Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 2850 Accesses

Abstract

The control system is responsible for the second important task of the DC-DC converter: Regulating the output voltage to the desired level. For the purpose of monolithic DC-DC converters a new set of challenges emerge, both in terms of the control strategy and the basic design of the control system. This is due to the requirement of high switching frequencies and short switching times, needed to guarantee the optimal performance of the monolithic DC-DC converter. Therefore, novel control strategies are proposed in this chapter. These discussions include the principle of the control strategies and the circuits used in the practical chip implementations discussed in this book. In this chapter the two conventional control strategies PWM and PFM are discussed and compared to each other in Sect. 5.1. The Constant On/Off-Time (COOT) control strategy, together with implementation examples for single-phase, single-output and multi-output converters, is explained in Sect. 5.2. The Semi-Constant On/Off-Time (SCOOT) control strategy, together with implementation examples for multi-phase and multiple-output converters, is explained in Sect. 5.3. The Feed-Forward Semi-Constant On/Off-Time (F2-SCOOT) control strategy, together with an implementation example, is discussed in Sect. 5.4. The aspect of start-up, in combination with some start-up circuit implementations, is discussed in Sect. 5.5. Finally, the chapter is concluded in Sect. 5.6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The PFM control technique for DC-DC converters is also referred to as ripple-based control, hysteric control, bang-bang control and one-shot control.

References

  1. W. Al-Hoor, J.A. Abu-Qahouq, L. Huang, W.B. Mikhael, I. Batarseh, Adaptive Digital Controller and Design Considerations for a Variable Switching Frequency Voltage Regulator. IEEE Trans. Power Electron. 24(11), 2589–2602 (2009). doi:10.1109/TPEL.2009.2031439

    Article  Google Scholar 

  2. A. Davoudi, J. Jatskevich, Parasitics Realization in State-Space Average-Value Modeling of PWM DC-DC Converters Using an Equal Area Method. IEEE Trans. Circuits Syst. I, Regul. Pap. 54(9), 1960–1967 (2007). doi:10.1109/TCSI.2007.904686

    Article  Google Scholar 

  3. A. Davoudi, J. Jatskevich, P.L. Chapman, Numerical Dynamic Characterization of Peak Current-Mode-Controlled DC-DC Converters. IEEE Trans. Circuits Syst. II, Express Briefs 56(12), 906–910 (2009). doi:10.1109/TCSII.2009.2035272

    Article  Google Scholar 

  4. C. Deisch, Simple Switching Control Method Changes Power Converter into a Current Source, in IEEE Power Electronics Specialists Conference, 1978, pp. 300–306

    Google Scholar 

  5. D.C. Hamill, D.J. Jeffries, Subharmonics and Chaos in a Controlled Switched-Mode Power Converter. IEEE Trans. Circuits Syst. 35(8), 1059–1061 (1988). doi:10.1109/31.1858

    Article  MathSciNet  Google Scholar 

  6. P. Hazucha, S.T. Moon, G. Schrom, F. Paillet, D. Gardner, S. Rajapandian, T. Karnik, High Voltage Tolerant Linear Regulator with Fast Digital Control for Biasing of Integrated DC-DC Converters. IEEE J. Solid-State Circuits 42(1), 66–73 (2007)

    Article  Google Scholar 

  7. S.S. Hong, B. Choi, Technique for Developing Averaged Duty Ratio Model for DC-DC Converters Employing Constant On-Time Control. IEEE Electron. Lett. 36(5), 397–399 (2000). doi:10.1049/el:20000331

    Article  Google Scholar 

  8. M.K. Kazimierczuk, L.A. Starman, Dynamic Performance of PWM DC-DC Boost Converter with Input Voltage Feedforward Control. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 46(12), 1473–1481 (1999). doi:10.1109/81.809549

    Article  Google Scholar 

  9. W.H. Ki, Analysis of Subharmonic Oscillation of Fixed-Frequency Current-Programming Switch Mode Power Converters. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 45(1), 104–108 (1998). doi:10.1109/81.660771

    Article  Google Scholar 

  10. D. Kwon, G.A. Rinćon-Mora, Single-Inductor-Multiple-Output Switching DC-DC Converters. IEEE Trans. Circuits Syst. II 59(8), 614–618 (2009)

    Article  Google Scholar 

  11. H.P. Le, C.S. Chae, K.C. Lee, S.W. Wang, G.H. Cho, G.H. Cho, A Single-Inductor Switching DC-DC Converter with Five Outputs and Ordered Power-Distributive Control. IEEE J. Solid-State Circuits 42(12), 2706–2714 (2007). doi:10.1109/JSSC.2007.908767

    Article  Google Scholar 

  12. C.Y. Leung, P.K.T. Mok, K.N. Leung, A 1-V Integrated Current-Mode Boost Converter in Standard 3.3/5-V CMOS Technologies. IEEE J. Solid-State Circuits 40(11), 2265–2274 (2005). doi:10.1109/JSSC.2005.857374

    Article  Google Scholar 

  13. H. Li, Z. Li, W.A. Halang, B. Zhang, G. Chen, Analyzing Chaotic Spectra of DC-DC Converters Using the Prony Method. IEEE Trans. Circuits Syst. II, Express Briefs 54(1), 61–65 (2007). doi:10.1109/TCSII.2006.883100

    Article  Google Scholar 

  14. D. Maksimovic, S. Cuk, Switching Converters with Wide DC Conversion Range. IEEE Trans. Power Electron. 6(1), 151–157 (1991)

    Article  Google Scholar 

  15. G.A. Papafotiou, N.I. Margaris, Calculation and Stability Investigation of Periodic Steady States of the Voltage Controlled Buck DC-DC Converter. IEEE Trans. Power Electron. 19(4), 959–970 (2004). doi:10.1109/TPEL.2004.830040

    Article  Google Scholar 

  16. Y. Qiu, M. Xu, K. Yao, J. Sun, F.C. Lee, Multifrequency Small-Signal Model for Buck and Multiphase Buck Converters. IEEE Trans. Power Electron. 21(5), 1185–1192 (2006). doi:10.1109/TPEL.2006.880354

    Article  Google Scholar 

  17. R. Redl, S. Jian, Ripple-Based Control of Switching Regulators, An Overview. IEEE Trans. Power Electron. 24(12), 2669–2680 (2009). doi:10.1109/TPEL.2009.2032657

    Article  Google Scholar 

  18. B. Sahu, G.A. Rincon-Mora, An Accurate, Low-Voltage, CMOS Switching Power Supply with Adaptive On-Time Pulse-Frequency Modulation (PFM) Control. IEEE Trans. Circuits Syst. I, Regul. Pap. 54(2), 312–321 (2007). doi:10.1109/TCSI.2006.887472

    Article  Google Scholar 

  19. B.P. Schweitzer, A.B. Rosenstein, Free Running-Switching Mode Power Regulator: Analysis and Design. IEEE Trans. Aerosp. 2(4), 1171–1180 (1964). doi:10.1109/TA.1964.4319737

    Article  Google Scholar 

  20. B. Serneels, T. Piessens, M. Steyaert, W. Dehaene, A High-Voltage Output Driver in a 2.5-V 0.25 μm CMOS Technology. IEEE J. Solid-State Circuits 40(3), 576–583 (2005). doi:10.1109/JSSC.2005.843599

    Article  Google Scholar 

  21. B. Serneels, High Voltage Line Drivers for XDSL in Nanometer CMOS, PhD thesis, ESAT-MICAS, K.U. Leuven, Belgium, 2007

    Google Scholar 

  22. J. Sun, Small-Signal Modeling of Variable-Frequency Pulsewidth Modulators. IEEE Trans. Aerosp. Electron. Syst. 38(3), 1104–1108 (2002). doi:10.1109/TAES.2002.1039428

    Article  Google Scholar 

  23. M. Wens, K. Cornelissens, M. Steyaert, A Fully-Integrated 0.18 μm CMOS DC-DC Step-Up Converter, Using a Bondwire Spiral Inductor, in IEEE Proceedings of the European Solid-State Circuits Conference, vol. 33, 2007, pp. 268–271

    Google Scholar 

  24. M. Wens, M. Steyaert, A Fully-Integrated 0.18 μm CMOS DC-DC Step-Down Converter, Using a Bondwire Spiral Inductor, in IEEE Proceedings of the Custom Integrated Circuits Conference, vol. 30, 2008, pp. 17–20

    Google Scholar 

  25. M. Wens, M. Steyaert, A Fully-Integrated 130 nm CMOS DC-DC Step-Down Converter, Regulated by a Constant On/Off-Time Control System, in IEEE Proceedings of the European Solid-State Circuits Conference, vol. 34, 2008, pp. 62–65

    Google Scholar 

  26. M. Wens, M. Steyaert, An 800 mW Fully-Integrated 130 nm CMOS DC-DC Step-Down Multi-Phase Converter, with On-Chip Spiral Inductors and Capacitors, in IEEE Energy Conversion Congress and Exposition, vol. 1, 2009, pp. 3706–3709

    Chapter  Google Scholar 

  27. G.W. Wester, R.D. Middlebrook, Low-Frequency Characterization of Switched DC-DC Converters. IEEE Trans. Aerosp. Electron. Syst. AES-9(3), 376–385 (1973). doi:10.1109/TAES.1973.309723

    Article  Google Scholar 

  28. T.F. Wu, Y.K. Chen, Modeling PWM DC/DC Converters out of Basic Converter Units. IEEE Trans. Power Electron. 13(5), 870–881 (1998). doi:10.1109/63.712294

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Wens .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wens, M., Steyaert, M. (2011). Control Systems. In: Design and Implementation of Fully-Integrated Inductive DC-DC Converters in Standard CMOS. Analog Circuits and Signal Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1436-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1436-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1435-9

  • Online ISBN: 978-94-007-1436-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics