69. Hornberg JJ et al (2006) Cancer: a systems biology disease. Biosystems 83(2–3):81–90. Accessed 18 Oct 2010Google Scholar
  70. ICBP (2010) Integrative cancer biology programme of the NCI (2010) Accessed 18 Oct 2010
  71. ICGC (2010) International cancer genome consortium. Accessed 18 Oct 2010
  72. ICSB (2010) International conferences on systems biology. Accessed 18 Oct 2010
  73. IMGT® (2010) The international ImMunoGeneTics information system. Accessed 18 Oct 2010
  74. IMMUNOGRID (2010) The European virtual human immune system project. Accessed 18 Oct 2010Google Scholar
  75. Jain KK (2009) Textbook of personalized medicine. Springer, New YorkCrossRefGoogle Scholar
  76. Jemal A (2009) Cancer statistics. CA Cancer J Clin 59:225–249. doi:10.3322/caac.20006PubMedCrossRefGoogle Scholar
  77. Johnson CJ, Zhukovsky N, Cass AE, Nagy JM (2008) Proteomics, nanotechnology and molecular diagnostics. Proteomics 8:715–730PubMedCrossRefGoogle Scholar
  78. Johnston MD, Edwards CM, Bodmer WF, Maini PK, Chapman SJ (2007) Mathematical modelling of cell population dynamics in the colonic crypt and in colorectal cancer. PNAS 104(10):4008–4013. See also Accessed 18 Oct 2010Google Scholar
  79. Khalil IG, Hill C (2005) Systems biology for cancer. Curr Opin Oncol 17(1):44–48. Accessed 18 Oct 2010Google Scholar
  80. Kim D, Rath O, Kolch W, Cho KH (2007) A hidden oncogenic positive feedback loop caused by crosstalk between Wnt and ERK Pathways. Oncogene 26(31):4571–4579PubMedCrossRefGoogle Scholar
  81. Kitano H (2004) Opinion: cancer as a robust system: implications for anticancer therapy. Nat Rev Cancer 4:227–235. doi:10.1038/nrc1300PubMedCrossRefGoogle Scholar
  82. Klingmüller U et al (2006) Primary mouse hepatocytes for systems biology approaches: a standardized in vitro system for modeling of signal transduction pathways. IEE Proc Syst Biol Nov;153(6):433–447.Google Scholar
  83. Klipp E, Liebermeister W, Herwig, WC, Kowald A, Lehrach H, Herwig R (2009) Systems biology—a textbook. Wiley-VCH, WeinheimGoogle Scholar
  84. Knox SS (2010) From ‘omics’ to complex disease: a systems biology approach to gene-environment interactions in cancer. Cancer Cell Int 10:11–11. Accessed 18 Oct 2010Google Scholar
  85. Kreeger PK, Lauffenburger DA (2010) Cancer systems biology: a network modeling perspective. Carcinogenesis Jan;31(1):2–8. Epub 2009 Oct 27Google Scholar
  86. Kriegsheim A, Preisinger C, Kolch W (2008) Mapping of signalling pathways by functional interaction proteomics. Methods Mol Biol 484:177–192CrossRefGoogle Scholar
  87. Krebs HA (1953) 1953 nobel prize in medicine or physiology. Accessed 18 Oct 2010
  88. Kyriakopoulou C (ed) (2009) The book of life. Published European commission. Scholar
  89. Kyriakopoulou C (ed) (2010) Workshop on from systems biology to systems medicine. European Commission, Brussels. Accessed 18 Oct 2010
  90. Lehrach H et al (1990) Hybridization fingerprinting in genome mapping and sequencing. Genome analysis, vol 1: genetic and physical mapping. Cold Spring Harbor Laboratory Press, New York, pp 39–81Google Scholar
  91. Liu ET (2003) Classification of cancers by expression profiling. Curr Opin Genet Dev 13(1):97–103Google Scholar
  92. Lymphangiogenomics (2010) Genome-wide discovery and functional analysis of novel genes in lymphangiogenesis. Accessed 18 Oct 2010
  93. Maini PK, Gatenby RA (2006) Some mathematical modelling challenges and approaches in cancer. In: Nagl S (ed) Cancer bioinformatics: from therapy design to treatment. Wiley, New York, pp 95–107CrossRefGoogle Scholar
  94. Makarow M et al (2008) Advancing systems biology for medical applications. Accessed 18 Oct 2010
  95. Mani K (2010) Systems biology and personalized medicine in cancer. Curr Pharmacogenomics Personalized Med (Formerly Current Pharmacog) 8(1):64–72(9)CrossRefGoogle Scholar
  96. Marcus FB (2008) Bioinformatics and systems biology: collaborative research and resources. Springer, BerlinCrossRefGoogle Scholar
  97. Materi W, Wishart DS (2007) Computational systems biology in cancer: modeling methods and applications. Gene Regul Syst Biol Sep 17;1:91–110Google Scholar
  98. McShane LM et al (2005) REporting recommendations for tumour MARKer prognostic studies (REMARK). Br J Cancer 93:387–391PubMedCrossRefGoogle Scholar
  99. Mismatch2model (2010) Characterization and quantitative modelling of DNA mismatch repair and its role in the maintenance of genomic stability and cancer avoidance. Accessed 18 Oct 2010
  100. MIT-CSB (2010) Computational and systems biology at MIT. Accessed 18 Oct 2010
  101. MIT-Koch (2011) Koch institute for integrative cancer research. MIT. Accessed 5 Jan 2011
  102. MIT-opencourseware (2011) MIT open courseware. Accessed 4 Jan 2011
  103. Modhep (2011) Systems biology of liver cancer: an integrative genomic-epigenomic approach. Accessed 30 Jan 2011Google Scholar
  104. Mukherjee A et al (2005) Virtual cancer patient: simulated biomathematical model for treatment personalisation in metastatic breast cancer (MBC).
  105. Mutp53 (2010) Mutant p53 as a target for cancer treatment. Accessed 18 Oct 2010
  106. Nagl S (ed) (2006) Cancer bioinformatics: from therapy design to treatment. Wiley, ChichesterGoogle Scholar
  107. NCI (2010) National cancer institute of the national institutes of health. Accessed 18 Oct 2010
  108. NCI60 (2010) Discovery services. Accessed 18 Oct 2010
  109. NHGRI (2010) National human genome research institute of the NIH. Accessed 18 Oct 2010
  110. OCISB (2010) Oxford centre for integrative systems biology. Accessed 18 Oct 2010
  111. Optimata (2010) Accessed 18 Oct 2010
  112. Owen MR, Alarcon T, Maini PK, Byrne HM (2009) Angiogenesis and vascular remodelling in normal and cancerous tissues. J Math Biol 58(4–5):689–721PubMedCrossRefGoogle Scholar
  113. Oxford-SB (2010) Oxford systems biology doctoral training centre. Accessed 18 Oct 2010
  114. Paik S et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826PubMedCrossRefGoogle Scholar
  115. Parkinson H, Brazma A et al (2009) ArrayExpress update—from an archive of functional genomics experiments to the atlas of gene expression. Nucleic Acids Res 37(Database issue):D868–D872. Epub 2008 Nov 10PubMedCrossRefGoogle Scholar
  116. PDQ (2010) PDQ-NCI’s comprehensive cancer database. Accessed 18 Oct 2010
  117. Physiomics (2010) Physiomics plc, 2010. Accessed 18 Oct 2010
  118. Physiomics Virtual Tumour (2010) Physiomics virtual tumour. Accessed 18 Oct 2010
  119. Price ND, Foltz G, Madan A, Hood L, Tian Q (2008) Systems biology and cancer stem cells. J Cell Mol Med 12(1):97–110. Accessed 18 Oct 2010Google Scholar
  120. Ptitsyn AA, Wei MM, Thamm DH (2008). Systems biology approach to identification of biomarkers for metastatic progression in cancer. BMC Bioinform [computer file] 9(Suppl 9):S8. Accessed 18 Oct 2010
  121. Reactome (2010) Reactome—a curated knowledgebase of biological pathways. Accessed 18 Oct 2010
  122. Rosenfeld S, Kapetanovic I (2008) Systems biology and cancer prevention: all options on the table. Gene Regul Syst Biol Oct 10;2:307–319.Google Scholar
  123. Rowe A (2009) Experimental drug makes the immune system revolt against cancer.
  124. Sanga S, Sinak J, Frieboes B, Ferrari M, Freuhauf J, Cristini V (2006) Mathematical modeling of cancer progression and response to chemotherapy. Expert Rev. Anticancer Ther 6(10):1361–1376CrossRefGoogle Scholar
  125. Sanger Genetics (2010) Genomics and genetics at the sanger institute. Accessed 18 Oct 2010
  126. Seigneuric R, Riel NAW van, Starmans MHW, Erk A van (2009) Systems biology applied to cancer research. pp 339–353 in Daskalaki (2009)Google Scholar
  127. Sen F, Vega F, Medeiros LJ (2002) Molecular genetic methods in the diagnosis of hematologic neoplasms. Semin Diagn Pathol 19:72–93Google Scholar
  128. Singer S (1999) New diagnostic modalities in soft tissue sarcoma. Semin Surg Oncol 17:11–22.PubMedCrossRefGoogle Scholar
  129. Sybilla (2009) Systems biology of T-cell activation in health and disease.
  130. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182PubMedCrossRefGoogle Scholar
  131. Sysbiomed-cancer (2010) Sysbiomed workshop on systems biology and cancer. Accessed 18 Oct 2010
  132. Syscol (2011) Systems biology of colorectal cancer. Accessed 30 Jan 2011
  133. TCGA (2010) The cancer genome atlas. Accessed 18 Oct 2010
  134. Tomshine JC, Severson SR, Wigle DA et al (2009) Cell proliferation and epidermal growth factor signalling in non-small cell lung adenocarcinoma cell lines are dependent on Rin1. J Biol Chem 284(39):26331–26339. Epub 2009 Jul 1PubMedCrossRefGoogle Scholar
  135. Trireme (2010) Systems-level, multi-layer understanding of cellular responses to ionizing radiation.;jsessionid=2e31223356d266c8188d0e9edbef. Accessed 18 Oct 2010
  136. Tseng GC et al (2009). Investigating multi-cancer biomarkers and their cross-predictability in the expression profiles of multiple cancer types. Biomark Insights 4:57–79PubMedGoogle Scholar
  137. Tumour-Host Genomics (2010) FP6(2010) project on tumour host genomics. Accessed 18 Oct 2010
  138. Ullah M, Wolkenhauer O (2007) Family tree of Markov models in systems biology. IET Syst Biol 1(4):247–254PubMedCrossRefGoogle Scholar
  139. Unicellsys (2010) Eukaryotic unicellular organism biology—systems biology of the control of cell growth and proliferation. Accessed 18 Oct 2010
  140. Vera J et al (2008) A systems biology approach to analyse amplification in the JAK2-STAT5 signalling pathway. BMC Syst Biol 2:38PubMedCrossRefGoogle Scholar
  141. VALAPODYN (2010) Validated predictive dynamic model of complex intracellular pathways related to the cell death and survival. Accessed 1 May 2010
  142. Wang E (2010) Cancer systems biology. Chapman & Hall/CRC Mathematical & Computational Biology, Boca RatonCrossRefGoogle Scholar
  143. Weinberg RA (2007) The biology of cancer. Garland Science, New YorkGoogle Scholar
  144. WTSI (2010) The wellcome trust sanger institute. Accessed 18 Oct 2010
  145. Yao T (2002) Bioinformatics for the genomic sciences and towards systems biology. Japanese activities in the post-genome era. Prog Biophys Mol Biol 80(1–2):23–42PubMedCrossRefGoogle Scholar
  146. Yuille M et al (2008) Biobanking for Europe. Briefings in bioinformatics 9(1):14–24PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Thoracic SurgeryCatholic University of RomeRomeItaly
  2. 2.Advanced Therapies and Systems MedicineHealth Research Directorate, Directorate General for Research, European CommissionBrusselsBelgium

Personalised recommendations