Management of Bemisia tabaci Whiteflies

  • A. Rami Horowitz
  • Yehezkel Antignus
  • Dan Gerling


This review presents and discusses the merits of the methodologies ­available for implementing integrated pest management (IPM) of B. tabaci populations: namely, chemical control with selective insecticides, biological control, crop plant resistance and physical/mechanical methods. Insecticides, by their poisonous nature, are often harmful to natural enemies and therefore, disruptive to overall pest management. However, the more modern materials that are effective for B. tabaci control are relatively specific to the target pests, and therefore are less harmful to natural enemies and the environment; consequently, they are also more suitable for integrative combination with other methods. Natural enemies, by themselves, ­usually do not form a suitable solution of B. tabaci- caused problems. However, their occurrence and use greatly reduces the pest’s populations. Since viral plant diseases transmitted by B. tabaci are not curable, the principal tactics for their ­management should be based on prevention of transmission by physical-mechanical methods and/or on utilization of host-plant resistance. The correct implementation of natural enemies will help to reduce whitefly numbers, which can then be more readily ­managed using cultural and, only if necessary, chemical countermeasures. Thus, adopting IPM will alleviate the numerous concerns that accompany the use of chemicals, including those associated with environmental pollution and the widespread resistance that plagues B. tabaci management.


Natural Enemy Integrate Pest Management Tomato Yellow Leaf Curl Virus Cassava Mosaic Disease African Cassava Mosaic Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Our thanks are due to the numerous persons who assisted us by providing information and helping to construct this chapter: Dr. Jan Van der Blom (Coexphal, Spain), Dr. Karel Bolkmans (Koppert, The Nethrelands), Dr. Paul De Barro (CSIRO, Australia), Dr. Isaac Ishaaya (ARO, Israel), Dr. Minho Lee, (National Academy of Agricultural Science, S. Korea), Prof. Bao-Li Qiu (South China Agricultural University), and to Ms. Nomi Paz (Tel Aviv University, Department of Zoology) for the linguistic assistance.


  1. Agusti N, Pumariño L, Fernandez M, Gabarra R, Alomar O (2009) Molecular markers for dispersal studies: plant DNA detection within omnivorous predators. In: IOBC/WPRS workgroup “Integrated control in protected crops, Mediterranean climate” Chania, pp 313–318Google Scholar
  2. Al-Musa A (1982) Incidence, economic importance and control of tomato yellow leaf curl in Jordan. Plant Dis 66:561–563Google Scholar
  3. Antignus Y (1999) Cultural control of insect-transmitted viruses. In: Gomez IC (ed.) Current trends in epidemiology and virus control in horticultural crops. Fundacion para la Investigacion Agraria en la Provincia de Almeria, Almeria, pp 79–89Google Scholar
  4. Antignus Y (2007) The management of tomato yellow leaf curl virus in greenhouses and the open field, a strategy of manipulation. In: Czosnek H (ed.) Tomato yellow leaf curl virus disease. Springer, Dordrecht, pp 263–278Google Scholar
  5. Antignus Y (2010) Optical manipulations block the spread of Bemisia tabaci in greenhouses and the open field. In: Stansly PA, Naranjo SE (eds.) Bemisia: bionomics and management of a global pest. Springer, Dordrecht, pp 349–356Google Scholar
  6. Antignus Y, Ben-Yakir D (2004) Greenhouse photoselective cladding materials serve as an IPM tool to control the spread of insect pests and their vectored viruses. In: Horowitz AR, Ishaaya I (eds.) Insect Pest Management. Springer, Berlin, pp 319–335Google Scholar
  7. Antignus Y, Mor N, Ben-Joseph R, Lapidot M, Cohen S (1996) UV-absorbing plastic sheets protect crops from insect pests and from virus diseases vectored by insects. Environ Entomol 25:919–924Google Scholar
  8. Antignus Y, Lapidot M, Hadar D, Messika Y, Cohen S (1998) UV absorbing screens serve as optical barriers to protect vegetable crops from virus diseases and insect pests. J Econ Entomol 91:1401–1405Google Scholar
  9. Antignus Y, Nestel D, Cohen S, Lapidot M (2001) Ultraviolet-deficient greenhouse environment affects whitefly attraction and flight behavior. Environ Entomol 30:394–399Google Scholar
  10. Antignus Y, Lachman O, Pearlsman M, Koren A, Matan E, Tregerman M, Ucko O, Messika Y, Omer S, Unis H (2004a) Development of an IPM system to reduce the damage of squash leaf curl begomovirus in zucchini squash crops. In: Abstract compendium, 2nd European whitefly symposium, CavtatGoogle Scholar
  11. Antignus Y, Vunsh R, Lachman O, Pearlsman M, Maslenin L, Hananya U, Rosner A (2004b) Truncated rep gene originated from tomato yellow leaf curl virus-Israel [Mild] confers strain-specific resistance in transgenic tomato. Ann Appl Biol 144:39–44Google Scholar
  12. Antignus Y, Lachman O, Pearlsman M (2005) Light manipulation by soil mulches protects crops from the spread of Begomoviruses. In: Abstracts of the 9th international plant virus epidemio­logy symposium, LimaGoogle Scholar
  13. Antignus Y, Ben-Yakir D, Offir Y, Messika Y, Dombrovsky A, Chen M, Ganot L, Yehezkel H, Ganz S, Shahak Y (2009) Colored shade nets form optical barrier protecting pepper and tomato crops against aphid-borne non-persistent viruses. Sade Va’Yerek 12:60–62 (in Hebrew)Google Scholar
  14. Arno J, Gabarra R, Liu TX, Simmons AM, Gerling D (2010) Natural enemies of Bemisia tabaci: predators and parasitoids. In: Stansly PA, Naranjo SE (eds.) Bemisia: bionomics and management of a global pest. Springer, Dordrecht, pp 385–421Google Scholar
  15. Asiimwe P, Ecaat JS, Otim M, Gerling D, M. Guershon Kyamanywa S and Legg J (2007) Mortality factors affecting populations of Bemisia tabaci on cassava. In: Uganda 4th international Bemisia workshop international whitefly genomics workshop, Duck Key, 3–8 Dec 2006. J Insect Sci.
  16. Asjes CJ, Blom-Barnhoorn GL (2002) Control of aphid vector spread of lily symptomless virus and lily mottle virus by mineral oil/insecticide sprays in Lilium. Acta Hortic 70:277–281Google Scholar
  17. Avidov Z (1956) Bionomics of the tobacco whitefly (Bemisia tabaci Gennad.) in Israel. Ktavim 7:25–41Google Scholar
  18. Bai D, Lummis SCR, Leicht W, Breer H, Sattelle DB (1991) Actions of imidacloprid and a related nitromethylene on cholinergic receptors of an identified insect motor neurone. Pestic Sci 33:197–204Google Scholar
  19. Baulcombe DC (1996) Mechanisms of pathogen derived resistance to viruses in transgenic plants. Plant Cell 8:1833–1844PubMedGoogle Scholar
  20. Bedford ID, Briddon RW, Brown JK, Rosell RC, Markham PG (1994) Geminivirus transmission and biological characterisation of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Ann Appl Biol 125:311–325Google Scholar
  21. Ben-Yakir D, Hadar MD, Offir Y, Chen M, Tregerman M (2008) Protecting crops from pests using OptiNet® and ChromatiNet® shading nets. Acta Hortic 770:205–212Google Scholar
  22. Berlinger MJ (1986) Host plant resistance to Bemisia tabaci. Agric Ecosyst Environ 17:69–82Google Scholar
  23. Berlinger MJ, Dahan R, Mordechi S, Liper A, Katz J, Levav N (1991) The use of nets to prevent the penetration of Bemisia tabaci into greenhouse. Hassadeh 71:1579–1583 (in Hebrew)Google Scholar
  24. Bielza P, Contreras J, Quinto V, Izquierdo J, Mansanet V, Elbert A (2005) Effects of Oberon® 240 SC on bumblebees pollinating greenhouse tomatoes. Pflanzenschutz-Nachrichten Bayer 58:469–484Google Scholar
  25. Bielza P, Fernández E, Grávalos C, Izquierdo J (2009) Testing for non-target effects of spiromesifen on Eretmocerus mundus and Orius laevigatus under greenhouse conditions. Biocontrol 54:229–236Google Scholar
  26. Bolckmans K, Sterk G, Eyal J, Sels B, Stepman W (1995) PreFeRal (Paecilomyces fumosoroseus strain Apopka 97), a new microbial insecticide for the biological control of whiteflies in greenhouses. Med Fac Landbouww Univ Gent 60(3a):707–711Google Scholar
  27. Boykin LM, Shatters RG Jr, Rosell RC, McKenzie CL, Bagnall RN, De Barro P, Frohlich DR (2007) Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Mol Phylogenet Evol 44:1306–1319PubMedGoogle Scholar
  28. Bretschneider T, Benet-Buchholz J, Fischer R, Nauen R (2003) Spirodiclofen and spiromesifen – novel acaricidal and insecticidal tetronic acid derivatives with a new mode of action. Chimia 57:697–701Google Scholar
  29. Briddon RW, Markham PG (2000) Cotton leaf curl virus disease. Virus Res 71:151–159PubMedGoogle Scholar
  30. Briddon RW, Mansour S, Bedford ID, Pinner MS, Saunders K, Stanely J, Zafar Y, Malik KA, Markham PG (2001) Identification of DNA components required for induction of cotton leaf curl disease. Virology 285:234–243PubMedGoogle Scholar
  31. Brown JK (2007) The Bemisia tabaci complex: genetic and phenotypic variation and relevance to TYLCV –vector interactions. In: Czosnek H (ed.) Tomato yellow leaf curl virus disease. Springer, Dordrecht, pp 25–56Google Scholar
  32. Brown JK, Nelson MR (1984) Geminate particles associated with cotton leaf crumple disease in Arizona. Phytopathology 74:987–990Google Scholar
  33. Brown JK, Frohlich DR, Rosell RC (1995) The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? Annu Rev Entomol 40:511–534Google Scholar
  34. Brück E, Elbert A, Fischer R et al (2009) Movento®, an innovative ambimobile insecticide for sucking insect pest control in agriculture: biological profile and field performance. Crop Prot 28:838–844Google Scholar
  35. Brunetti A, Tavazza E, Noris E, Tavazza P, Caciagli P, Ancora G, Crespi S, Accoto GP (1997) High expression of truncated viral rep protein confers resistance to tomato yellow leaf curl virus in transgenic tomato plants. Mol Plant Microbe Interact 10:571–579Google Scholar
  36. Byrne DN, Bellows TS Jr (1991) Whitefly biology. Annu Rev Entomol 36:431–457Google Scholar
  37. Byrne DN, Bellows TS, Parella MP (1990) Whiteflies in agricultural systems. In: Gerling D (ed.) Whiteflies: their bionomics, pest status and management. Intercept, Andover, pp 227–261Google Scholar
  38. Cahill M, Denholm I (1999) Managing resistance to chloronicotinyl insecticides: rhetoric or reality? In: Yamamoto I, Casida J (eds.) Neonicotinoid insecticides and the nicotinic acetylcholine receptor. Springer, Tokyo, pp 253–270Google Scholar
  39. Cahill M, Jarvis W, Gorman K, Denholm I (1996) Resolution of baseline responses and documentation of resistance to buprofezin in Bemisia tabaci (Homoptera: Aleyrodidae). Bull Entomol Res 86:117–122Google Scholar
  40. Casida JE, Quistad GB (1998) Golden age of insecticide research: past, present, or future. Annu Rev Entomol 43:1–16PubMedGoogle Scholar
  41. Castle SJ, Palumbo JC, Prabhaker N, Horowitz AR, Denholm I (2010) Ecological determinants of Bemisia tabaci resistance to insecticides. In: Stansly PA, Naranjo SE (eds.) Bemisia: bionomics and management of a global pest. Springer, DordrechtGoogle Scholar
  42. Channarayappa C, Shivasankar G, Muniyappa V, Frist RH (1992) Resistance of Lycopersicon species to Bemisia tabaci, a tomato leaf curl vector. Can J Bot 70:2184–2192Google Scholar
  43. Chiel E, Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Katzir N, Inbar M, Ghanim M (2007) Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci. Bull Entomol Res 97:407–413PubMedGoogle Scholar
  44. Chu D, Wan FH, Zhang YJ, Brown JK (2010) Change in the biotype composition of Bemisia tabaci in Shandong Province of China from 2005 to 2008. Environ Entomol 39:1028–1036PubMedGoogle Scholar
  45. Chyzik R, Dobrinin S, Antignus Y (2003) Effect of a UV-deficient environment on the biology and flight activity of Myzus persicae and its hymenopterous parasite Aphidius matricariae. Phytoparasitica 31:467–477Google Scholar
  46. Cohen S (1982) Control of whitefly vectors of viruses by color mulches. In: Harris KF, Maramorosch K (eds.) Pathogens, vectors and plant diseases, approaches to control. Academic, New York, pp 45–56Google Scholar
  47. Cohen S, Antignus Y (1994) Tomato yellow leaf curl virus, a whitefly-borne geminivirus of tomatoes. In: Harris KS (ed.) Advances in disease vector research, vol 10. Springer-Verlag, New York, pp 259–288Google Scholar
  48. Cohen S, Berlinger MJ (1986) Transmission and cultural control of whitefly-borne viruses. Agric Ecosyst Environ 17:89–97Google Scholar
  49. Cohen S, Melamed-Madjar V (1978) Prevention by soil mulching of the spread of tomato yellow leaf curl virus transmitted by Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in Israel. Bull Entomol Res 68:465–470Google Scholar
  50. Coombe PE (1982) Visual behavior of the greenhouse whitefly, Trialeurodes vaporariorum. Physiol Entomol 7:243–251Google Scholar
  51. Costa HS, Brown JK (1991) Variation in biological characteristics and esterase patterns among populations of Bemisia tabaci (Genn.) and the association of one population with silverleaf symptom induction. Entomol Exp Appl 61:211–219Google Scholar
  52. Costa HS, Brown JK, Sivasupramaniam S, Bird J (1993) Regional distribution, insecticide resistance, and reciprocal crosses between the ‘A’ and ‘B’ biotypes of Bemisia tabaci. Insect Sci Appl 14:255–266Google Scholar
  53. Crowder DW, Ellsworth PC, Tabashnik BE, Carriére Y (2008) Effects of operational and environmental factors on evolution of resistance to pyriproxyfen in the sweetpotato whitefly (Hemiptera: Aleyrodidae). Environ Entomol 37:1514–1524PubMedGoogle Scholar
  54. Csizinszky AA, Schuster DJ, Kring JB (1995) Color mulches influence yield and insect pest populations in tomatoes. J Am Soc Hortic Sci 120:778–784Google Scholar
  55. Csizinszky AA, Schuster DJ, Kring JB (1997) Evaluation of colored mulches and oil sprays for yield and for the control of silverleaf whitefly, Bemisia argentifolii (Bellows and Perring) on tomatoes. Crop Prot 16:475–481Google Scholar
  56. De Barro PJ, Coombs MT (2009) Post-release evaluation of Eretmocerus hayati Zolnerowich and Rose in Australia. Bull Entomol Res 99:193–206PubMedGoogle Scholar
  57. De Barro PJ, Trueman JWH, Frohlich DR (2005) Bemisia argentifolii is a race of B. tabaci (Hemiptera: Aleyrodidae): the molecular genetic differentiation of B. tabaci populations around the world. Bull Entomol Res 95:193–203PubMedGoogle Scholar
  58. De Barro PJ, Liu SS, Boykin LM, Dinsdale A (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1–19PubMedGoogle Scholar
  59. De Cock A, Degheele D (1998) Buprofezin: a novel chitin synthesis inhibitor affecting specifically planthoppers, whiteflies and scale insects. In: Ishaaya I, Degheele D (eds.) Insecticides with novel modes of action: mechanism and application. Springer, Berlin/Heidelberg/New York, pp 74–91Google Scholar
  60. De Cock A, de Clercq P, Tirry L, Degheele D (1996) Toxicity of diafenthiuron and imidacloprid to the predatory bug Podisus maculiventris (Heteroptera: Pentatomidae). Environ Entomol 25:476–480Google Scholar
  61. De Ponti OMB, Romanow LR, Berlinger MJ (1990) Whitefly plant relationships: plant resistance. In: Gerling D (ed.) Whiteflies: their bionomics, pest status and management. Intercept Ltd, Andover, pp 91–106Google Scholar
  62. Denholm I, Cahill M, Byrne FJ, Devonshire AL (1996) Progress with documenting and combating insecticide resistance in Bemisia. In: Gerling D, Mayer RT (eds.) Bemisia: 1995 taxonomy, biology, damage, control and management. Intercept Ltd, Andover, pp 577–603Google Scholar
  63. Denholm I, Cahill M, Dennehy TJ, Horowitz AR (1998) Challenges with managing insecticide resistance in agricultural pests, exemplified by the whitefly, Bemisia tabaci. Phil Trans R Soc Series B 353:1757–1767Google Scholar
  64. Dennehy TJ, Denholm I (1998) Goals, achievements and future challenges of the Arizona whitefly resistance management program. In: Dugger CP, Richter DA (eds.) Proceedings of the beltwide cotton production research conference, San Diego. National Cotton Council of America, Memphis, 5–9 Jan 1998, pp 68–72Google Scholar
  65. Dennehy TJ, Williams L III, Li X, Wigert M, Birdwell E (1997) Status of whitefly resistance to insecticides in Arizona cotton. In: Silvertooth JC (ed.) Cotton, a college of agriculture report, series P-108, University of Arizona, College of Agriculture, Tucson, pp 232–253Google Scholar
  66. Dennehy TJ, DeGain BA, Harpold VS, Brown JK, Morin S, Fabrick JA, Byrne FJ, Nichols RL (2005) New challenges to management of whitefly resistance to insecticides in Arizona. In: Byrne DN, Baciewicz P (eds.) 2005 Vegetable report, series P-144, College of Agriculture and Life Sciences, University of Arizona, pp 1–31.
  67. Diaz BM, Fereres A (2007) Ultraviolet-blocking materials as a physical barrier to control insect pests and pathogens in protected crops. Pest Tech 1:85–95Google Scholar
  68. Dittrich V, Ernst GH, Ruesh O, Uk S (1990) Resistance mechanisms in sweetpotato whitefly (Homoptera: Aleyrodidae) populations from Sudan, Turkey, Guatemala, and Nicaragua. J Econ Entomol 83:1665–1670Google Scholar
  69. Doukas D, Payne C (2007) Greenhouse whitefly (Homoptera: Aleyrodidae) dispersal under different UV-light environments. J Econ Entomol 100:380–397Google Scholar
  70. Duffus J (1987) Whitefly transmission of plant viruses. In: Kerry FH (ed.) Current topics in vector research. Springer, New York, pp 74–91Google Scholar
  71. Elbert A, Nauen R (2000) Resistance in Bemisia tabaci (Homoptera: Aleyrodidae) to insecticide in southern Spain with special reference to neonicotinoids. Pest Manag Sci 56:60–64Google Scholar
  72. Elbert A, Overbeck H, Iwaya K, Tsuboi S (1990) Imidacloprid, a novel systemic nitromethylene analogue insecticide for crop protection. In: Proceedings of 1990 Brighton crop protection conference – pests and diseases, Brighton, pp 21–28Google Scholar
  73. Elbert A, Nauen R, Cahill M, Devonshire AL, Scarr AW, Sone S, Steffens R (1996) Resistance management with chloronicotinyl insecticides using imidacloprid as an example. Pflanzen-Nachrich Bayer 49:5–53Google Scholar
  74. Elbert A, Nauen R, Leicht W (1998) Imidacloprid, a novel chloronicotinyl insecticide: biological activity and agricultural importance. In: Ishaaya I, Degheele D (eds.) Insecticides with novel modes of action: mechanism and application. Springer, Berlin/Heidelberg/New York, pp 50–73Google Scholar
  75. Ellsworth PC, Martinez-Carrillo JL (2001) IPM for Bemisia tabaci: a case study from North America. Crop Prot 20:853–869Google Scholar
  76. Fargette D, Fauquet C, Grenier I, Thresh MJ (1990) The spread of African cassava virus into the within cassava fields. J Phytopathol 130:289–302Google Scholar
  77. Flückiger CR, Kristinsson H, Senn R, Rindlisbacher A, Buholzer H, Voss G (1992a) CGA 215′944 – a novel agent to control aphids and whiteflies. In: Brighton crop protection conference – pests and diseases, vol 1, Brighton, pp 43–50Google Scholar
  78. Flückiger CR, Senn R, Buholzer H (1992b) CGA 215′944 – opportunities for use in vegetables. In: Proceedings of 1992 Brighton crop protection conference – pests and diseases, vol 3, Brighton, pp 1187–1192Google Scholar
  79. Fuog D, Fergusson SJ, Flückiger C (1998) Pymetrozine: a novel insecticide affecting aphids and whiteflies. In: Ishaaya I, Degheele D (eds.) Insecticides with novel modes of action: mechanism and application. Springer, Berlin/Heidelberg/New York, pp 40–49Google Scholar
  80. Garcia-Andres S, Tomas DM, Navas-Castillo J, Moriones E (2009) Resistance driven-selection of begomoviruses associated with the tomato yellow leaf curl disease. Virus Res 146:66–72PubMedGoogle Scholar
  81. Gerling D (1990) Whiteflies their bionomics, pest status and management. Intercept Ltd, AndoverGoogle Scholar
  82. Gerling D, Horowitz AR (1984) Yellow traps for evaluating the population levels and dispersal patterns of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Ann Entomol Soc Am 77:753–759Google Scholar
  83. Gerling D, Alomar O, Arno J (2001) Biological control of Bemisia tabaci using predators and parasitoids. Crop Prot 20:779–799Google Scholar
  84. Gorman K, Slater R, Blande J, Clarke A, Wren J, McCaffery A, Denholm I (2010) Cross-resistance relationships between neonicotinoids and pymetrozine in Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manag Sci 66:1186–1190PubMedGoogle Scholar
  85. Gottlieb Y, Ghanim M, Chiel E, Gerling D, Portnoy V, Steinberg S, Tzuri G, Horowitz AR, Belausov E, Mozes-Daube N, Kontsedalov S, Gershon M, Gal S, Katzir N, Zchori-Fein E (2006) Identification and localization of a Rickettsia sp in Bemisia tabaci (Homoptera: Aleyrodidae). Appl Environ Microbiol 72:3646–3652PubMedGoogle Scholar
  86. Gould JR, Hoelmer KA, Goolsby JA (2008) Classical biological control of Bemisia tabaci in the United States: a review of interagency research and implementation (co-editors). In: Hokkanen HMT (ed.) Progress in biological control, vol 4. Springer, DordrechtGoogle Scholar
  87. Greathead AH (1986) Host plants. In: Cock MJW (ed.) Bemisia tabaci – a literature survey. CAB International Institute of Biological Control, Silwood Park, pp 17–26Google Scholar
  88. Guirao P, Beitia F, Cenis JL (1997) Biotype determination of Spanish populations of Bemisia tabaci (Hemiptera: Aleyrodidae). Bull Entomol Res 87:587–593Google Scholar
  89. Hahn SK, Terry ER, Leuschner K (1980) Breeding cassava for resistance to cassava mosaic disease. Euphytica 29:673–683Google Scholar
  90. Henneberry TJ (1993) Sweetpotato whitefly - current status and national research and action plan. In: Dugger CP, Richter DA (eds.) Proceedings beltwide cotton production conferences, New Orleans, 10–14 Jan, pp 663–666Google Scholar
  91. Henneberry TJ, Butler GD Jr (1992) Whiteflies as a factor in cotton production with specific reference to Bemisia tabaci (Gennadius). In: Dugger CP, Richter DA (eds.) Proceedings beltwide cotton production conferences, Nashville, 6–10 Jan 1992, pp 674-683Google Scholar
  92. Hequet E, Henneberry TJ, Nichols RL (eds.) (2007) Sticky cotton: causes, effects, and prevention. USDA-ARS Technical Bulletin No 1915Google Scholar
  93. Hilje L, Costa HS, Stansly PA (2001) Cultural practices for managing Bemisia tabaci and associated viral diseases. Crop Prot 20:801–812Google Scholar
  94. Hogenhout SA, Ammar ED, Whitfield AE, Redinbaugh MG (2008) Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46:327–359PubMedGoogle Scholar
  95. Horowitz AR, Ishaaya I (1994) Managing resistance to insect growth regulators in the sweetpotato whitefly (Homoptera: Aleyrodidae). J Econ Entomol 87:866–871Google Scholar
  96. Horowitz AR, Ishaaya I (1996) Chemical control of Bemisia tabaci – management and application. In: Gerling D, Mayer RT (eds.) Bemisia: 1995 taxonomy, biology, damage, control and management. Intercept Ltd, Andover, pp 537–556Google Scholar
  97. Horowitz AR, Ishaaya I (2004) Biorational insecticides - mechanisms, selectivity and importance in pest management. In: Horowitz AR, Ishaaya I (eds.) Insect pest management. Springer, Berlin, pp 1–28Google Scholar
  98. Horowitz AR, Forer G, Ishaaya I (1994) Managing resistance in Bemisia tabaci in Israel with emphasis on cotton. Pestic Sci 42:113–122Google Scholar
  99. Horowitz AR, Mendelson Z, Weintraub PG, Ishaaya I (1998) Comparative toxicity of foliar and systemic applications of two chloronicotinyl insecticides, acetamiprid and imidacloprid, against the cotton whitefly, Bemisia tabaci. Bull Entomol Res 88:437–442Google Scholar
  100. Horowitz AR, Mendelson Z, Cahill M, Denholm I, Ishaaya I (1999) Managing resistance to the insect growth regulator pyriproxyfen in Bemisia tabaci. Pestic Sci 55:272–276Google Scholar
  101. Horowitz AR, Kontsedalov S, Denholm I, Ishaaya I (2002) Dynamics of insecticide resistance in Bemisia tabaci – a case study with an insect growth regulator. Pest Manag Sci 58:1096–1100PubMedGoogle Scholar
  102. Horowitz AR, Denholm I, Gorman K, Cenis JL, Kontsedalov S, Ishaaya I (2003) Biotype Q of Bemisia tabaci identified in Israel. Phytoparasitica 31:94–98Google Scholar
  103. Horowitz AR, Kontsedalov S, Ishaaya I (2004) Dynamics of resistance to the neonicotinoids acetamiprid and thiamethoxam in Bemisia tabaci (Homoptera: Aleyrodidae). J Econ Entomol 97:2051–2056PubMedGoogle Scholar
  104. Horowitz AR, Kontsedalov S, Khasdan V, Ishaaya I (2005) Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Arch Insect Biochem Physiol 58:216–225PubMedGoogle Scholar
  105. Horowitz AR, Denholm I, Morin S (2007) Resistance to insecticides in the TYLCV vector, Bemisia tabaci. In: Czosnek H (ed.) Tomato yellow leaf curl virus disease. Springer, Dordrecht, pp 305–325Google Scholar
  106. Hunter WB, Hiebert E, Tsai JH, Polston JE (1998) Location of geminiviruses in the whitefly Bemisia tabaci (Homoptera: Aleurodidae). Plant Dis 82:1147–1157Google Scholar
  107. Ishaaya I (1990) Buprofezin and other IGRs for controlling cotton pests. Pestic Outlook 1(2):30–33Google Scholar
  108. Ishaaya I, Horowitz AR (1992) A novel phenoxy juvenile hormone analog (pyriproxyfen) ­suppresses embryogenesis and adult emergence of the sweetpotato whitefly (Homoptera: Aleyrodidae). J Econ Entomol 85:2113–2117Google Scholar
  109. Ishaaya I, Horowitz AR (1995) Pyriproxyfen, a novel insect growth regulator for controlling whiteflies: mechanism and resistance management. Pestic Sci 43:227–232Google Scholar
  110. Ishaaya I, Mendelson Z, Melamed-Madjar V (1988) Effect of buprofezin on embryogenesis and progeny formation of sweetpotato whitefly (Homoptera: Aleyrodidae). J Econ Entomol 81:781–784Google Scholar
  111. Ishaaya I, Mendelson Z, Horowitz AR (1993) Toxicity and growth-suppression exerted by diafenthiuron in the sweetpotato whitefly, Bemisia tabaci. Phytoparasitica 21:199–204Google Scholar
  112. Ishaaya I, Kontsedalov S, Horowitz AR (2003) Novaluron (Rimon), a novel IGR: potency and cross-resistance. Arch Insect Biochem Physiol 54:157–164PubMedGoogle Scholar
  113. Itaya W (1987) Insect juvenile hormone analogue as an insect growth regulator. Sumitomo Pyrethroid World 8:2–4Google Scholar
  114. Jones DR (2003) Plant viruses transmitted by whiteflies. Eur J Plant Pathol 109:195–219Google Scholar
  115. Kayser H, Kaufmann L, Schürmann F (1994) Pymetrozine (CGA 215′944): a novel compound for aphid and whitefly control. In: An overview of its mode of action. Proceedings of 1994 Brighton crop protection conference – pests and diseases, vol 2, Brighton, pp 737–742Google Scholar
  116. Kevan PG, Straver WA, Offer O, Laverty TM (1991) Pollination of greenhouse tomatoes by bumblebees in Ontario. Proc Entomol Soc Ont 122:15–19Google Scholar
  117. Kirk AA, Lacey LA, Brown JK, Ciomperlik MA, Goolsby JA, Vacek DC, Wendel LE, Napompeth B (2000) Variation in the Bemisia tabaci species complex (Hemiptera: Aleyrodidae) and its natural enemies leading to successful biological control of Bemisia biotype B in the USA. Bull Entomol Res 90:317–327PubMedGoogle Scholar
  118. Kisha JSA (1984) Whitefly, Bemisia tabaci, infestations on tomato varieties and a wild Lycopersicon species. Ann Appl Biol 104(Supplement, Tests of Agrichemicals and Cultivars 5):124–125Google Scholar
  119. Knauf TA, Wright JE (1994) Beauveria bassiana (ATCC 74040): control of insect pests in field crops and ornamentals. In: Brighton crop protection conference – pest diseases, vol 3, Brighton, pp 1103–1108Google Scholar
  120. Koehler PG, Patterson RJ (1991) Incorporation of pyriproxyfen in a German cockroach (Dictyoptera: Blattellidae) management program. J Econ Entomol 84:917–921PubMedGoogle Scholar
  121. Kontsedalov S, Zchori-Fein E, Chiel E, Gottlieb Y, Inbar M, Ghanim M (2008) The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Manag Sci 64:789–792PubMedGoogle Scholar
  122. Kontsedalov S, Gottlieb Y, Ishaaya I, Nauen R, Horowitz AR, Ghanim M (2009) Toxicity of spiromesifen to the developmental stages of Bemisia tabaci biotype B. Pest Manag Sci 65:5–13PubMedGoogle Scholar
  123. Lahm GP, Cordova D, Barry JD (2009) New and selective ryanodine receptor activators for insect control. Bioorg Med Chem 17:4127–4133PubMedGoogle Scholar
  124. Langley P (1990) Control of the tsetse fly using a juvenile hormone mimic, pyriproxyfen. Sumitomo Pyrethroid World 15:2–5Google Scholar
  125. Lapidot M, Friedmann M (2002) Breeding for resistance to whitefly-transmitted geminiviruses. Ann Appl Biol 140:109–127Google Scholar
  126. Legarrea S, Karnieli A, Fereras A, Weintraub PG (2010) Comparison of UV-absorbing nets in pepper crops, spectral properties, effects on plants and pest control. Photochem Photobiol 86:324–330PubMedGoogle Scholar
  127. Legg JP (1999) Emergence, spread and strategies for controlling the pandemic of cassava mosaic virus disease in East and Central Africa. Crop Prot 18:627–637Google Scholar
  128. Li AY, Dennehy TJ, Li S, Wigert ME, Zarborac M, Nichols RL (2001) Sustaining Arizona’s fragile success in whitefly resistance management. In: Dugger CP, Richter DA (eds.) Proceedings of the beltwide cotton production research conference, Anaheim. National Cotton Council of America, Memphis, 9–13 Jan 2001, pp 1108–1114Google Scholar
  129. Luo C, Jones CM, Devine G, Zhang F, Denholm I, Gorman K (2010) Insecticide resistance in Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) from China. Crop Prot 29:429–434Google Scholar
  130. McEnrone WD, Dronka K (1966) Color vision in the adult female two-spotted spider mite. Science 154:782–784Google Scholar
  131. Meekes ETM, Fransen JJ, van Lenteren JC (2002) Pathogenicity of Aschersonia spp. against whiteflies Bemisia argentifolii and Trialeurodes vaporariorum. J Invertebr Pathol 81:1–11PubMedGoogle Scholar
  132. Moffat AS (1999) Geminiviruses emerge as serious crop threat. Science 286:1835Google Scholar
  133. Mound L (1962) Studies on the olfaction colour sensitivity of Bemisia tabaci Genn. Aleyrodidae. Entomol Exp Appl 99–104Google Scholar
  134. Mound LA, Halsey SH (1978) Whitefly of the world: a systematic catalogue of the Aleyrodidae (Homoptera) with host plant and natural enemy data. British Museum (Natural History), ChichesterGoogle Scholar
  135. Muniyappa V, Jalikop SH, Saikia AK, Chennarayappa SG, Bhat AI, Ramappa HK (1991) Reaction of Lycopersicon cultivars and wild accessions to tomato leaf curl virus. Euphytica 56:37–41Google Scholar
  136. Naranjo SE, Ellsworth PC, Diehl JW (1998) Whitefly management in Arizona: contribution of natural enemies to whitefly mortality. P-112, University of Arizona, Tucson, pp 324–329Google Scholar
  137. Nauen R, Denholm I (2005) Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Arch Insect Biochem Physiol 58:200–215PubMedGoogle Scholar
  138. Nauen R, Konanz S (2005) Spiromesifen as a new chemical option for resistance management in whiteflies and spider mites. Pflanzenschutz-Nachrichten Bayer 58:485–502Google Scholar
  139. Nauen R, Schnorbach HJ, Elbert A (2005) The biological profile of spiromesifen (Oberon) – a new tetronic acid insecticide/acaricide. Pflanzenschutz-Nachrichten Bayer 58:417–440Google Scholar
  140. Nombela G, Muniz M (2010) Host plant resistance for the management of Bemisia tabaci: a multi-crop survey with emphasis on tomato. In: Stansly PA, Naranjo SE (eds.) Bemisia: bionomics and management of a global pest. Springer, Dordrecht, pp 357–383Google Scholar
  141. Oliveira MRV, Henneberry TJ, Anderson P (2001) History, current status, and collaborative research projects for Bemisia tabaci. Crop Prot 20:709–723Google Scholar
  142. Palumbo JC, Horowitz AR, Prabhaker N (2001) Insecticidal control and resistance management for Bemisia tabaci. Crop Prot 20:739–765Google Scholar
  143. Perring TM (2001) The Bemisia tabaci species complex. Crop Prot 20:725–737Google Scholar
  144. Pilowski M, Cohen S (1990) Tolerance in tomato yellow leaf curl virus derived from Lycopersicon peruvianum. Plant Dis 74:248–250Google Scholar
  145. Pilowski M, Cohen S, Ben-Joseph R, Shlomo A, Chen L, Nahon S, Krikun J (1989) TY-20, a tomato cultivar tolerant to tomato yellow leaf curl virus. Hassadeh 69:1212–1215 (in Hebrew)Google Scholar
  146. Pita JS, Fondong A, Sangare A, Kokora RNN, Fauquet CM (2001) Genomic and biological diversity of the African cassava geminiviruses. Euphytica 120:115–125Google Scholar
  147. Polston JE, Anderson PK (1997) The emergence of whitefly-transmitted geminiviruses in tomato in the Western Hemisphere. Plant Dis 81:1358–1369Google Scholar
  148. Prabhaker N, Toscano NC, Henneberry TJ (1998) Evaluation of insecticide rotations and mixtures as resistance management strategies for Bemisia argentifolii (Homoptera: Aleyrodidae). J Econ Entomol 91:820–826Google Scholar
  149. Prabhaker N, Castle SJ, Toscano N, Henneberry TJ (2005) Assessment of cross-resistance potential among neonicotinoid insecticides in Bemisia tabaci (Hemiptera: Aleyrodidae). Bull Entomol Res 95:535–543PubMedGoogle Scholar
  150. Prabhaker N, Castle SJ, Buckelew L, Toscano NC (2008) Baseline susceptibility of Bemisia tabaci B biotype (Hemiptera: Aleyrodidae) populations from California and Arizona to spiromesifen. J Econ Entomol 101:174–181PubMedGoogle Scholar
  151. Prins M, Laimer M, Noris A, Schubert J, Wassenger M, Tepper M (2008) Strategies for antiviral resistance in transgenic plants. Mol Plant Pathol 9:73–83PubMedGoogle Scholar
  152. Ravensberg WJ, Malais M, van der Schaaf DA (1990) Application of Verticillium lecanii in tomatoes and cucumber to control whitefly and thrips. Bull IOBC 13(5):173–178Google Scholar
  153. Raviv M, Antignus Y (2004) UV Radiation effects on pathogens and insect pests of greenhouse-grown crops. Photochem Photobiol 79:219–226PubMedGoogle Scholar
  154. Roditakis E, Grispou M, Morou E, Kristoffersen JB, Roditakis N, Nauen R, Vontas J, Tsagkarakou A (2009) Current status of insecticide resistance in Q biotype Bemisia tabaci populations from Crete. Pest Manag Sci 65:313–322PubMedGoogle Scholar
  155. Rom M, Antignus Y, Gideoni D, Pilowski M, Cohen S (1992) Comparative study of tomato yellow leaf curl virus (TYLCV) DNA accumulation in tolerant and susceptible tomato lines. Plant Dis 77:253–257Google Scholar
  156. Rosell RC, Torres-Jerez I, Brown KJ (1999) Tracing geminivirus-whitefly transmission pathway by polymerase chain reaction in whitefly extracts, saliva, hemolymph and honeydew. Phytopathology 89:239–246PubMedGoogle Scholar
  157. Ruder FJ, Guyer W, Benson JA, Kayser H (1991) The thiourea insecticide/acaricide diafenthiuron has a novel mode of action: inhibition of mitochondrial respiration by its carbodiimide product. Pestic Biochem Phys 41:207–219Google Scholar
  158. Rybicki EP, Briddon RW, Brown JK, Fauquet CM, Maxwell DP, Stanely J, Harrison BD, Markham PG, Bisaro DM, Robinson D (2000) Family geminiviridae. In: van Regenmortel MHV, Fauquet CM, Bishop DHYL, Carstens E, Estes M, Lemon S, Maniloff J, Mayo MA, McGeoch D, Pringle C, Wickner R (eds.) Virus taxonomy, seventh report of the international committee on taxonomy of viruses. Academic, New York, pp 285–297Google Scholar
  159. Sanchez-Campos S, Navas-Castillo J, Camero R, Soria C, Diaz JA, Moriones E (1999) Displacement of tomato yellow leaf curl virus (TYLCV-Sr) by TYLCV-Is in tomato epidemics in Spain. Phytopathology 89:1038–1043PubMedGoogle Scholar
  160. Sanford JC, Johnston SA (1985) The concept of pathogen derived resistance. J Theor Biol 113:395–405Google Scholar
  161. Sattelle DB, Cordova D, Cheek TR (2008) Insect ryanodine receptors: molecular targets for novel pest control chemicals. Invertebr Neurosci 8:107–119Google Scholar
  162. Schuster DJ, Mann RS, Toapanta M, Cordero R, Thompson S, Cyman S, Shurtleff A, Morris RF II (2010) Monitoring neonicotinoid resistance in biotype B of Bemisia tabaci in Florida. Pest Manag Sci 66:186–195PubMedGoogle Scholar
  163. Scott JW, Schuster D (1991) Screening of accessions for resistance to the Florida tomato geminivirus. Tomato Genet Coop Rep 41:48–50Google Scholar
  164. Shahak Y, Gal E, Offir Y, Ben-Yakir D (2008) Photoselective shade netting integrated with greenhouse technologies for improved performance of vegetable and ornamental crops. Acta Hortic 797:75–80Google Scholar
  165. Sharaf N (1986) Chemical control of Bemisia tabaci. Agric Ecosyst Environ 17:111–127Google Scholar
  166. Shepherd DN, Martin DP, Thomson JA (2009) Transgenic strategies for developing crops resistant to geminiviruses. Plant Sci 176:1–11Google Scholar
  167. Simmons AL, Dennehy TJ (1996) Contrasts of three insecticide resistance monitoring methods for whitefly. In: Dugger CP, Richter, DA (eds.) Proceedings of the beltwide cotton production research conference, Nashville, National Cotton Council of America, Memphis, 9–12 Jan 1996, pp 748–752Google Scholar
  168. Singh SP, Morales FJ, Miklas PN, Teran H (2000) Selection for bean golden resistance in intra- and interracial bean populations. Crop Sci 40:1565–1572Google Scholar
  169. Stansly PA, Naranjo SE (eds.) (2010) Bemisia: bionomics and management of a global pest. Springer, DordrechtGoogle Scholar
  170. Stansly PA, Natwick A (2010) Integrated systems for managing Bemisia tabaci in protected and open field agriculture. In: Stansly PA, Naranjo SE (eds.) Bemisia: bionomics and management of a global pest. Springer, Dordrecht, pp 467–497Google Scholar
  171. Steinemann A, Stamm E, Frei B (1990) Chemodynamics in research and development of new plant protection agents. Pestic Outlook 1(3):3–7Google Scholar
  172. Streibert HP, Drabek J, Rindlisbacher A (1988) CGA 106630 - a new type of acaricide/insecticide for the control of the sucking pest complex in cotton and other crops. In: Proceedings Brighton crop protection conference - pests and diseases, Brighton, pp 25-33Google Scholar
  173. Summers CG, Mitchell JP, Stapleton JJ (2005) Mulches reduce aphid-borne viruses and whiteflies in cantaloupe. Calif Agr 59:90–94Google Scholar
  174. Suwwan MA, Akkawi M, Al-Musa AM, Mansour A (1988) Tomato performance and incidence of tomato yellow leaf curl (TYLC) virus as affected by type of mulch. Scientia Hortic 37:39–45Google Scholar
  175. Takahashi H, Mitsui J, Takausa N, Matsud M, Yoneda H, Suszuki J, Ishimitsi K, Kishimoto T (1992) NI-25, a new type of systemic and broad spectrum insecticide. In: Proceedings of 1992 Brighton crop protection conference – pests and diseases, vol 1,Brighton, pp 88–96Google Scholar
  176. Tomizawa M, Casida JE (2003) Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol 48:339–364PubMedGoogle Scholar
  177. Ucko O, Cohen S, Ben-Joseph R (1998) Prevention of virus epidemics by a crop free period in the Arava region of Israel. Phytoparasitica 26:313–321Google Scholar
  178. van de Veire M, Vacante V (1984) Greenhouse whitefly control through the combined use of the colour attraction system with the parasite wasp Encarsia formosa (Hym.: Aphelinidae).Entomophaga 29:303–310Google Scholar
  179. Van Driesche R, Bellows TS Jr (1996) Biological control. Chapman & Hall, New YorkGoogle Scholar
  180. Vidavski F, Czosnek H, Gazit S, Levy D, Lapidot M (2008) Pyramiding of genes conferring resistance to tomato yellow leaf curl virus from different wild tomato species. Plant Breed 127:734–746Google Scholar
  181. von Arnim A, Stanely J (1992) Inhibition of African cassava mosaic virus systemic infection by a movement protein from the related geminivirus tomato golden mosaic virus. Virology 187:555–564Google Scholar
  182. Wang Z, Yao M, Wu Y (2009) Cross-resistance, inheritance and biochemical mechanisms of imidacloprid resistance in B-biotype Bemisia tabaci. Pest Manag Sci 65:1189–1194PubMedGoogle Scholar
  183. Xu J, De Barro PJ, Liu SS (2010) Reproductive incompatibility among genetic groups of Bemisia tabaci supports the proposition that the whitefly is a cryptic species complex. Bull Entomol Res 100:359–366PubMedGoogle Scholar
  184. Yamamoto I, Yabuta G, Tomizawa M, Saito T, Miyamoto T, Kagabu S (1995) Molecular mechanism of selective toxicity of nicotinoids and neonicotinoids. J Pestic Sci 20:33–40Google Scholar
  185. Zamir D, Ekstein M, Micelson I, Zakay Y, Navot N, Zeidan M, Sarfatti M, Eshed Y, Harel E, Plebam T, Van-Oss H, Keidar N, Rabinowitch HD, Czosnek H (1994) Mapping and introregression of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theor Appl Genet 88:141–146Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • A. Rami Horowitz
    • 1
  • Yehezkel Antignus
    • 2
  • Dan Gerling
    • 3
  1. 1.Department of EntomologyAgricultural Research Organization (ARO), Gilat Research CenterM.P. NegevIsrael
  2. 2.Institute of Plant ProtectionAgricultural Research Organization (ARO), The Volcani CenterBet DaganIsrael
  3. 3.Department of ZoologyTel Aviv UniversityRamat AvivIsrael

Personalised recommendations