Skip to main content

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST,volume 3))

  • 926 Accesses

Abstract

Microwave assisted synthesis in organic chemistry is an important and a well established area of research due to a number of advantages over conventional heating methods. Further, nitrogen heterocycles of different ring sizes, with different substitution patterns and embedded in various molecular frameworks constitute extremely important structure classes in the search for bioactivity. Many compounds bearing five-membered heterocyclic rings in their structure have an extensive spectrum of pharmacological activities. Among them oxadiazoles and their derivatives have attracted considerable interest in material and medicinal chemistry as surrogates of carboxylic acids, esters and carboxamides. The various oxadiazole compounds have shown a wide array of biological activities in both agrochemical and pharmaceutical fields. The formation of this biologically important heterocyclic system under microwave conditions is described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kasi SV, Raja TK (2006) A rapid microwave assisted claisen rearrangement of 4-allyloxy-2-methylquinolines under solvent free condition. Ind J Heterocycl Chem 16:195–196

    Google Scholar 

  2. Omar FA, Mahfouz NM et al (1996) Design, synthesis and antiinflammatory activity of some 1,3,4-oxadiazole derivatives. Eur J Med Chem 31:819–825

    Article  CAS  Google Scholar 

  3. Zarghi A, Hajimahdi Z et al (2008) Design and synthesis of new 2-substituted-5-[2-(2-halobenzyloxy)phenyl]-1,3,4-oxadiazoles as anticonvulsant agents. Chem Pharm Bull 56:509–512

    Article  CAS  Google Scholar 

  4. Mayekar AN (2010) Synthesis and antimicrobial studies on new substituted 1,3,4-oxadiazole derivatives bearing 6-bromonapthalelene moiety. Int J Chem 2:38–54

    CAS  Google Scholar 

  5. Zheng X, Li Z et al (2003) Syntheses and insecticidal activities of novel 2,5-disubstituted 1,3,4-oxadiazoles. J Fluorine Chem 123:163–169

    Article  CAS  Google Scholar 

  6. Li Y, Liu J et al (2006) Stereoselective synthesis and fungicidal activities of (E)-α-(methoxyimino)-benzeneacetate derivatives containing 1,3,4-oxadiazole ring. Bioorg Med Chem Lett 16:2278–2282

    Article  CAS  Google Scholar 

  7. Ilango K, Valentina P et al (2009) Synthesis and characterization of 2,5-disubstituted-1,3,4-oxadiazoles as potential anti-inflammatory agents. J Young Pharm 1:72–76

    Article  CAS  Google Scholar 

  8. Rastogi N, Singh VR et al (2006) Microwave mediated aminomethylation and antileishmanial activity of 2-{4’-(2”,4”-dichlorobenzyloxy)-phenyl}-1,3,4-oxadiazolin-5-thiones and 3-{4’-(2”,4”-dichlorobenzyloxy)phenyl}-4-phenyl-1,2,4-triazolin-5-thiones. Ind J Heterocycl Chem 16:5–8

    CAS  Google Scholar 

  9. Mishra P, Joshi GK, Shakya AK et al (1992) Pharmacological screening of few new 2-(substituted acetyl) amino-5-alkyl-1,3,4-oxadiazoles. Indian J Physiol Pharmacol 36:247–250

    CAS  Google Scholar 

  10. Sengupta P, Kumar DD et al (2008) Evaluation of anticancer activity of some 1,3,4-oxadiazole derivatives. Ind J Chem 47B:460–462

    CAS  Google Scholar 

  11. Swain CJ, Baker R et al (1991) Novel 5-HT3 antagonists. Indole oxadiazoles. J Med Chem 34:140–151

    Article  CAS  Google Scholar 

  12. Orlek BS, Blaney FE et al (1991) Comparison of azabicyclic esters and oxadiazoles as ligands for the muscarinic receptor. J Med Chem 34:2726–2735

    Article  CAS  Google Scholar 

  13. Tully WR, Gardner CR et al (1991) 2-(Oxadiazolyl)- and 2-(thiazolyl)imidazo[1, 2-a]pyrimidines as agonists and inverse agonists at benzodiazepine receptors. J Med Chem 34:2060–2067

    Article  CAS  Google Scholar 

  14. Ghani U, Ullah N (2010) New potent inhibitors of tyrosinase: Novel clues to binding of 1,3,4-thiadiazole-2(3H)-thiones, 1,3,4-oxadiazole-2(3H)-thiones, 4-amino-1,2,4-triazole-5(4H)-thiones, and substituted hydrazides to the dicopper active site. Bioorg Med Chem 18:4042–4048

    Article  CAS  Google Scholar 

  15. Han D, Meng XB et al (2009) Efficient synthesis of a series of novel fructose-based 3-acetyl-5-alkyl-2,3-dihydro-1,3,4-oxadiazole derivatives and studies of the reaction mechanism. Tetrahedron Asymmetry 20:399–410

    Article  CAS  Google Scholar 

  16. Tandon VK, Chhor RB (2001) An efficient one pot synthesis of 1,3,4-oxadiazoles. Synth Commun 31:1727–1732

    Article  CAS  Google Scholar 

  17. Jedlovska E, Lesko J (1994) A simple one-pot procedure for the synthesis of 1,3,4-oxadiazoles. Synth Commun 24:1879–1885

    Article  CAS  Google Scholar 

  18. Sangshetti JN, Chabukswar AR et al (2011) Microwave assisted one-pot synthesis of some novel 2,5-disubstituted 1,3,4-oxadiazoles as antifungal agents. Bioorg Med Chem Lett 21:444–448

    Article  CAS  Google Scholar 

  19. Rostamizadeh S, Ghaieni HR et al (2010) Clean one-pot synthesis of 1,2,4-oxadiazoles under solvent-free conditions using microwave irradiation and potassium fluoride as catalyst and solid support. Tetrahedron 66:494–497

    Article  CAS  Google Scholar 

  20. Kidwai M, Goel Y (1996) Microwave induced novel synthetic route to organomercurials. Polyhedron 15:2819–2824

    Article  CAS  Google Scholar 

  21. Brain CT, Paul JM et al (1999) Novel procedure for the synthesis of 1,3,4-oxadiazoles from 1,2-diacylhydrazines using polymer-supported Burgess reagent under microwave conditions. Tetrahedron Lett 40:3275–3278

    Article  CAS  Google Scholar 

  22. Wang X, Li Z et al (2001) Synthesis of 2-(4-chlorobenzoylamido)-5-aryloxymethyl-1,3,4-oxadiazoles under microwave irradiation. Synth Commun 31:1907–1911

    Article  CAS  Google Scholar 

  23. Bentiss F, Lagrenee M et al (2001) Rapid synthesis of 2,5-disubstituted 1,3,4-oxadiazoles under microwave irradiation. Synth Commun 31:935–938

    Article  CAS  Google Scholar 

  24. Maslat AO, Abussaud M et al (2002) Synthesis, antibacterial, antifungal and genotoxic activity of bis-1,3,4-oxadiazole derivatives. Polish J Chem 54:55–59

    CAS  Google Scholar 

  25. Joshi S, Karnik AV (2002) Facile conversion of acyldithiocarbazinate salts to 1,3,4-oxadiazole derivatives under microwave irradiation. Synth Commun 32:111–114

    Article  CAS  Google Scholar 

  26. Mashraqui SH, Ghadigaonkar SG et al (2003) An expeditious and convenient one pot synthesis of 2,5-disubstituted-1,3,4-oxadiazoles. Synth Commun 33:2541–2545

    Article  CAS  Google Scholar 

  27. Rostamizadeh S, Housaini SAG (2004) Microwave assisted syntheses of 2,5-disubstituted 1,3,4-oxadiazoles. Tetrahedron Lett 45:8753–8756

    Article  CAS  Google Scholar 

  28. Khan KM, Zia-Ullah et al (2004) Microwave-assisted synthesis of 2,5-disubstituted-1,3,4-oxadiazoles. Lett Org Chem 1:50–52

    Article  CAS  Google Scholar 

  29. Rao VS, Sekhar KVGC (2004) Iodobenzene diacetate mediated solid-state synthesis of heterocyclyl-1,3,4-oxadiazoles. Synth Commun 34:2153–2157

    Article  CAS  Google Scholar 

  30. Li Z, Yu J et al (2004) Microwave accelerated solvent-free synthesis of 1,3,4-oxadiazoles using polymer supported dehydration reagent. Synth Commun 34:2981–2986

    Article  CAS  Google Scholar 

  31. Natero R, Koltun DO et al (2004) Microwave-assisted one-step synthesis of substituted 2-chloromethyl-1,3,4-oxadiazoles. Synth Commun 34:2523–2529

    Article  CAS  Google Scholar 

  32. Khan MTH, Choudhary MI et al (2005) Structure–activity relationships of tyrosinase inhibitory combinatorial library of 2,5-disubstituted-1,3,4-oxadiazole analogues. Bioorg Med Chem 13:3385–3395

    Article  CAS  Google Scholar 

  33. Baxendale IR, Leya SV et al (2005) The rapid preparation of 2-aminosulfonamide-1,3,4-oxadiazoles using polymer-supported reagents and microwave heating. Tetrahedron 61:5323–5349

    Article  CAS  Google Scholar 

  34. Wang Y, Sauer DR et al (2006) A simple and efficient one step synthesis of 1,3,4-oxadiazoles utilizing polymer-supported reagents and microwave heating. Tetrahedron Lett 47:105–108

    Article  CAS  Google Scholar 

  35. Li Z, Xing Y et al (2006) Microwave-assisted expeditious synthesis of novel carbazole-based 1,3,4-oxadiazoles. Synth Commun 36:3285–3287

    Google Scholar 

  36. Frank PV, Girish KS et al (2007) Solvent-free microwave-assisted synthesis of oxadiazoles containing imidazole moiety. J Chem Sci 119:41–46

    Article  CAS  Google Scholar 

  37. Saeed A (2007) An expeditious, solvent-free synthesis of some 5-aryl-2-(2-hydroxyphenyl)-1,3,4-oxadiazoles. Chem Heterocycl Compd 43:1072–1075

    Article  CAS  Google Scholar 

  38. Polshettiwar V, Varma RS (2008) Greener and rapid access to bio-active heterocycles: one-pot solvent-free synthesis of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles. Tetrahedron Lett 49:879–883

    Article  CAS  Google Scholar 

  39. Pore DM, Mahadik SM et al (2008) Trichloroisocyanuric acid-mediated one-pot synthesis of unsymmetrical 2,5-disubstituted 1,3,4-oxadiazoles at ambient temperature. Synth Commun 38:3121–3128

    Article  CAS  Google Scholar 

  40. Singh S, Pandey OP et al (2009) Microwave assisted synthesis, spectroscopy and biochemical aspects of lanthum (III) and praseodymium (III) complexes with oxadiazole functionalized dithiocarbazinates. J Rare Earths 27:698–704

    Article  Google Scholar 

  41. Han D, Meng XB et al (2009) Efficient synthesis of a series of novel fructose-based 3-acetyl-5-alkyl-2,3-dihydro-1,3,4-oxadiazole derivatives and studies of the reaction mechanism. Tetrahedron Asymmetr 20:399–410

    Article  CAS  Google Scholar 

  42. Wang LN, Han D et al (2009) Microwave-assisted efficient synthesis of glucose-based 3-acetyl-5-alkyl-2,3-dihydro-1,3,4-oxadiazole derivatives catalyzed by sodium acetate. Carbohydr Res 344:2113–2119

    Article  CAS  Google Scholar 

  43. Efimova YA, Karabanovich GG et al (2009) Tetrazoles: LV. Perparation of 2-anilino-5-aryl(hetaryl)-1,3,4-oxadiazoles from 5-substituted tetrazoles under microwave activation. Russ J Org Chem 45:1241–1243

    Article  CAS  Google Scholar 

  44. Xu J, Wang DL et al (2009) Microwave-assisted synthesis and antifungal activity of 2,5-disubstituted-1,3,4-oxadiazoles containing azulene moiety. Synth Commun 39:2196–2204

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Rauf .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 © The Author(s)

About this chapter

Cite this chapter

Rauf, A., Farshori, N.N. (2012). Oxadiazoles. In: Microwave-Induced Synthesis of Aromatic Heterocycles. SpringerBriefs in Molecular Science(), vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1485-4_5

Download citation

Publish with us

Policies and ethics