Skip to main content

Distribution–Efficient Networks

  • Chapter
  • First Online:
  • 462 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 92))

Abstract

Publishing resources on a virtual network is a way to realize efficient data-distribution mechanisms. To this extent, each node needs to discover the other nodes, create neighborhoods and advertize its own resources. This chapter presents different techniques for making resources “discoverable,” considering two approaches dubbed as unstructured networks and structured networks. We discuss properties of different protocols in terms of signaling overheads and distribution efficiency.

All truths are easy to understand once they are discovered; the point is to discover them

Galileo Galilei, Philosopher, Astronomer and Mathematician

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Vu QH et al (2009) Peer-to-peer computing: principles and applications. Springer, Heidelberg

    Google Scholar 

  2. Lua EK et al (2005) A survey and comparison of peer-to-peer overlay network schemes. IEEE Commun Surv Tutor 7:72–93

    Article  Google Scholar 

  3. Buford J et al (2009) P2P networking and applications. Morgan Kaufmann, San Fransisco

    Google Scholar 

  4. Androutsellis-Theotokis S, Spinellis D (2004) A survey of peer-to-peer content distribution technologies. ACM Comput Surv 36:335–371

    Article  Google Scholar 

  5. Ripeanu M et al (2002) Mapping the gnutella network. IEEE Internet Comput 6:50–57

    Google Scholar 

  6. Yang B et al (2004) Evaluating GUESS and non-forwarding peer-to-peer search. International Conference on Distributed Computing Systems, 209–218. doi:10.1109/ICDCS.2004.1281585

  7. Clarke I et al (2001) Freenet: a distributed anonymous information storage and retrieval system. In: Federrath H (ed) Designing privacy enhancing technologies. Springer, Heidelberg, pp 46–66

    Google Scholar 

  8. Saroiu S et al (2003) Measuring and analyzing the characteristics of Napster and Gnutella hosts. Multimedia Syst 9:170–184

    Article  Google Scholar 

  9. Loo BT et al (2005) The case for a hybrid P2P search infrastructure. Peer-to-peer systems III. Springer, Heidelberg, pp 141–150

    Google Scholar 

  10. Stutzbach D, Rejaie R (2005) Characterizing the two-tier Gnutella topology. ACM SIGMETRICS Performance Evaluation Review. ACM, pp 402–403

    Google Scholar 

  11. Exarchakos G, Antonopoulos N (2007) Resource sharing architecture for cooperative heterogeneous P2P overlays. J Netw Syst Manage 15:311–334

    Article  Google Scholar 

  12. Datta A (2010) The gamut of bootstrapping mechanisms for structured overlay networks. Handbook of peer-to-peer networking. Springer, Heidelberg, pp 281–308

    Google Scholar 

  13. Li J et al (2005) Comparing the performance of distributed hash tables under churn. Peer-to-peer systems III. Springer, Heidelberg, pp 87–99

    Google Scholar 

  14. Qu C et al (2006) Cayley DHTs—a group-theoretic framework for analyzing dhts based on cayley graphs. Semantic web and peer-to-peer. Springer, Heidelberg, pp 89–105

    Google Scholar 

  15. Aspnes J, Shah G (2007) Skip graphs. ACM Trans Algorithms 3(37):1–25

    MathSciNet  Google Scholar 

  16. Harvey NJA, Munro JI (2004) Deterministic SkipNet. Inform Process Lett 90:205–208

    Article  MathSciNet  MATH  Google Scholar 

  17. Abraham I et al (2006) Skip B-Trees. Principles of distributed systems. Springer, Heidelberg, pp 366–380

    Google Scholar 

  18. Naor M, Wieder U (2005) Know thy neighbor’s neighbor: better routing for skip-graphs and small worlds. Peer-to-peer systems III. Springer, Heidelberg, pp 269–277

    Google Scholar 

  19. Aberer K et al (2003) P-Grid: a self-organizing structured P2P system. SIGMOD Rec 32:29–33

    Article  Google Scholar 

  20. Stoica I et al (2003) Chord: a scalable peer-to-peer lookup protocol for Internet applications. IEEE/ACM Trans Netw 11:17–32

    Article  Google Scholar 

  21. Garcés-Erice L et al (2003) Hierarchical peer-to-peer systems. Euro-Par 2003 parallel processing. Springer, Heidelberg, pp 1230–1239

    Google Scholar 

  22. Salter J, Antonopoulos N (2007) An optimized two-tier P2P architecture for contextualized keyword searches. Future Gener Comp Syst 23:241–251

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Liotta .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Liotta, A., Exarchakos, G. (2011). Distribution–Efficient Networks. In: Networks for Pervasive Services. Lecture Notes in Electrical Engineering, vol 92. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1473-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1473-1_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1472-4

  • Online ISBN: 978-94-007-1473-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics