Skip to main content

Hydrogen Energy

  • Chapter
  • First Online:
Energy Resources and Systems

Abstract

Hydrogen may be considered as a secondary energy source, since it is not available as a pure hydrogen gas. Pure hydrogen must be produced from its compound using another energy source prior to its use. For example, the electricity that is produced from a primary energy source can be used to produce hydrogen from water by electrolysis. The supply of hydrogen on demand also requires a storage system. Hydrogen production, storage, and distribution methods are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennaceur K, Clark B, Orr FM Jr, Ramakrishnan TS, Roulet C, Stout E (2005) Hydrogen: a future energy carrier? Oilfield Rev 17(1):30–41

    Google Scholar 

  2. Ohi J (2005) Hydrogen energy cycle: an overview. J Mater Res 20(12):3180–3187

    Article  Google Scholar 

  3. Kruger P (2004) Electric power required in the world by 2050 for electric power and hydrogen fuel. World nuclear association annual symposium, 8–10 Sept 2004, London

    Google Scholar 

  4. Momirlan M, Veziroglu TN (2002) Current status of hydrogen energy. Renew Sustain Energy Rev 6:141–179

    Article  Google Scholar 

  5. Christen K (2005) NRC finds hydrogen economy on track. Environ Sci Technol 39(19):398A

    Article  Google Scholar 

  6. Penner SS (2005) Steps toward the hydrogen economy. Energy (Amsterdam, Neth) 31(1):33–43

    Google Scholar 

  7. Turner JA, Williams MC, Rajeshwar K (2004) Hydrogen economy based on renewable energy sources. Electrochem Soc Interface 13(3):24–30

    Google Scholar 

  8. Anon (2008) Event review: the potential for hydrogen as an energy source: the hydrogen economy. Chem Ind (London, UK), 21 April 2008 (8):30

    Google Scholar 

  9. Chapman PK, Haynes WE (2005) Power from space and the hydrogen economy. Acta Astronaut 57(2–8):372–383

    Article  Google Scholar 

  10. Cooper HW (2007) Fuel cells, the hydrogen economy and you. Chem Eng Prog 103(11):34–43

    Google Scholar 

  11. Crabtree GW, Dresselhaus MS, Buchanan MV (2004) The hydrogen economy. Phys Today 57(12):39–44

    Article  Google Scholar 

  12. Eikerling M, Kornyshev A, Kucernak A (2007) Driving the hydrogen economy. Phys World 20(7):32–36

    Google Scholar 

  13. Marban G, Valdes-Solis T (2008) Towards the hydrogen economy? Int J Hydrogen Energy 33(2):927

    Article  Google Scholar 

  14. Suresh B, Yoneyama M, Schlag S (2007) Hydrogen. SRI Consulting, Menlo Park

    Google Scholar 

  15. Energy Information Administration (EIA) (2008) The impact of increased use of hydrogen on petroleum consumption and carbon dioxide emissions. Report No. SR-OIAF-CNEAF/ 2008-04

    Google Scholar 

  16. An “optimally plausible” solution based on NRC report.3 3 (2004) The NRC report. The hydrogen economy: opportunities, costs, barriers, and R&D needs. The National Academies Press, Washington, DC

    Google Scholar 

  17. Argonne National Laboratory (2005) Hydrogen demand, production and cost by region to 2050. Report No. ANL/ESD/05-2

    Google Scholar 

  18. College of the Desert (2001) Module 3 hydrogen use in internal combustion engine. Hydrogen fuel cell engines and related technologies: rev 0, December 2001

    Google Scholar 

  19. Van Blarigan P (1996) Development of a hydrogen fueled internal combustion engine designed for single speed/power operation. SAE Paper No. 961690

    Google Scholar 

  20. Van Blarigan P, Keller JO (1998) A hydrogen fuelled internal combustion engine designed for speed/power operation. Int J Hydrogen Energy 23(7):603–609

    Article  Google Scholar 

  21. Verhelst S, Wallner T (2009) Hydrogen fueled internal combustion engines. Prog Energy Combust Sci 35(6):490–527

    Article  Google Scholar 

  22. Sato Y, Kawamura A, Yanai T, Naganuma K, Yamane K, Takagi Y (2009) Research and development of hydrogen direct injection internal combustion engine system. In: Proceedings of the 4th IASME/WSEAS international conference on energy and environment, Cambridge, UK, pp 289–296

    Google Scholar 

  23. Welch AB, Mumford D, Munshi S, Holbery J, Boyer B, Younkins M, Jung H (2008) Challenges in developing hydrogen direct injection technology for internal combustion engines. SAE Paper No. 2008-01-2379

    Google Scholar 

  24. White CM, Steeper RR, Lutz AE (2006) The hydrogen fueled internal combustion engine: a technical review. Int J Hydrogen Energy 31(10):1292–1305

    Article  Google Scholar 

  25. Berckmüller M, Rottengruber H, Eder A, Brehm N, Elsässer G, Müller-Alander G, Schwarz C (2003) Potentials of a charged SI-hydrogen engine. SAE paper no. 2003-01-3210

    Google Scholar 

  26. Jaura AK, Ortmann W, Stuntz R, Natkin B, Grabowski T (2004) Ford’s H2RV: an industry first HEV propelled with an H2 fueled engine – a fuel efficient and clean solution for sustainable mobility. SAE paper no. 2004-01-0058

    Google Scholar 

  27. Natkin RJ, Tang X, Boyer B, Oltmans B, Denlinger A, Heffel JW (2003) Hydrogen IC engine boosting performance and NOx study. SAE paper no. 2003-01-0631

    Google Scholar 

  28. Escher WJD (1975) The hydrogen-fueled internal combustion engine. A technical survey of contemporary U.S. projects. Technical Report, Escher Technology Associates, Inc., Report for the US Energy and Development Administration, Report No. TEC74/005

    Google Scholar 

  29. Department of Energy (2004) Hydrogen production overview, Fact sheet series. www.eere.energy.gov/hydrogenandfuelcells/. Accessed 20 Nov 2010

  30. Singh M, Moore J, Shadis W (2005) Hydrogen demand, production, and cost by region to 2050. Argonne National Laboratory Report No. ANL/ESD/05-2

    Google Scholar 

  31. European Commission (2008) Hyways the European hydrogen roadmap. The sixth framework programme priority 1.6 sustainable development, global change and ecosystems, Report No. cEUR 23123

    Google Scholar 

  32. Mintz M, Gillette J, Elgowainy A (2007) Hydrogen production and delivery analysis in U.S. markets: cost, energy and greenhouse gas emissions. In: Proceeding of international conference on non-electric applications of nuclear power: seawater desalination, hydrogen production and other industrial applications Oarai, Japan, 16–19 Apr 2007

    Google Scholar 

  33. Aeatechnology Environment (2002) The feasibility, costs and markets for hydrogen production. A study for British Energy, September 2002. http://www.british-energy.com/documents/The_Feasibility,_Costs_and_Markets_for_Hydrogen_Production.pdf. Accessed 20 Nov 2010

  34. Hinkle J (2007) Hydrogen supply and demand opportunities. A report to National Hydrogen Association, 22 Feb 2007. http://www.hydrogenassociation.org/policy/resources/21jun07_supplyAndDemand.pdf. Accessed 20 Nov 2010

  35. Dominguez M (2006) Hydrogen generation: state of the art and future needs. European Commissions, FISA 2006 conference on EU research and training in reactor systems, 16 Mar 2006

    Google Scholar 

  36. Yacobucci BD, Curtright AE (2004) A hydrogen economy and fuel cells: an overview. CRS report for congress. Order Code RL32196 Congressional Research Service, The Library of Congress

    Google Scholar 

  37. Hydrogen production processes. National Hydrogen Association (August 2004) Hydrogen production overview. www.HydrogenAssociation.org

  38. Hartstein A (2003) Hydrogen production from natural gas. In: Proceeding of the hydrogen coordination meeting. Hydrogen plants for the new millennium. Foster Wheeler, 2 June 2003 www.fwc.com/publications/tech_papers2/files/WARD1109.pdf

  39. Padro CEG, Putsche V (1999) Survey of the economics of hydrogen technologies. National Renewable Energy Laboratory, Sept 1999

    Book  Google Scholar 

  40. Zachariah-Wolff JL, Egyedi TM, Hemmes K (2007) From natural gas to hydrogen via the Wobbe index: the role of standardized gateways in sustainable infrastructure transitions. Int J Hydrogen Energy 32(9):1235–1245

    Article  Google Scholar 

  41. New York State Energy Research and Development Authority. Hydrogen Fact Sheet Hydrogen production Steam methane reforming (SMR)

    Google Scholar 

  42. Simpson AP, Lutz AE (2007) Exergy analysis of hydrogen production via steam methane reforming. Int J Hydrogen Energy 32:4811–4820

    Article  Google Scholar 

  43. Fulcheri L, Schwab Y (1995) From methane to hydrogen, carbon black and water. Int J Hydrogen Energy 20(3):197–202

    Article  Google Scholar 

  44. Gaudernack B, Lynum S (1998) Hydrogen from natural gas without release of CO2 to the atmosphere. Int J Hydrogen Energy 23(12):1087–1093

    Article  Google Scholar 

  45. Li Y, Chen J, Qin Y, Chang L (2000) Simultaneous production of hydrogen and nanocarbon from decomposition of methane on a nickel-based catalyst. Energy Fuels 14:1188–1194

    Article  Google Scholar 

  46. Muradov NZ (2001) Hydrogen via methane decomposition: an application of decarbonization of fossil fuels. Int J Hydrogen Energy 26:1165–1175

    Article  Google Scholar 

  47. Otsuka K, Shigeta Y, Takenaka S (2002) (Japan) Production of hydrogen from gasoline range alkanes with reduced CO2 emissions. Int J Hydrogen Energy 27:11–18

    Article  Google Scholar 

  48. Ahmed S, Krumpelt M (2001) Hydrogen from hydrocarbon fuels for fuel cells. Int J Hydrogen Energy 26:291–301

    Article  Google Scholar 

  49. Astanovsky DL, Astanovsky LZ (2001) Hydrogen production by steam catalytic natural gas conversion with using drilling gas pressure. In: Proceedings of the National Hydrogen Associations 12th Annual U.S. Hydrogen Meeting, March, Washington, D.C., USA.

    Google Scholar 

  50. Balthasar W, Hambleton DJ (1978) Industrial scale production of hydrogen from natural gas, naphtha and coal. In: Veziroglu TN, Seifritz W (eds) Hydrogen energy system: proceedings of the 2nd world hydrogen energy conference, Zurich, Switzerland, 21–24 August, vol 2. Pergamon Press, Oxford, pp 1007–1014

    Google Scholar 

  51. Bromberg L, Cohn DR, Rabinovich A (1998) Plasma reforming of methane. Energy Fuels 12:11–18

    Article  Google Scholar 

  52. Pruden B (1999) Hydrogen production from natural gas. In: Proceedings 9th Canadian hydrogen conference, Vancouver, BC, Canada, 7–10 Feb, pp 494–501

    Google Scholar 

  53. Bhat SA, Sadhukhan J (2008) Process intensification aspects for steam methane reforming: an overview. AlChE J 55(2):408–422

    Article  Google Scholar 

  54. Harale A, Hwang HT, Liu PKT, Sahimi M, Tsotsis TT (2009) Design aspects of the cyclic hybrid adsorbent-membrane reactor (HAMR) system for hydrogen production. Chem Eng Sci 65(1):427–435

    Google Scholar 

  55. Hopkinson BE (1975) Materials selection for steam reforming hydrogen plants. Interam Conf Mater Technol, [Proc], 4th, pp 181–185

    Google Scholar 

  56. Jasinski M, Dors M, Mizeraczyk J (2008) Production of hydrogen via methane reforming using atmospheric pressure microwave plasma. J Power Sources 181(1):41–45

    Article  Google Scholar 

  57. Mathure PV, Patwardhan AV, Saha RK (2007) Steam reforming of methane for bulk and small scale production of hydrogen. Indian Chem Eng 49(4):480–491

    Google Scholar 

  58. Spath PL, Mann MK (2001) Life cycle assessment of hydrogen production via natural gas steam reforming. National Renewable Energy Laboratory. Report No. NREL/TP-570-27637

    Google Scholar 

  59. Elder R (2009) Thermochemical water splitting for hydrogen production. http://www.shef.ac.uk/content/1/c6/07/18/96/12\%20Mar\%2009\%20Thermochemical\%20water\%20splitting\%20for\%20hydrogen\%20production.pdf. Accessed 5 Dec 2010

  60. Albrecht KO, Satrio JA, Shanks BH, Wheelock TD (2010) Application of a combined catalyst and sorbent for steam reforming of methane. Ind Eng Chem Res 49(9):4091–4098

    Article  Google Scholar 

  61. Borowiecki T, Denis A, Panczyk M, Gac W, Stolecki K (2008) Steam reforming of methane on the Ni-Re catalysts. Pol J Chem 82(9):1733–1742

    Google Scholar 

  62. Choi SO, Moon SH (2009) Performance of La1-xCexFe0.7Ni0.3O3 perovskite catalysts for methane steam reforming. Catal Today 146(1–2):148–153

    Google Scholar 

  63. Graf PO, Mojet BL, Lefferts L (2009) The effect of potassium addition to Pt supported on YSZ on steam reforming of mixtures of methane and ethane. Appl Catal A Gen 362(1–2): 88–94

    Article  Google Scholar 

  64. Hossain MA, Trambouze Y (1984) Steam reforming of methane to synthesis gas over cobalt catalysts. Front Chem React Eng [Proc – Int Chem React Eng Conf] 2:23–35

    Google Scholar 

  65. Liu H-M, Ye Q, Xu B-Q (2007) Efficient hydrogen production via stepwised steam reforming of methane using nanocomposite Ni/ZrO2 catalyst. Stud Surf Sci Catal 172:473–476 (Science and Technology in Catalysis 2006)

    Google Scholar 

  66. Martavaltzi CS, Pampaka EP, Korkakaki ES, Lemonidou AA (2010) Hydrogen production via steam reforming of methane with simultaneous CO2 capture over CaO-Ca12Al14O33. Energy Fuels 24(4):2589–2595

    Article  Google Scholar 

  67. Moon DJ, Kim DH, Lee BG, Kim MJ, Hong SI (2008) Hydrogen production: steam reforming of light hydrocarbon over Ni-based catalysts. Prepr Symp Am Chem Soc, Div Fuel Chem 53(2):620–621

    Google Scholar 

  68. Mukherjee DK, Sahay BP, Bhattacharyya NB (1974) Catalytic methane-steam reformation: effect of temperature and partial pressure of methane. Technology(Sindri, India) 11(1):3–8

    Google Scholar 

  69. Ross JRH, Steel MCF, Zeini-Isfahani A (1975) Steam reforming of methane over nickel catalysts. Mech Hydrocarbon React, Symposium, pp 201–214

    Google Scholar 

  70. Ryi S-K, Park J-S, Kim D-K, Kim T-H, Kim S-H (2009) Methane steam reforming with a novel catalytic nickel membrane for effective hydrogen production. J Membr Sci 339 (1–2):189–194

    Article  Google Scholar 

  71. Sabirova ZA, Danilova MM, Kuzin NA, Kirillov VA, Zaikovskii VI, Krieger TA (2009) Reinforced nickel catalysts for steam reforming of methane to synthesis gas. React Kinet Catal Lett 97(2):363–370

    Article  Google Scholar 

  72. Schaedel BT, Duisberg M, Deutschmann O (2009) Steam reforming of methane, ethane, propane, butane, and natural gas over a rhodium-based catalyst. Catal Today 142(1–2):42–51

    Article  Google Scholar 

  73. Shen W, Komatsubara K, Hagiyama T, Yoshida A, Naito S (2009) Steam reforming of methane over ordered mesoporous Ni-Mg-Al oxides. Chem Commun(Cambridge, UK) 42:6490–6492

    Google Scholar 

  74. Van Hook JP (1980) Methane-steam reforming. Catal Rev Sci Eng 21(1):1–51

    Article  Google Scholar 

  75. Wu P, Li X, Ji S, Lang B, Habimana F, Li C (2009) Steam reforming of methane to hydrogen over Ni-based metal monolith catalysts. Catal Today 146(1–2):82–86

    Article  Google Scholar 

  76. Abbas HF, Wan Daud WMA (2010) Hydrogen production by methane decomposition: a review. Int J Hydrogen Energy 35(3):1160–1190

    Article  Google Scholar 

  77. Adachi T (1975) Uses of nuclear reactors. Gendai Kagaku 55:24–26

    Google Scholar 

  78. Albertazzi S, Basile F, Vaccari A (2004) Catalytic properties of hydrotalcite-type anionic clays. Interface Sci Technol 1:496–546 (Clay Surfaces)

    Google Scholar 

  79. Al-Ubaid AS (1987) Steam reforming of hydrocarbons catalyzed over nickel supported catalysts. Arabian J Sci Eng 12(2):189–198

    Google Scholar 

  80. Barelli L, Bidini G, Gallorini F, Servili S (2008) Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: a review. Energy (Oxford, UK) 33(4):554–570

    Google Scholar 

  81. Bridger GW (1973) Coking prevention in steam reforming of methane. Redaktionsgasen Huettenw, Symposium Series 7, Published by Komm Gaserzeugung Int Gas-Union, Karlsruhe, Germany, pp 22

    Google Scholar 

  82. Choudhary TV, Goodman DW (2000) Methane activation on Ni and Ru model catalysts. J Mol Catal A: Chem 163(1–2):9–18

    Article  Google Scholar 

  83. Graboski MS (1984) The production of synthesis gas from methane, coal and biomass. Catal Convers Synth Gas Alcohols Chem, [Proc Symp] 37–50

    Google Scholar 

  84. Hu YH, Ruckenstein E (2004) Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming. Adv Catal 48:297–345

    Article  Google Scholar 

  85. Imai N (1976) Development of HTR methane steam reforming at the Juelich Nuclear Research Center. Kagaku Kogaku 40(12):646–647

    Google Scholar 

  86. Inui T (1999) High speed hydrogen production technology. In: Ekuserugi Kogaku, Yoshida K (ed) Kyoritsu Shuppan, Tokyo, Japan. 195–204

    Google Scholar 

  87. Jackson PJ, Seddon D (1984) New Fischer-Tropsch routes for the conversion of Australian natural gas to transport fuels. Winning in the Competitive World, 12th Australian Chemical Engineering Conference, vol 2, pp 641–648

    Google Scholar 

  88. Kuo JCW (1992) Evaluation of direct methane conversion processes. NATO ASI Ser E: Appl Sci 225(Chemical Reactor Technology for Environmentally Safe Reactors and Products), pp 183–226

    Google Scholar 

  89. Ledakowicz S (1976) Possibilities of using high-temperature reactors in chemical technology. Chemik 29(3):82–86

    Google Scholar 

  90. S-w L, Y-d L (2005) Research advances on methane reforming for hydrogen. Wuhan Huagong Xueyuan Xuebao 27(1):20–47

    Google Scholar 

  91. Mayer B, Koepsel R (1978) Reaction kinetics of the methane-water vapor conversion on the GIAP 3–6 N catalyst. Freiberg Forschungsh A A591:59–114

    Google Scholar 

  92. Pfeifer P, Haas-Santo K, Goerke O, Bohn L, Schubert K (2005) Fuel to hydrogen – an overview over fuel conversion activities at the Institute for Micro Process Engineering. In: AIChE Spring National Meeting, Conference Proceedings, Atlanta, GA, United States, 10–14 Apr 2005: 136H/1-136H/5

    Google Scholar 

  93. Rostrup-Nielsen JR (1981) New uses of natural gas by steam reforming processes. Dansk Kemi 62(1):6–10

    Google Scholar 

  94. Scarpiello DA (1996) Catalytic conversion of methane. In: Proceedings of the international gas research conference, vol 2, pp 2707–2716

    Google Scholar 

  95. Sugisawa M, Teramura K, Kubonra J, Domen K (2008) Nickel oxide catalysts for methane steam reforming. Kemikaru Enjiniyaringu 53(6):423–426

    Google Scholar 

  96. Tada A (2008) Application of direct methane reforming for hydrogen power generation and application of nano carbon materials. Metan Kodo Kagaku Henkan Gijutsu Shusei, pp 222–233

    Google Scholar 

  97. Takamura H (2005) Hydrogen production from methane by using oxygen permeable ceramics. Materia 44(3):211–215

    Google Scholar 

  98. Tomishige K (2001) Catalytic process for synthesis gas production from natural gas. Kagaku Kogyo 52(10):767–772

    Google Scholar 

  99. Tomishige K (2009) Production of synthesis gas and hydrogen by oxidative steam reforming of methane: development of Ni catalysts with trace noble metals. Nenryo Denchi 8(3):57–66

    Google Scholar 

  100. Yasuda I, Shirasaki Y (2006) Development of highly-efficient hydrogen production system based on membrane reactor from natural gas. Shokubai 48(5):296–301

    Google Scholar 

  101. Zheng W, Li J, Wu H, Liu S (2008) Research progress on catalysts for stepwise steam reforming of methane for hydrogen production. Jingxi Shiyou Huagong Jinzhan 9(7):24–28

    Google Scholar 

  102. Berrocal GP, Da Silva ALM, Assaf JM, Albornoz A, MdC R (2010) Novel supports for nickel-based catalysts for the partial oxidation of methane. Catal Today 149(3–4):240–247

    Article  Google Scholar 

  103. Beznis NV, Weckhuysen BM, Bitter JH (2010) Partial oxidation of methane over co-zsm-5: tuning the oxygenate selectivity by altering the preparation route. Catal Lett 136(1–2):52–56

    Article  Google Scholar 

  104. Cheng YS, Pena MA, Yeung KL (2009) Hydrogen production from partial oxidation of methane in a membrane reactor. J Taiwan Inst Chem Eng 40(3):281–288

    Article  Google Scholar 

  105. Ferreira AC, Ferraria AM, Botelho do Rego AM, Goncalves AP, Correia MR, Gasche TA, Branco JB (2009) Partial oxidation of methane over bimetallic nickel-lanthanide oxides. J Alloy Comp 489(1):316–323

    Google Scholar 

  106. Ferreira AC, Ferraria AM, Rego AM Botelho do, Goncalves AP, Girao AV, Correia R, Gasche TA, Branco JB (2010) Partial oxidation of methane over bimetallic copper-cerium oxide catalysts. J Mol Catal A: Chem 320(1–2):47–55

    Google Scholar 

  107. Ferreira AC, Goncalves AP, Gasche TA, Ferraria AM, Rego AM Botelho do, Correia MR, Bola AM, Branco JB (2010) Partial oxidation of methane over bimetallic copper- and nickel-actinide oxides (Th, U). J Alloy Comp 497(1–2):249–258

    Google Scholar 

  108. Fleys M, Simon Y, Marquaire P-M, Lapicque F (2009) Hydrogen production by catalytic partial oxidation of methane. Study of reaction mechanism. Récents Progrès en Génie des Procédés – Numéro 96 – 2007 ISBN 2-910239-70-5, Ed. SFGP, Paris, France

    Google Scholar 

  109. Gubanova EL, Schuurman Y, Sadykov VA, Mirodatos C, van Veen AC (2009) Evaluation of kinetic models for the partial oxidation of methane to synthesis gas over a Pt/PrCeZrOx catalyst coated on a triangular monolith. Chem Eng J (Amsterdam, Neth) 154(1–3):174–184

    Google Scholar 

  110. Habimana F, Li X, Ji S, Lang B, Sun D, Li C (2009) Effect of Cu promoter on Ni-based SBA-15 catalysts for partial oxidation of methane to syngas. J Nat Gas Chem 18(4):392–398

    Article  Google Scholar 

  111. Prangsri-aroon S, Viravathana P, Worayingyong (2010) A partial oxidation of methane to syngas by LaCoO3 oxidative catalysts. In: Abstracts of Papers, 239th ACS National Meeting, San Francisco, CA, United States, 21–25 Mar 2010: PETR-12

    Google Scholar 

  112. Salazar-Villalpando MD, Reyes B (2009) Hydrogen production over Ni/ceria-supported catalysts by partial oxidation of methane. Int J Hydrogen Energy 34(24):9723–9729

    Article  Google Scholar 

  113. Schmal M, Perez CA, Teixeira da Silva V, Padilha LF (2010) Hydrogen and ethylene production from partial oxidation of methane on CuCe, CuZr mixed oxides and ZrO2 catalysts. Appl Catal A Gen 375(2):205–212

    Article  Google Scholar 

  114. Shang R, Wang Y, Jin G, Guo X-Y (2009) Partial oxidation of methane over nickel catalysts supported on nitrogen-doped SiC. Catal Commun 10(11):1502–1505

    Article  Google Scholar 

  115. Kothari R, Tyagi VV, Pathak A (2010) Waste-to-energy: a way from renewable energy sources to sustainable development. Renew Sustain Energy Rev 14(9):3164–3170

    Article  Google Scholar 

  116. Cai X, Cai Y, Lin W (2008) Autothermal reforming of methane over Ni catalysts supported over ZrO2-CeO2-Al2O3. J Nat Gas Chem 17(2):201–207

    Article  Google Scholar 

  117. Cai X, Dong X, Lin W (2006) Autothermal reforming of methane over Ni catalysts supported on CuO-ZrO2-CeO2-Al2O3. J Nat Gas Chem 15(2):122–126

    Article  Google Scholar 

  118. Cao L, Ni C, Yuan Z, Wang S (2009) Autothermal reforming of methane over CeO2-ZrO2-La2O3 supported Rh catalyst. Catal Lett 131(3–4):474–479

    Article  Google Scholar 

  119. Ciambelli P, Palma V, Palo E, Iaquaniello G (2009) Natural gas autothermal reforming: an effective option for a sustainable distributed production of hydrogen. In: Barbaro P, Bianchini C (eds) Catalysis for sustainable energy production, Wiley-VCH Verlag GmbH, Weinheim, Germany, pp 287–319

    Chapter  Google Scholar 

  120. Ciambelli P, Palma V, Palo E, Sannino D (2005) Hydrogen production via catalytic autothermal reforming of methane. World Congress of Chemical Engineering, 7th, Glasgow, United Kingdom, 10–14 July 2005: 86113/1-86113/9

    Google Scholar 

  121. Dias JAC, Assaf JM (2008) Autothermal reforming of methane over Ni/gamma -Al2O3 promoted with Pd. Appl Catal A Gen 334(1–2):243–250

    Article  Google Scholar 

  122. Kim SH, Chung JH, Kim YT, Han J, Yoon SP, Nam S-W, Lim T-H, Lee H-I (2009) Disk-type porous Ni-Cr bulk catalyst for hydrogen production by autothermal reforming of methane. Catal Today 146(1–2):96–102

    Article  Google Scholar 

  123. Lee WS, Kim TY, Woo SI (2010) High-throughput screening for the promoters of alumina supported Ni catalysts in autothermal reforming of methane. Top Catal 53(1–2):123–128

    Article  Google Scholar 

  124. Meira de Souza AEA, Maciel LJL, Medeiros de Lima Filho N, Moraes de Abreu CA (2010) Catalytic activity evaluation for hydrogen production via autothermal reforming of methane. Catal Today 149(3–4):413–417

    Article  Google Scholar 

  125. Nagaoka K, Eiraku T, Nishiguchi H, Takita Y (2006) Ni/(rare earth phosphate) as a new effective catalyst for autothermal reforming of methane. Chem Lett 35(6):580–581

    Article  Google Scholar 

  126. Rabe S, Truong T-B, Vogel F (2007) Catalytic autothermal reforming of methane: performance of a kW scale reformer using pure oxygen as oxidant. Appl Catal A Gen 318:54–62

    Article  Google Scholar 

  127. Ratnasamy C, Wagner JP, Tackett D (2004) Production of hydrogen by autothermal reforming of methane and simulated natural gas. In: AIChE Spring National Meeting, Conference Proceedings, New Orleans, LA, United States, 25–29 Apr 2004, pp 177–181

    Google Scholar 

  128. Souza MMVM, Schmal M (2005) Autothermal reforming of methane over Pt/ZrO2/Al2O3 catalysts. Appl Catal A Gen 281(1–2):19–24

    Article  Google Scholar 

  129. Wang G, Coppens M-O (2010) Rational design of hierarchically structured porous catalysts for autothermal reforming of methane. Chem Eng Sci 65(7):2344–2351

    Article  Google Scholar 

  130. Ayabe S, Omoto H, Utaka T, Kikuchi R, Sasaki K, Teraoka Y, Eguchi K (2003) Catalytic autothermal reforming of methane and propane over supported metal catalysts. Appl Catal A Gen 241(1):261–269

    Article  Google Scholar 

  131. Fletcher EA, Moen RL (1977) Hydrogen and oxygen from water. Science 197:1050

    Google Scholar 

  132. Ihara S (1980) On the study of hydrogen production from water using solar thermal energy. Int J Hydrogen Energy 5(5):527–534

    Article  Google Scholar 

  133. Ohta T (1979) Solar hydrogen energy system. Pergamon Press, Oxford, p 59

    Google Scholar 

  134. Kogan A (2000) Direct solar thermal splitting of water and on-site separation of the products-IV. Development of porous ceramic membranes for a solar thermal water-splitting reactor. Int J Hydrogen Energy 25:1043–1050

    Google Scholar 

  135. Yalcin S (1989) A review of nuclear hydrogen production. Int J Hydrogen Energy 14(8):551–561

    Article  Google Scholar 

  136. Verfondern K (2007) Nuclear energy for hydrogen production. Schriften des Forschungszentrums Juelich, Reihe Energietechnik/Energy Technology 58:i-ii, 1–185

    Google Scholar 

  137. Ryland DK, Li H, Sadhankar RR (2007) Electrolytic hydrogen generation using CANDU nuclear reactors. Int J Energy Res 31(12):1142–1155

    Article  Google Scholar 

  138. Marcus GH (2009) An international overview of nuclear hydrogen production programs. Nucl Technol 166(1):27–31

    Google Scholar 

  139. Verfondern K (2005) Nuclear hydrogen production. Nachrichten – Forschungszentrum Karlsruhe 37(3):124–128

    Google Scholar 

  140. Schulten R, Barnert H, Fedders H, Grziwa G, Schulte A (1976) The concept of ”nuclear hydrogen production” and progress of work in the Nuclear Research Center Juelich. In: Proceedings of the 1st World Hydrogen Energy Conference, vol 1, pp 1A, 19–32

    Google Scholar 

  141. Uhrig RE (2008) Producing hydrogen using nuclear energy. Int J Nucl Hydrogen Prod Appl 1(3):179–193

    Article  Google Scholar 

  142. Kasai S, Fujiwara S, Yamada K, Ogawa T, Matsunaga K, Yoshino M, Hoashi E, Makino S (2009) Nuclear hydrogen production by high-temperature electrolysis. Nihon Genshiryoku Gakkai Wabun Ronbunshu 8(2):122–141

    Google Scholar 

  143. O’Brien JE, Stoots CM, Herring JS, Hartvigsen JJ (2006) Hydrogen production performance of a 10- cell planar solid-oxide electrolysis stack. J Fuel Cell Sci Technol 3:213–219

    Article  Google Scholar 

  144. O’Brien JE, Stoots CM, Herring JS, Hartvigsen JJ (2007) Performance of planar high-temperature electrolysis stacks for hydrogen production from nuclear energy. Nucl Technol 158:118–131

    Google Scholar 

  145. Hawkes GL, O’Brien JE, Stoots CM, Herring JS (2007) CFD model of a planar solid oxide electrolysis cell for hydrogen production from nuclear energy. Nucl Technol 158:132–144

    Google Scholar 

  146. Herring JS, O’Brien JE, Stoots CM, Hawkes GL (2007) Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology. Int J Hydrogen Energy 32(4):440–450

    Article  Google Scholar 

  147. Ivy J (2004) Summary of electrolytic hydrogen production. NREL Report NREL/MP-560-36734, Sept 2004

    Google Scholar 

  148. Rivera-Tinoco R, Mansilla C, Bouallou C, Werkoff F (2008) Techno-economic study of hydrogen production by high temperature electrolysiscoupled with an epr, sfr or htr – water steam production and coupling possibilities. Int J Nucl Hydrogen Prod Appl 1(3):249–266

    Article  Google Scholar 

  149. Anzieu P, Aujollet P, Barbier D, Bassi A, Bertrand F, Duigou AL, Leybros J, Rodriguez G (2008) Coupling a hydrogen production process to a nuclear reactor. Int J Nucl Hydrogen Prod Appl 1(3):207–218

    Article  Google Scholar 

  150. Bo Y, Wenqiang Z, Jingming X, Jing C (2010) Status and research of highly efficient hydrogen production through high temperature steam electrolysis at INET. Int J Hydrogen Energy 35(7):2829–2835

    Article  Google Scholar 

  151. Fujiwara S, Kasai S, Yamauchi H, Yamada K, Makino S, Matsunaga K, Yoshino M, Kameda T, Ogawa T, Momma S, Hoashi E (2008) Hydrogen production by high temperature electrolysis with nuclear reactor. Prog Nucl Energy 50(2–6):422–426

    Article  Google Scholar 

  152. Harvego EA, McKellar MG, O’Brien JE, Herring JS (2009) Parametric evaluation of large-scale high-temperature electrolysis hydrogen production using different advanced nuclear reactor heat sources. Nucl Eng Des 239(9):1571–1580

    Article  Google Scholar 

  153. Mansilla C, Sigurvinsson J, Bontemps A, Maréchal A, Werkoff F (2007) Heat management for hydrogen production by high temperature steam electrolysis. Energy 32(4):423–430

    Article  Google Scholar 

  154. O’Brien JE, McKellar MG, Harvego EA, Stoots CM (2010) High-temperature electrolysis for large-scale hydrogen and syngas production from nuclear energy – summary of system simulation and economic analyses. Int J Hydrogen Energy 35(10):4808–4819

    Article  Google Scholar 

  155. Shin Y, Park W, Chang J, Park J (2007) Evaluation of the high temperature electrolysis of steam to produce hydrogen. Int J Hydrogen Energy 32(10–11):1486–1491

    Article  Google Scholar 

  156. Stoots CM, O’Brien JE, Condie KG, Hartvigsen JJ (2010) High-temperature electrolysis for large-scale hydrogen production from nuclear energy: experimental investigations. Int J Hydrogen Energy 35(10):4861–4870

    Article  Google Scholar 

  157. Udagawa J, Aguiar P, Brandon NP (2007) Hydrogen production through steam electrolysis: model-based steady state performance of a cathode-supported intermediate temperature solid oxide electrolysis cell. J Power Sources 166(1):127–136

    Article  Google Scholar 

  158. Utgikar V, Thiesen T (2006) Life cycle assessment of high temperature electrolysis for hydrogen production via nuclear energy. Int J Hydrogen Energy 31(7):939–944

    Article  Google Scholar 

  159. Yu B, Zhang W, Chen J, Xu J, Wang S (2008) Advance in highly efficient hydrogen production by high temperature steam electrolysis. Sci China B Chem 51(4):289–304

    Article  Google Scholar 

  160. Yildiz B, Kazimi MS (2006) Efficiency of hydrogen production systems using alternative nuclear energy technologies. Int J Hydrogen Energy 31:77–92

    Article  Google Scholar 

  161. O’Brien JE, Stoots CM, Herring JS, Hawkees GL (2006) Hydrogen production from nuclear energy via high temperature electrolysis. 1st Energy Center Hydrogen Initiative Symposium. Paper: ECHI-I-IL-3, Purdue University, West Lafayette, 5–6 Apr 2006. Report No. INL/CON-06-01375

    Google Scholar 

  162. Russell JL, McCorkle KH, Norman JH, Schuster JR, Trester PW (1976) Development of thermochemical water splitting at General Atomic Company. In: Proceedings of synthetic pipeline gas symposium, vol 8, pp 335–361

    Google Scholar 

  163. Funk JE (1976) Thermochemical production of hydrogen via multistage water splitting processes. Int J Hydrogen Energy 1(1):33–43

    Article  Google Scholar 

  164. Pangborn JB, Sharer JC (1975) Analysis of thermochemical water-splitting cycles. In: Hydrogen energy, Proceedings of the hydrogen economy Miami energy conference, Miami Beach, Fla., March 18–20, 1974. Part A. (A75-44751 22–44). Plenum Press, New York, pp 499–515

    Google Scholar 

  165. Russell JL, Porter JT (1975) A search for thermochemical water-splitting cycles. In: Hydrogen energy, Proceedings of the hydrogen economy Miami energy conference, Miami Beach, Fla., March 18–20, 1974, Part A. (A75-44751 22–44). Plenum Press, New York, pp 517–529

    Google Scholar 

  166. Funk JE (2001) Thermochemical hydrogen production: past and present. Int J Hydrogen Energy 26(3):185–190

    Article  MathSciNet  Google Scholar 

  167. Brown LC, Funk JF, Showalter SK (2000) High efficiency generation of hydrogen fuel using nuclear power. Annual report to the Department of Energy, Report No. GA-A23451

    Google Scholar 

  168. Brecher LE, Spewock S, Warde CJ (1977) Westinghouse sulfur cycle for the thermochemical decomposition of water. Int J Hydrogen Energy 21(1):7–15

    Article  Google Scholar 

  169. Beghi GE (1986) A decade of research on thermochemical hydrogen at the joint research center, Ispra. Int J Hydrogen Energy 11(12):761–771

    Article  Google Scholar 

  170. Funk JK, Reinstrom RM (1966) Energy requirements in the production of hydrogen from water. Ind Eng Chem Process Des Dev 5(3):336–342

    Article  Google Scholar 

  171. Besenbruch GE (1982) General Atomic sulfur-iodine thermochemical water-splitting process. Am Chem Soc Div Pet Chem Prepr 271:48–51

    Google Scholar 

  172. Williams LO (1980) Hydrogen power. Pergamon Press, New York

    Google Scholar 

  173. Ueda R, Tagawa H, Sato S, Yasuno T, Ohno S, Maeda M (1974) Production of hydrogen from water using nuclear energy, a review. Japan Atomic Energy Research Institute, Tokyo, Japan:, pp 69

    Google Scholar 

  174. Tamaura Y, Steinfeld A, Kuhn P, Ehrensberger K (1995) Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle. Energy (Oxford, UK) 20(4):325–330

    Google Scholar 

  175. Bamberger CE (1978) Hydrogen production from water by thermochemical cycles; a 1977 update. Cryogenics 18:170

    Article  Google Scholar 

  176. Knoche KF, Schuster P (1984) Thermochemical production of hydrogen by a vanadium/chlorine cycle. Part 1: an energy and exergy analysis of the process. Int J Hydrogen Energy 9(6):457–472

    Google Scholar 

  177. Russell J, Porter J (1974) Production of hydrogen from water. General Atomics Report GA–A12889

    Google Scholar 

  178. Schuster JR, Russell JL Jr, McCorkle KH, Mysels KJ, Norman JH, O’Keefe DR, Sharp R, Stowell SA, Trester PW, Williamson DG (1977) Development of a sulfur-iodine thermochemical water-splitting cycle for hydrogen production. In: Proceedings of the Intersociety Energy Conversion Engineering Conference, vol 1, pp 920–927

    Google Scholar 

  179. De Graaf JD, McCorkle KH, Norman JH, Sharp R, Webb GB, Ohno T (1978) Engineering and bench-scale studies of the sulfur-iodine cycle at General Atomic. In: Proceedings of the Intersociety Energy Conversion Engineering Conference, vol 13 No. 2, pp 1150–1157

    Google Scholar 

  180. De Graaf JD, McCorkle KH, Norman JH, Sharp R, Webb GB, Ohno T, (1979) Engineering and bench-scale studies on the general atomic sulfur-iodine thermochemical water-splitting cycle. Advances in Hydrogen Energy 1 (Hydrogen Energy System, vol 2): 545–567

    Google Scholar 

  181. Besenbruch G, Caprioglio G, McCorkle K, Mysels K, Norman J, O’Keefe D, Rode J, Sharp R, Trester P, Yoshimoto M (1979) Development of a sulfur – iodine thermochemical water-splitting cycle for hydrogen production. In: Proceedings of the 14th Intersociety Energy Conversion Engineering Conference, vol. 1, pp 737–742

    Google Scholar 

  182. Schuster JR, Caprioglio G, McCorkle KH, Ohno T (1979) Bench-scale investigations and process engineering on the sulfur-iodine cycle. Proceedings of the DOE Chemical/Hydrogen Energy Systems Contracts Review. Meeting Date 1978 (CONF-781142), pp 119–130

    Google Scholar 

  183. Hammache A, Bilgen E (1992) Nuclear hydrogen production based on sulfuric acid decomposition process. J Energy Res Technol 114(3):227–234

    Article  Google Scholar 

  184. Kubo S, Nakajima H, Kasahara S, Higashi S, Masaki T, Abe H, Onuki K (2004) A demonstration study on a closed-cycle hydrogen production by the thermochemical water-splitting iodine-sulfur process. Nucl Eng Des 233(1–3):347–354

    Article  Google Scholar 

  185. Sakurai M, Nakajima H, Amir R, Onuki K, Shimizu S (2000) Experimental study on side-reaction occurrence condition in the iodine-sulfur thermochemical hydrogen production process. Int J Hydrogen Energy 25(7):613–619

    Article  Google Scholar 

  186. Sakurai M, Nakajima H, Onuki K, Shimizu S (2000) Investigation of 2 liquid phase separation characteristics on the iodine-sulfur thermochemical hydrogen production process. Int J Hydrogen Energy 25(7):605–611

    Article  Google Scholar 

  187. Banerjee AM, Bhattacharyya K, Pai MR, Tripathi AK, Kamble VS, Bharadwaj SR, Kulshreshtha SK (2007) Studies on sulfur-iodine thermochemical cycle for hydrogen production. BARC Newsl 285:67–72

    Google Scholar 

  188. Cerri G, Salvini C, Corgnale C, Giovannelli A, De Lorenzo MD, Martinez AO, Le Duigou A, Borgard J-M, Mansilla C (2010) Sulfur-Iodine plant for large scale hydrogen production by nuclear power. Int J Hydrogen Energy 35(9):4002–4014

    Article  Google Scholar 

  189. Leybros J, Gilardi T, Saturnin A, Mansilla C, Carles P (2010) Plant sizing and evaluation of hydrogen production costs from advanced processes coupled to a nuclear heat source. Part I: sulphur-iodine cycle. Int J Hydrogen Energy 35(3):1008–1018

    Google Scholar 

  190. Norman JH, Basenbruch GE, O’Keefe DR (1981) Thermochemical water-splitting for hydrogen production. General Atomic Co., San Diego

    Google Scholar 

  191. Norman JH, Mysels KJ, Sharp R, Williamson D (1981) Studies of the sulfur-iodine thermochemical water-splitting cycle. Advances in Hydrogen Energy 2(Hydrogen Energy Program, vol 1): 257–275

    Google Scholar 

  192. Norman JH, Mysels KJ, Sharp R, Williamson D (1982) Studies of the sulfur-iodine thermochemical water-splitting cycle. Int J Hydrogen Energy 7(7):545–556

    Article  Google Scholar 

  193. Onuki K, Kubo S, Terada A, Sakaba N, Hino R (2009) Thermochemical water-splitting cycle using iodine and sulfur. Energy Environ Sci 2(5):491–497

    Article  Google Scholar 

  194. Onuki K, Nakajima H, Kubo S, Futakawa M, Higashi S, Hwang GJ, Masaki T, Ikenoya K, Ishiyama S, Akino N, Shimizu S (2003) Thermochemical hydrogen production by iodine-sulfur cycle. Hydrogen planet, 14th world hydrogen energy conference, Montreal, QC, Canada, 9–13 June 2002, pp 1196–1204

    Google Scholar 

  195. Rosen MA (2010) Advances in hydrogen production by thermochemical water decomposition: a review. Energy (Oxford, UK) 35(2):1068–1076

    Google Scholar 

  196. Sakurai M, Nakajima H, Onuki K, Ikenoya K, Shimizu S (1999) Preliminary process analysis for the closed cycle operation of the iodine-sulfur thermochemical hydrogen production process. Int J Hydrogen Energy 24(7):603–612

    Article  Google Scholar 

  197. Vitart X, Borgard JM, Goldstein S, Colette S (2004) Investigation of the I-S cycle for massive hydrogen production. Nuclear production of hydrogen, information exchange meeting, 2nd, Argonne, IL, United States, 2–3 Oct 2003, pp 99–109

    Google Scholar 

  198. Zhang P, Chen SZ, Wang LJ, Xu JM (2010) Overview of nuclear hydrogen production research through iodine sulfur process at INET. Int J Hydrogen Energy 35(7):2883–2887

    Article  Google Scholar 

  199. Brown LC (2007) Evolution of the sulfur-iodine flowsheet. AIChE Annual Meeting, 7 Nov 2007, Salt lake City, Utah USA

    Google Scholar 

  200. Brown LC, Lentsch RD, Besenbruch GE, Schultz KR, Funk JE (2003) Alternative flowsheets for the sulfur-iodine thermochemical hydrogen cycle. Spring national meeting of AIChE, New Orleans, Louisiana, 30 Mar–3 Apr 2003, Report No. GA–A24266, p 33

    Google Scholar 

  201. Pickard P (2005) Sulfur-iodine thermochemical cycle. 2005 DOE Hydrogen Program review. PD 27

    Google Scholar 

  202. Banerjee AM, Pai MR, Bhattacharya K, Tripathi AK, Kamble VS, Bharadwaj SR, Kulshreshtha SK (2008) Catalytic decomposition of sulfuric acid on mixed Cr/Fe oxide samples and its application in sulfur-iodine cycle for hydrogen production. Int J Hydrogen Energy 33(1):319–326

    Article  Google Scholar 

  203. Bai Y, Zhang P, Guo H, Chen S, Wang L, Xu J (2009) Purification of sulfuric and hydriodic acids phases in the iodine-sulfur process. Chin J Chem Eng 17(1):160–166

    Article  Google Scholar 

  204. Barbarossa V, Brutti S, Diamanti M, Sau S, De Maria G (2006) Catalytic thermal decomposition of sulphuric acid in sulphur-iodine cycle for hydrogen production. Int J Hydrogen Energy 31(7):883–890

    Article  Google Scholar 

  205. Burch KC, Ginosar DM, Petkovic LM, Houghton TP (2007) Activated carbon catalysts for the production of hydrogen via the sulfur-iodine thermochemical water splitting cycle. Abstracts, 62nd northwest regional meeting of the American Chemical Society, Boise, ID, United States, June 17–20 June, NW-012

    Google Scholar 

  206. Chen Y, Wang Z, Zhang Y, Zhou J, Cen K (2010) Platinum-ceria-zirconia catalysts for hydrogen production in sulfur-iodine cycle. Int J Hydrogen Energy 35(2):445–451

    Article  Google Scholar 

  207. Kim J, Chang J, Park BH, Shin Y, Lee K, Lee W, Chang J (2008) A study on the dynamic behavior of a sulfur trioxide decomposer for a nuclear hydrogen production. Int J Hydrogen Energy 33(24):7361–7370

    Article  Google Scholar 

  208. Lanchi M, Caputo G, Liberatore R, Marrelli L, Sau S, Spadoni A, Tarquini P (2009) Use of metallic Ni for H2 production in S-I thermochemical cycle: experimental and theoretical analysis. Int J Hydrogen Energy 34(3):1200–1207

    Article  Google Scholar 

  209. Nagaraja BM, Jung KD, Ahn BS, Abimanyu H, Yoo KS (2009) Catalytic decomposition of SO3 over Pt/BaSO4 materials in sulfur-iodine cycle for hydrogen production. Ind Eng Chem Res 48(3):1451–1457

    Article  Google Scholar 

  210. Nagaraja BM, Jung KD, Yoo KS (2009) Synthesis of Cu/Fe/Ti/Al2O3 composite granules for SO3 decomposition in SI cycle. Catal Lett 128(1–2):248–252

    Article  Google Scholar 

  211. Onstott EI (1990) Cerium dioxide as a recycle reagent for thermochemical hydrogen production by modification of the sulfur dioxide-iodine cycle. Advances in Hydrogen Energy 8 (Hydrogen Energy Program 8, vol. 2): 531–538

    Google Scholar 

  212. Ozturk IT, Hammache A, Bilgen E (1995) An improved process for H2SO4 decomposition step of the sulfur-iodine cycle. Energy Convers Manage 36(1):11–21

    Article  Google Scholar 

  213. Petkovic LM, Ginosar DM, Rollins HW, Burch KC, Deiana C, Silva HS, Sardella MF, Granados D (2009) Activated carbon catalysts for the production of hydrogen via the sulfur-iodine thermochemical water splitting cycle. Int J Hydrogen Energy 34(9):4057–4064

    Article  Google Scholar 

  214. Rodriguez SB, Louie D, Gauntt RO, Gelbard F, Cole R, McFadden K, Drennen T, Martin B, Archuleta L, Revankar ST, Vierow K (2007) MELCOR-H2 transient analysis of sulfur-iodine cycle experiments. International topical meeting on safety and technology of nuclear hydrogen production, control, and management, Boston, MA, United States, 24–28 June 2007, pp 140–146

    Google Scholar 

  215. Zhang Y, Wang Z, Zhou J, Cen K (2009) Ceria as a catalyst for hydrogen iodide decomposition in sulfur-iodine cycle for hydrogen production. Int J Hydrogen Energy 34(4):1688–1695

    Article  Google Scholar 

  216. Zhang Y, Wang Z, Zhou J, Liu J, Cen K (2009) Experimental study of Ni/CeO2 catalytic properties and performance for hydrogen production in sulfur-iodine cycle. Int J Hydrogen Energy 34(14):5637–5644

    Article  Google Scholar 

  217. Liu H, Kantor I, Elkamel A, Fowler M (2009) Optimal synthesis of heat exchanger network for thermochemical S-I cycle. J Therm Anal Calorim 96(1):27–33

    Article  Google Scholar 

  218. Peck MS, Allen JM, Mendez AE, Velez AL, Ghosh TK, Viswanath DS, Prelas MA (2007) Sulfuric acid decomposer materials study for the thermochemical hydrogen cycle. International topical meeting on safety and technology of nuclear hydrogen production, control, and management, Boston, MA, United States, 24–28 June 2007, pp 198–201

    Google Scholar 

  219. Wong B, Buckingham RT, Brown LC, Russ BE, Besenbruch GE, Kaiparambil A, Santhanakrishnan R, Roy A (2007) Construction materials development in sulfur-iodine thermochemical water-splitting process for hydrogen production. Int J Hydrogen Energy 32(4):497–504

    Article  Google Scholar 

  220. Trester PW, Liang SS (1979) Material corrosion investigations for the General Atomic sulfur-iodine thermochemical water-splitting cycle. Advances in Hydrogen Energy 1(Hydrogen Energy System, vol 4): 2113–2159

    Google Scholar 

  221. Pickard P (2006) Sulfur-iodine thermochemical cycle. 2005 DOE Hydrogen Program review. PD 15

    Google Scholar 

  222. Evans B (2007) Thermiochemical systems overview Advanced reactor fuel cycle and energy products workshop for universities. Gaithersburg, Maryland, 20 Mar 2007

    Google Scholar 

  223. Giaconia A, Caputo G, Sau S, Prosini PP, Pozio A, De Francesco M, Tarquini P, Nardi L (2009) Survey of Bunsen reaction routes to improve the sulfur-iodine thermochemical water-splitting cycle. Int J Hydrogen Energy 34(9):4041–4048

    Article  Google Scholar 

  224. Lee BJ, No HC, Yoon HJ, Jin HG, Kim YS, Lee JI (2009) Development of a flowsheet for iodine-sulfur thermo-chemical cycle based on optimized Bunsen reaction. Int J Hydrogen Energy 34(5):2133–2143

    Article  Google Scholar 

  225. Barbarossa V, Vanga G, Diamanti M, Cali M, Doddi G (2009) Chemically enhanced separation of H2S04/HI mixtures from the Bunsen reaction in the sulfur-iodine thermochemical cycle. Ind Eng Chem Res 48(19):9040–9044

    Article  Google Scholar 

  226. Elder RH, Priestman GH, Allen RWK, Orme CJ, Stewart FF (2009) The feasibility of membrane separations in the HIx processing section of the sulphur iodine thermochemical cycle. Int J Hydrogen Energy 34(16):6614–6624

    Article  Google Scholar 

  227. Favuzza P, Felici C, Lanchi M, Liberatore R, Mazzocchia CV, Spadoni A, Hadj-Kali MK, Gerbaud V, Lovera P, Baudouin O, Floquet P, Joulia X, Borgard J-M, Carles P (2009) Bunsen section thermodynamic model for hydrogen production by the sulfur-iodine cycle. Int J Hydrogen Energy 34(16):6625–6635

    Article  Google Scholar 

  228. Lanchi M, Laria F, Liberatore R, Marrelli L, Sau S, Spadoni A, Tarquini P (2009) HI extraction by H3PO4 in the Sulfur-Iodine thermochemical water splitting cycle: composition optimization of the HI/H2O/H3PO4/I2 biphasic quaternary system. Int J Hydrogen Energy 34(15):6120–6128

    Article  Google Scholar 

  229. Larousse B, Lovera P, Borgard JM, Roehrich G, Mokrani N, Maillault C, Doizi D, Dauvois V, Roujou JL, Lorin V, Fauvet P, Carles P, Hartmann JM (2009) Experimental study of the vapor-liquid equilibria of HI-I2-H2O ternary mixtures, Part 2: experimental results at high temperature and pressure. Int J Hydrogen Energy 34(8):3258–3266

    Article  Google Scholar 

  230. Liberatore R, Ceroli A, Lanchi M, Spadoni A, Tarquini P (2008) Experimental vapour-liquid equilibrium data of HI-H2O-I2 mixtures for hydrogen production by Sulphur-Iodine thermochemical cycle. Int J Hydrogen Energy 33(16):4283–4290

    Article  Google Scholar 

  231. Mena SE, Cervo EG, Crosthwaite JM, Thies MC (2010) Phase equilibrium measurements for the I2-H2O and I2-HI-H2O systems of the sulfur-iodine cycle using a continuous-flow apparatus. Int J Hydrogen Energy 35(8):3347–3357

    Article  Google Scholar 

  232. Tarquini P, Tito AC (2009) Decomposition of hydrogen iodide in the S-I thermochemical cycle over Ni catalyst systems. Int J Hydrogen Energy 34(9):4049–4056

    Article  Google Scholar 

  233. Roth M, Knoche KF (1989) Thermochemical water splitting through direct hydrogen iodide decomposition from water/hydrogen iodide/molecular iodine solutions. Int J Hydrogen Energy 14(8):545–549

    Article  Google Scholar 

  234. O’Keefe DR, Norman JH (1983) Hydrogen iodide decomposition. United States Patent 4410505

    Google Scholar 

  235. Russ B, Buckingham B, Brown L, Wong B, Besenbruch G (2005) HI decomposition-a comparison of reactive and extractive distillation techniques for the sulfur-iodine process. In: AIChE spring national meeting, conference proceedings, Atlanta, GA, United States, 10–14 Apr 2005, 75E/1-75E/2

    Google Scholar 

  236. Zhang Y, Wang Z, Zhou J, Liu J, Cen K (2009) Catalytic decomposition of hydrogen iodide over pre-treated Ni/CeO2 catalysts for hydrogen production in the sulfur-iodine cycle. Int J Hydrogen Energy 34(21):8792–8798

    Article  Google Scholar 

  237. Zhang Y, Zhou J, Chen Y, Wang Z, Liu J, Cen K (2008) Hydrogen iodide decomposition over nickel-ceria catalysts for hydrogen production in the sulfur-iodine cycle. Int J Hydrogen Energy 33(20):5477–5483

    Article  Google Scholar 

  238. Belaissaoui B, Thery R, Meyer XM, Meyer M, Gerbaud V, Joulia X (2005) Vapour reactive distillation process for hydrogen production by HI decomposition from H2O/HI/I2 solutions. In: 7th World congress of chemical engineering, Glasgow, United Kingdom, 10–14 July 2005, 83134/1-83134/9

    Google Scholar 

  239. Goldstein S, Borgard J-M, Vitart X (2005) Upper bound and best estimate of the efficiency of the iodine sulphur cycle. Int J Hydrogen Energy 30(6):619–626

    Article  Google Scholar 

  240. Goldstein S, Vitart X, Borgard JM (2004) General comments about the efficiency of the iodine-sulphur cycle coupled to a high temperature gas-cooled reactor. In: Nuclear production of hydrogen, information exchange meeting, 2nd, Argonne, IL, United States, Oct 2–3, 2003. OECD, Paris, pp 85–98

    Google Scholar 

  241. Kameyama H, Yoshida K (1979) Bromine-calcium-iron water-decomposition cycles for hydrogen production. Advances in Hydrogen Energy 1(Hydrogen Energy System, vol 2): 829–850

    Google Scholar 

  242. Kameyama H, Yoshida K (1981) Reactor design for the ”UT-3” thermochemical hydrogen production process. Advances in Hydrogen Energy 2(Hydrogen Energy Program, vol 4): 1939–1948

    Google Scholar 

  243. Yoshioka H, Nakayama T, Kameyama H, Yoshida K (1984) Operation of a bench-scale plant for hydrogen production by the UT-3 cycle. Advances in Hydrogen Energy 4(Hydrogen Energy Program 5, vol 2): 413–420

    Google Scholar 

  244. Aihara M, Sakurai M, Tsutsumi A, Yoshida K (1992) Reactivity improvement in the UT-3 thermochemical hydrogen production process. Int J Hydrogen Energy 17(9):719–723

    Article  Google Scholar 

  245. Aihara M, Sakurai M, Yoshida K (1990) Reaction improvement in the UT-3 thermochemical hydrogen production process. Advances in Hydrogen Energy 8(Hydrogen Energy Program 8, vol 2): 493–502

    Google Scholar 

  246. Aihara M, Umida H, Tsutsumi A, Yoshida K (1990) Kinetic study of UT-3 thermochemical hydrogen production process. Int J Hydrogen Energy 15(1):7–11

    Article  Google Scholar 

  247. Amir R, Sato T, Yamamoto KY, Kabe T, Kameyama H (1992) Design of solid reactants and reaction kinetics concerning the iron compounds in the UT-3 thermochemical cycle. Int J Hydrogen Energy 17(10):783–788

    Article  Google Scholar 

  248. Aochi A, Tadokoro T, Yoshida K, Kameyama H, Nobue M, Yamaguchi T (1989) Economical and technical evaluation of UT-3 thermochemical hydrogen production process for an industrial scale plant. Int J Hydrogen Energy 14(7):421–429

    Article  Google Scholar 

  249. Besenbruch GE, Brown LC, Funk JF, Showalter SK (2001) High efficiency generation of hydrogen fuels using nuclear power. In: Nuclear production of hydrogen, information exchange meeting, 1st, Paris, France, Oct 2–3, 2000. OECD, Paris, pp 205–219

    Google Scholar 

  250. Doctor RD, Marshall CL, Wade DC (2002) Hydrogen cycle employing calcium-bromine and electrolysis. Abstracts of papers, 224th ACS national meeting, Boston, MA, United States, 18–22 Aug 2002, FUEL-142

    Google Scholar 

  251. Doctor RD, Matonis DT, Wade DC (2004) Hydrogen generation using a calcium-bromine thermochemical water-splitting cycle. In: Nuclear production of hydrogen, information exchange meeting, 2nd, Argonne, IL, United States, Oct 2–3, 2003. OECD, Paris, pp 119–130

    Google Scholar 

  252. Kameyama H, Sato T, Amir R, Yoshida K, Aihara M, Sakurai M, Tadokoro Y, Kajiyama T, Yamaguchi T, Sakai N (1992) Cycle simulation of the UT-3 thermochemical hydrogen production process. Int J Hydrogen Energy 17(10):789–794

    Article  Google Scholar 

  253. Kameyama H, Tomino Y, Orihara A, Yoshida K (1986) Process simulation of the MASCOT plant using the UT-3 thermochemical cycle for hydrogen production. Advances in Hydrogen Energy 5(Hydrogen Energy Prog. 6, vol 2): 688–695

    Google Scholar 

  254. Kameyama H, Tomino Y, Sato T, Amir R, Orihara A, Aihara M, Yoshida K (1989) Process simulation of “MASCOT” plant using the UT-3 thermochemical cycle for hydrogen production. Int J Hydrogen Energy 14(5):323–330

    Article  Google Scholar 

  255. Lemort F, Charvin P, Lafon C, Romnicianu M (2006) Technological and chemical assessment of various thermochemical cycles: from the UT3 cycle up to the two steps iron oxide cycle. Int J Hydrogen Energy 31(14):2063–2075

    Article  Google Scholar 

  256. Lemort F, Lafon C, Dedryvere R, Gonbeau D (2006) Physicochemical and thermodynamic investigation of the UT-3 hydrogen production cycle: a new technological assessment. Int J Hydrogen Energy 31(7):906–918

    Article  Google Scholar 

  257. Nakayama T, Yoshioka H, Furutani H, Kameyama H, Yoshida K (1984) MASCOT – a bench-scale plant for producing hydrogen by the UT-3 thermochemical decomposition cycle. Int J Hydrogen Energy 9(3):187–190

    Article  Google Scholar 

  258. Sakurai M, Akimoto K, Yokota M, Tsutsumi A, Yoshida K (1996) Reactivity improvement of Ca-reactant in the UT-3 thermochemical hydrogen production cycle. In: Hydrogen energy progress XI, Proceedings of the world hydrogen energy conference, 11th, Stuttgart, 23–28 June 1996, vol 1, pp 831–836

    Google Scholar 

  259. Sakurai M, Bilgen E, Tsutsumi A, Yoshida K (1996) Adiabatic UT-3 thermochemical process for hydrogen production. Int J Hydrogen Energy 21(10):865–870

    Article  Google Scholar 

  260. Sakurai M, Bilgen E, Tsutsumi A, Yoshida K (1996) Solar UT-3 thermochemical cycle for hydrogen production. Sol Energy 57(1):51–58

    Article  Google Scholar 

  261. Sakurai M, Bilgen E, Tsutsumi A, Yoshida K, Tadokoro Y, Yamaguchi T (1996) Nuclear hydrogen production by adiabatic UT-3 thermochemical process. In: Hydrogen energy progress XI, Proceedings of the world hydrogen energy conference, 11th, Stuttgart, 23–28 June 1996, vol 1, pp 837–842

    Google Scholar 

  262. Sakurai M, Miyake N, Tsutsumi A, Yoshida K (1996) Analysis of a reaction mechanism in the UT-3 thermochemical hydrogen production cycle. Int J Hydrogen Energy 21(10):871–875

    Article  Google Scholar 

  263. Sakurai M, Ogiwara J, Kameyama H (2006) Reactivity improvement of Fe-compounds for the UT-3 thermochemical hydrogen production process. J Chem Eng Jpn 39(5):553–558

    Article  Google Scholar 

  264. Sakurai M, Tsutsumi A, Yoshida K (1994) Analysis of a reaction mechanism in the UT-3 thermochemical hydrogen production cycle. In: Hydrogen energy progress X, Procedings of the world hydrogen energy conference, 10th, vol 2 pp 813–822

    Google Scholar 

  265. Sakurai M, Tsutsumi A, Yoshida K (1995) Improvement of Ca-pellet reactivity in UT-3 thermochemical hydrogen production cycle. Int J Hydrogen Energy 20(4):297–301

    Article  Google Scholar 

  266. Sato T, Sakurai M, Matsumura Y, Tsutsumi A, Yoshida K (1998) Preparation, structure and reactivity of Ca pellets for the UT-3 thermochemical hydrogen production cycle. In: Hydrogen energy progress XII, Proceedings of the world hydrogen energy conference, 12th, Buenos Aires, 21–26 June 1998, vol 1 pp 581–588

    Google Scholar 

  267. Tadokoro Y, Kajiyama T, Yamaguchi T, Sakai N, Yoshida K, Aihara M, Sakurai M, Kameyama H, Sato T, Amir R (1990) Cycle simulation of the “UT-3” thermochemical hydrogen production process. Advances in Hydrogen Energy 8(Hydrogen Energy Prog. 8, vol 2): 513–521

    Google Scholar 

  268. Teo ED, Brandon NP, Vos E, Kramer GJ (2005) A critical pathway energy efficiency analysis of the thermochemical UT-3 cycle. Int J Hydrogen Energy 30(5):559–564

    Article  Google Scholar 

  269. Yang J, Panchal CB, Doctor RD (2009) CaBr2 hydrolysis for HBr production using a direct sparging contactor. Int J Hydrogen Energy 34(18):7585–7591

    Article  Google Scholar 

  270. Yoshida K, Kameyama H, Aochi T, Nobue M, Aihara M, Amir R, Kondo H, Sato T, Tadokoro Y et al (1990) A simulation study of the UT-3 thermochemical hydrogen production process. Int J Hydrogen Energy 15(3):171–178

    Article  Google Scholar 

  271. Doctor RD, Marshall CL, Wade DC (2002) Hydrogen cycle employing calcium bromine and electrolysis. Fuel Chem Div 47(2):755–756

    Google Scholar 

  272. Daggupati VN, Naterer GF, Gabriel KS, Gravelsins RJ, Wang ZL (2009) Equilibrium conversion in Cu-Cl cycle multiphase processes of hydrogen production. Thermochim Acta 496(1–2):117–123

    Article  Google Scholar 

  273. Ferrandon M, Lewis M, Tatterson D, Zdunek A (2008) Status of the development effort for the thermochemical Cu-Cl cycle. In: AIChE annual meeting, conference proceedings, Cincinnati, OH, United States, 30 Oct–4 Nov 2005, 87/1-87/11

    Google Scholar 

  274. Gong Y, Chalkova E, Akinfiev NN, Balashov VN, Fedkin MV, Lvov SN (2009) CuCl-HCl electrolyzer for hydrogen production via Cu-Cl thermochemical cycle. ECS Transactions 19(10, Hydrogen Production, Transport, and Storage 3): 21–32

    Google Scholar 

  275. Lewis M, Masin J (2005) An assessment of the efficiency of the hybrid copper-chloride thermochemical cycle. In: AIChE annual meeting, conference proceedings, Cincinnati, OH, United States, 30 Oct–4 Nov 2005, 348f/1-348f/3

    Google Scholar 

  276. Lewis MA, Ferrandon MS, Tatterson DF, Mathias P (2009) Evaluation of alternative thermochemical cycles – Part III further development of the Cu-Cl cycle. Int J Hydrogen Energy 34(9):4136–4145

    Article  Google Scholar 

  277. Lewis MA, Serban M, Basco JK (2004) Hydrogen production at < 550 DegC using a low temperature thermochemical cycle. Nuclear production of hydrogen, information exchange meeting, 2nd, Argonne, IL, United States, 2–3 Oct 2003, pp 145–156

    Google Scholar 

  278. Masin JG, Lewis MA (2006) Development of the low temperature hybrid Cu-Cl thermochemical cycle. In: AIChE annual meeting, conference proceedings, Cincinnati, OH, United States, 30 Oct–4 Nov 2005, 275b/1-275b/10

    Google Scholar 

  279. Naterer G, Suppiah S, Lewis M, Gabriel K, Dincer I, Rosen MA, Fowler M, Rizvi G, Easton EB, Ikeda BM, Kaye MH, Lu L, Pioro I, Spekkens P, Tremaine P, Mostaghimi J, Avsec J, Jiang J (2009) Recent Canadian advances in nuclear-based hydrogen production and the thermochemical Cu-Cl cycle. Int J Hydrogen Energy 34(7):2901–2917

    Article  Google Scholar 

  280. Naterer GF, Daggupati VN, Marin G, Gabriel KS, Wang ZL (2008) Thermochemical hydrogen production with a copper-chlorine cycle, II: flashing and drying of aqueous cupric chloride. Int J Hydrogen Energy 33(20):5451–5459

    Article  Google Scholar 

  281. Naterer GF, Gabriel K, Lu L, Wang Z, Zhang Y (2009) Recent advances in nuclear based hydrogen production with the thermochemical copper-chlorine cycle. J Eng Gas Turbine and Power 131(3):032905/1–032905/10

    Google Scholar 

  282. Orhan MF, Dincer I, Naterer GF (2008) Cost analysis of a thermochemical Cu-Cl pilot plant for nuclear-based hydrogen production. Int J Hydrogen Energy 33(21):6006–6020

    Article  Google Scholar 

  283. Orhan MF, Dincer I, Rosen MA (2009) Efficiency analysis of a hybrid copper-chlorine (Cu-Cl) cycle for nuclear-based hydrogen production. Chem Eng J (Amsterdam, Neth) 155(1–2):132–137

    Google Scholar 

  284. Wang Z, Naterer GF, Gabriel K (2008) Multiphase reactor scale-up for Cu-Cl thermochemical hydrogen production. Int J Hydrogen Energy 33(23):6934–6946

    Article  Google Scholar 

  285. Wang ZL, Naterer GF, Gabriel KS, Gravelsins R, Daggupati VN (2009) New Cu-Cl thermochemical cycle for hydrogen production with reduced excess steam requirements. Int J Green Energy 6(6):616–626

    Article  Google Scholar 

  286. Zamfirescu C, Dincer I, Naterer GF (2010) Thermophysical properties of copper compounds in copper-chlorine thermochemical water splitting cycles. Int J Hydrogen Energy 35(10):4839–4852

    Article  Google Scholar 

  287. Wang ZL, Naterer GF, Gabriel KS, Gravelsins R, Daggupati VN (2010) Comparison of sulfur-iodine and copper-chlorine thermochemical hydrogen production cycles. Int J Hydrogen Energy 35(10):4820–4830

    Article  Google Scholar 

  288. Suppiah S, Li J, Sadhankar R, Kutchcoskie KJ, Lewis M (2006) Study of the hybrid Cu-Cl cycle for nuclear hydrogen production. Nuclear production of hydrogen: third information exchange meeting. Nuclear Energy Agency Organisation for Economic Co-operation and Development Oarai, 5–7 Japan Oct 2005

    Google Scholar 

  289. Ontario Institute of Technology (UIOT) (2010) Sustainable hydrogen production research at UIOT and partner institution. http://hydrogen.uoit.ca/EN/main/research/Overview_CuCl.html. Accessed 20 Nov 2010

  290. Mathias P (2006) Modeling of the copper chloride thermochemical cycle. Argonne National Laboratory, Argonne

    Google Scholar 

  291. Wang Z, Gabriel K, Naterer GF (2008) Thermochemical process heat requirements of the copper-chlorine cycle for nuclear-based hydrogen production. 29th Conference of the Canadian Nuclear Society, Toronto, Ontario, Canada, 1–4 June 2008. http://hydrogen.uoit.ca/assets/Default/documents/Public/CNS08-Wang.pdf

  292. Lewis M (2008) Part I. Summary of alternative cycle evaluation and down selection Part II. R&D status for the Cu-Cl thermochemical cycle. Argonne National Laboratory, Report PD-28

    Google Scholar 

  293. Rosen MA, Naterer GF, Sadhankar R, Suppiah S (2009) Nuclear based hydrogen production with a thermochemical copper-chlorine cycle and supercritical water reactor. http://hydrogen.uoit.ca/assets/Default/documents/Public/cha06.pdf. Accessed 20 Nov 2010

  294. Kim YW, Kim CS, Hong SD, Lee WJ, Chang J (2009) A high temperature gas loop to simulate VHTR and nuclear hydrogen production system. VTT Symp 257:428–430

    Google Scholar 

  295. Onuki K (2009) Nuclear hydrogen production using HTGR. Shokubai 51(4):270–274

    Google Scholar 

  296. Onuki K, Inagaki Y, Hino R, Tachibana Y (2005) Research and development on nuclear hydrogen production using HTGR at JAERI. Prog Nucl Energy 47(1–4):496–503

    Article  Google Scholar 

  297. Reza SMM (2007) Design modification for the modular helium reactor for higher temperature operation and reliability studies for nuclear hydrogen production processes. Ph.D. dissertation, Texas A&M University, TX, USA

    Google Scholar 

  298. Sato H, Kubo S, Sakaba N, Ohashi H, Tachibana Y, Kunitomi K (2009) Development of an evaluation method for the HTTR-IS nuclear hydrogen production system. Ann Nucl Energy 36(7):956–965

    Article  Google Scholar 

  299. Sato H, Ohashi H, Sakaba N, Nishihara T, Kunitomi K (2008) Thermal load control methods for the HTTR-IS nuclear hydrogen production system. Nihon Genshiryoku Gakkai Wabun Ronbunshu 7(4):328–337

    Google Scholar 

  300. Verfondern K, Nishihara T (2005) Safety aspects of the combined HTTR/steam reforming complex for nuclear hydrogen production. Prog Nucl Energy 47(1–4):527–534

    Article  Google Scholar 

  301. Vitart X, Le Duigou A, Carles P (2006) Hydrogen production using the sulfur-iodine cycle coupled to a VHTR: an overview. Energy Convers Manage 47(17):2740–2747

    Article  Google Scholar 

  302. Schultz KR, Brown LC, Besenbruch GE, Hamilton CJ (2003) Large-scale production of hydrogen by nuclear energy for the hydrogen economy. Report No. GA –A24265

    Google Scholar 

  303. Patterson M, Park C (2008) Hydrogen production from the next generation nuclear plant. Report No. INL/CON-08-14016

    Google Scholar 

  304. Farbman GH (1976) The conceptual design of an integrated nuclear hydrogen production plant using the sulfur cycle water decomposition system. Westinghouse Astronucl Lab, Pittsburgh

    Google Scholar 

  305. Shiozawa S, Saito S, Okano K, Uotani M, Ogawa M, Hino R (2006) Infrastructure for future hydrogen economy and nuclear hydrogen production. Nihon Genshiryoku Gakkaishi 48(11):835–852

    Google Scholar 

  306. Brown NR, Oh S, Revankar ST, Kane C, Rodriguez S, Cole R Jr, Gauntt R (2009) Analysis model for sulfur-iodine and hybrid sulfur thermochemical cycles. Nucl Technol 166(1):43–55

    Google Scholar 

  307. Brown NR, Oh S, Revankar ST, Vierow K, Rodriguez S, Cole R Jr, Gauntt R (2009) Simulation of sulfur-iodine thermochemical hydrogen production plant coupled to high-temperature heat source. Nucl Technol 167(1):95–106

    Google Scholar 

  308. Richards MB, Shenoy AS, Schultz KR (2004) Coupling the modular helium reactor to hydrogen production processes. In: Nuclear production of hydrogen, information exchange meeting, 2nd, Argonne, IL, United States, Oct 2–3, 2003. OECD, Paris, pp 203–215

    Google Scholar 

  309. Southworth FH, MacDonald PE, Harrell DJ, Shaber EL, Park CV, Holbrook MR, Petti DA (2003) The next generation nuclear plant (NGNP) project. Idaho National Engineering and Environmental Laboratory. Report No. INEEL/CON-03-01150

    Google Scholar 

  310. Harvego EA, Reza SMM, Richards M, Shenoy A (2006) An evaluation of reactor cooling and coupled hydrogen production processes using the modular helium reactor. Nucl Eng Des 236(14–16):1481–1489

    Article  Google Scholar 

  311. Elder R, Allen R (2009) Nuclear heat for hydrogen production: coupling a very high/high temperature reactor to a hydrogen production plant. Prog Nucl Energy 51(3):500–525

    Article  Google Scholar 

  312. Gauthier J-C, Brinkmann G, Copsey B, Lecomte M (2006) ANTARES: the HTR/VHTR project at Framatome ANP. Nucl Eng Des 236(5–6):526–533

    Article  Google Scholar 

  313. MacDonald PE, Bayless PD, Gougar HD, Moore RL, Ougouag AM, Sant RL, Sterbentz JW, Terry WK (2004) The next generation nuclear plant – insights gained from the INEEL point design studies. Idaho National Engineering and Environmental Laboratory. Report No. INEEL/CON-04-01563

    Google Scholar 

  314. Petri MC (2005) U.S. work on hydrogen production using light water reactor. IAEA technical meeting on advanced applications of water-cooled nuclear power plants, 11–14 Oct 2005, Vienna, Austria

    Google Scholar 

  315. Wong BY, Brown L, Besenbruch G, Roy A, Pal J, Koripelli RS, Hasan MH (2009) General and stress corrosion behavior of construction materials for HI gaseous decomposition. NHI-UNLV HTHX program. Report No. IFT—PB2007-102

    Google Scholar 

  316. Monnerie N, Mueller-Steinhagen H, Roeb M, Sattler C, Schmitz M (2005) Hydrogen production by solar thermo-chemical water splitting. World congress of chemical engineering, 7th, Glasgow, United Kingdom, 10–14 July 2005, 83387/1–83387/11

    Google Scholar 

  317. Bilgen E (1984) Solar hydrogen production by direct water decomposition process: a preliminary engineering assessment. Int J Hydrogen Energy 9(1–2):53–58

    Article  Google Scholar 

  318. Bilgen E (1988) Solar hydrogen production by hybrid thermochemical processes. Sol Energy 41(2):199–206

    Article  Google Scholar 

  319. Bilgen E, Bilgen C (1982) Solar hydrogen production using two-step thermochemical cycles. Int J Hydrogen Energy 7(8):637–644

    Article  Google Scholar 

  320. Hoagland W (1979) Solar hydrogen production. Sol Energy Res Inst, Golden, pp 211–214

    Google Scholar 

  321. Bilgen E, Bilgen C (1981) Solar hydrogen production. Advances in Hydrogen Energy 2(Hydrogen Energy Program, vol 2): 719–734

    Google Scholar 

  322. Bilgen E, Bilgen C (1983) An assessment of large-scale solar hydrogen production in Canada. Int J Hydrogen Energy 8(6):441–451

    Article  Google Scholar 

  323. Garcia-Conde AG, Rosa F (1993) Solar hydrogen production: a Spanish experience. Int J Hydrogen Energy 18(12):995–1000

    Article  Google Scholar 

  324. Guo LJ, Zhao L, Jing DW, Lu YJ, Yang HH, Bai BF, Zhang XM, Ma LJ, Wu XM (2009) Solar hydrogen production and its development in China. Energy (Oxford, UK) 34(9):1073–1090

    Google Scholar 

  325. Veziroglu TN, Barbir F (1991) Solar–hydrogen energy system: the choice of the future. Environ Conserv 18:304–312

    Article  Google Scholar 

  326. Wilhelm E, Fowler M (2006) A technical and economic review of solar hydrogen production technologies. Bull Sci Technol Soc 26(4):278–287

    Article  Google Scholar 

  327. Milbrandt A, Mann M (2007) Potential for hydrogen production from key renewable resources in the United States. National Renewable Energy Laboratory, Golden, CO, TP-640-41134, 2007

    Google Scholar 

  328. Pregger T, Graf D, Krewitt W, Sattler C, Roeb M, Moller S (2009) Prospects of solar thermal hydrogen production processes. Int J Hydrogen Energy 34:4256–4267

    Article  Google Scholar 

  329. Abanades S, Flamant G (2006) Solar hydrogen production from the thermal splitting of methane in a high temperature solar chemical reactor. Sol Energy 80(10):1321–1332

    Article  Google Scholar 

  330. Berman A, Karn RK, Epstein M (2007) Steam reforming of methane on a Ru/Al2O3 catalyst promoted with Mn oxides for solar hydrogen production. Green Chem 9(6):626–631

    Article  Google Scholar 

  331. Hirsch D, Steinfeld A (2004) Solar hydrogen production by thermal decomposition of natural gas using a vortex-flow reactor. Int J Hydrogen Energy 29(1):47–55

    Article  Google Scholar 

  332. Hong H, Liu Q, Jin H (2009) Solar hydrogen production integrating low-grade solar thermal energy and methanol steam reforming. J Energy Resour Technol 131(1):012601/1–012601/10

    Google Scholar 

  333. Weimer AW, Dahl J, BuechlerK, Lewandowski A, Pitts R, Bingham C, Glatzmaier GC (2001) Thermal dissociation of methane using a solar coupled aerosol flow reactor. In: Proceedings of the 2001 DOE Hydrogen Program Review NREL/CP-570-30535

    Google Scholar 

  334. Dahl JK, Tamburini J, Weimer AW (2001) Solar-thermal processing of methane to produce hydrogen and syngas. Energy Fuels 15(5):1227–1232

    Article  Google Scholar 

  335. Muir JF, Hogan Jr RE, Skocypec RD, Buck R (1990) Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish. SAND-90-2674C; CONF-910318–13

    Google Scholar 

  336. Huder K (1991) Investigation of methane reforming with energy supplied by direct absorption of concentrated radiation. Sol Energy Mater 24(1–2):696–706

    Article  Google Scholar 

  337. Dahl JK, Barocas VH, Clough DE, Weimer AW (2002) Intrinsic kinetics for rapid decomposition of methane in an aerosol flow reactor. Int J Hydrogen Energy 27:377–386

    Article  Google Scholar 

  338. Dahl J, Buechler K, Finley R, Stanislaus T, Weimer A, Lewandowski A, Bingham C, Smeets A, Schneider A (2002) Rapid solar-thermal dissociation of natural gas in an aerosol reactor. In: Proceedings of the 2002 US DOE Hydrogen Review Program. Report No. NREL/CP-610-32405

    Google Scholar 

  339. Lewandowski A, Weimer A (2003) High temperature solar splitting of methane to hydrogen and carbon. 2003 Hydrogen and fuel cells merit review meeting, National Renewable Energy Laboratory, 19–22 May, Berkeley, CA

    Google Scholar 

  340. Epstein M, Spiewak I (1996) Solar experiments with a tubular reformer. In: Proceedings of the 8th international symposium on solar thermal concentrating technologies, Cologne, Germany. Meuller Verlag, Heidelberg, pp 1209–1229

    Google Scholar 

  341. Moeller S, Buck R, Tamme R, Epstein M, Liebermann D, Moshe M, Fisher U, Rotstein A, Sugarmen C (2002) Solar production of syngas for electricity generation: SOLASYS project test-phase. In: Steinfeld A (ed) Proceedings of the 11th solar PACES international symposium on concentrated solar power and chemical energy technologies, Zurich, Switzerland. Paul Scherrer Institut, Villigen, pp 231–237

    Google Scholar 

  342. Epstein M, Ehrensberger K, Yogev A (2002) Ferro-reduction of ZnO using concentrated solar energy. In: Steinfeld A (ed) Proceedings of the 11th solar PACES symposium on concentrated solar power and chemical energy technologies, Zurich, Switzerland. Paul Scherrer Institut, Villigen, pp 261–269

    Google Scholar 

  343. Dahl JK, Weimer AW, Lewandowski A, Bingham C, Bruetsch F, Steinfeld A (2004) Dry reforming of methane using a solar-thermal aerosol flow reactor. Ind Eng Chem Res 43(18):5489–5495

    Article  Google Scholar 

  344. Steinfeld A (2005) Solar thermochemical production of hydrogen: a review. Sol Energy 78:603–615

    Article  Google Scholar 

  345. Kodama T, Gokon N (2007) Thermochemical cycles for high-temperature solar hydrogen production. Chem Rev 107:4048–4077

    Article  Google Scholar 

  346. Perkins C, Weimer AW (2004) Likely near-term solar-thermal water splitting technologies. Int J Hydrogen Energy 29(15):1587–1599

    Article  Google Scholar 

  347. Steinfeld A (2002) Solar hydrogen production via a 2-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int J Hydrogen Energy 27:611–619

    Article  Google Scholar 

  348. Abanades S, Charvin P, Flamant G, Neveu P (2006) Screening of water-splitting thermo cycles potentially attractive for hydrogen production by concentrated solar energy. Energy 31(14):2805–2822

    Article  Google Scholar 

  349. Haueter P, Moeller S, Palumbo R, Steinfeld A (1999) The production of zinc by thermal dissociation of zinc oxide-solar chemical reactor design. Sol Energy 67:161–167

    Article  Google Scholar 

  350. Perkins C, Weimer AW (2009) Solar-thermal production of renewable hydrogen. AlChE J 55(2):286–293

    Article  Google Scholar 

  351. Allendorf MD, Diver RB, Siegel NP, Miller JE (2008) Two-step water splitting using mixed-metal ferrites: thermodynamic analysis and characterization of synthesized materials. Energy Fuels 22:4115–4124

    Article  Google Scholar 

  352. Kodama T, Nakamuro Y, Mizuno TJ (2006) A two-step thermochemical water splitting by iron-oxide on stabilized zirconia. J Sol Energy Eng 128(1):3–7

    Article  Google Scholar 

  353. Roeb M, Sattler C, Kluser R, Monnerie N, Oliveira LD, Konstandopoulos AG, Agrafiotis C, Zaspalis V, Nalbandian L, Steele A, Stobbe PJ (2006) Sol Energy Eng 128(2):125–133

    Article  Google Scholar 

  354. Abanades S, Charvin P, Lemont F, Flamant G (2008) Novel two-step SnO2/SnO water splitting cycle for solar thermochemical production of hydrogen. Int J Hydrogen Energy 33(21):6021–6030

    Article  Google Scholar 

  355. Stamatiou A, Loutzenhiser PG, Steinfeld A (2010) Solar syngas production via H2O/CO2-splitting thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions. Chem Mater 22:851–859

    Article  Google Scholar 

  356. Müller R, Steinfeld A (2008) H2O-splitting thermochemical cycle based on ZnO/Zn-redox: quenching the effluents from the ZnO dissociation. Chem Eng Sci 63(1):217–227

    Article  Google Scholar 

  357. Elorza-Ricart E, Martin PY, Ferrer M, Lédé J (1999) Direct thermal splitting of ZnO followed by a quench: experimental measurements of mass balances. J Phys IV France 9:325–330

    Article  Google Scholar 

  358. Fletcher EA (1999) Solar-thermal and solar quasi-electrolytic processing and separations: zinc from zinc oxide as an example. Ind Eng Chem Res 38:2275–2282

    Article  Google Scholar 

  359. Kräupl S, Steinfeld A (2003) Operational performance of a 5kW solar chemical reactor for the co-production of zinc and syngas. J Sol Energy Eng 125:124–126

    Article  Google Scholar 

  360. Lédé J, Elorza-Ricart E, Ferrer M (2001) Solar thermal splitting of zinc oxide: a review of some of the rate controlling factors. J Sol Energy Eng 123(2):91–97

    Article  Google Scholar 

  361. Osinga T, Frommherz U, Steinfeld A, Wieckert C (2004) Experimental investigation of the solar carbothermic reduction of ZnO using a two cavity solar reactor. J Sol Energy Eng 126:633–637

    Article  Google Scholar 

  362. Müller R, Haeberling P, Palumbo RD (2006) Further advances toward the development of a direct heating solar thermal chemical reactor for the thermal dissociation of ZnO(s). Sol Energy 80(5):500–511

    Article  Google Scholar 

  363. Steinfeld A, Sanders S, Palumbo R (1999) Design aspects of solar thermochemical engineering- a case study: two-step water-splitting cycle using the FeO/FeO redox system. Sol Energy 65(1):43–53

    Article  Google Scholar 

  364. Charvin P, Abanades S, Flamant G, Lemort F (2007) Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production. Energy (Oxford, UK) 32(7):1124–1133

    Google Scholar 

  365. Alvani C, Bellusci M, La Barbera A, Padella F, Pentimalli M, Seralessandri L, Varsano F (2009) Reactive pellets for improved solar hydrogen production based on sodium manganese ferrite thermochemical cycle. J Sol Energy Eng 131(3):031015/1–031015/5

    Google Scholar 

  366. Alvani C, La Barbera A, Ennas G, Padella F, Varsano F (2006) Hydrogen production by using manganese ferrite: evidences and benefits of a multi-step reaction mechanism. Int J Hydrogen Energy 31(15):2217–2222

    Article  Google Scholar 

  367. Hwang G-J, Park C-S, Lee S-H, Seo I-T, Kim J-W (2004) Ni-ferrite-based thermochemical cycle for solar hydrogen production. J Ind Eng Chem(Seoul, Republic of Korea) 10(6):889–893

    Google Scholar 

  368. Ishihara H, Kaneko H, Hasegawa N, Tamaura Y (2008) Two-step water splitting process with solid solution of YSZ and Ni-ferrite for solar hydrogen production (ISEC 2005-76151). J Sol Energy Eng 130(4):044501/1–044501/3

    Google Scholar 

  369. Kodama T, Gokon N, Yamamoto R (2008) Thermochemical two-step water splitting by ZrO2-supported NixFe3-xO4 for solar hydrogen production. Sol Energy 82(1):73–79

    Article  Google Scholar 

  370. Tamaura Y, Ueda Y, Matsunami J, Hasegawa N, Nezuka M, Sano T, Tsuji M (1998) Solar hydrogen production by using ferrites. Sol Energy 65(1):55–57

    Article  Google Scholar 

  371. Fresno F, Fernandez-Saavedra R, Belen Gomez-Mancebo M, Vidal A, Sanchez M, Isabel Rucandio M, Quejido AJ, Romero M (2009) Solar hydrogen production by two-step thermochemical cycles: evaluation of the activity of commercial ferrites. Int J Hydrogen Energy 34(7):2918–2924

    Article  Google Scholar 

  372. Kodama T, Kondoh Y, Yamamoto R, Andou H, Satou N (2005) Thermochemical hydrogen production by a redox system of ZrO2-supported Co(II)-ferrite. Sol Energy 78:623–631

    Article  Google Scholar 

  373. Miller JE, Allendorf MD, Diver RB, Evans LR, Siegel NP, Stuecker JN (2008) Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles. J Mater Sci 43(14):4714–4728

    Article  Google Scholar 

  374. Gokon N, Murayama H, Nagasaki A, Kodama T (2009) Thermochemical two-step water splitting cycles by monoclinic ZrO2-supported NiFe2O4 and Fe3O4 powders and ceramic foam devices. Sol Energy 83(4):527–537

    Article  Google Scholar 

  375. Hwang GJ, Park CS, Lee SH, Seo IT, Kim JW (2004) Ni-ferrite-based thermochemical cycle for solar hydrogen production. J Ind Eng Chem 10(6):889–893

    Google Scholar 

  376. Kodama T, Gokon N (2010) Two-step thermochemical cycles for high temperature solar hydrogen production. Adv Sci Technol 72:119–128

    Article  Google Scholar 

  377. Agrafiotis C, Roeb M, Konstandopoulos AG, Nalbandian L, Zaspalis VT, Sattler C, Stobbe P, Steele AM (2005) Solar water splitting for hydrogen production with monolithic reactors. Sol Energy 79(4):409–421

    Article  Google Scholar 

  378. Roeb M, Sattler C, Kluser R, Monnerie N, de Oliveira L, Konstandopoulos AG, Agrafiotis C, Zaspalis VT, Nalbandian L (2006) Solar hydrogen production by a two-step cycle based on mixed iron oxides. J Sol Energy Eng Trans ASME 128(2):125–134

    Article  Google Scholar 

  379. Aoki H, Kaneko H, Hasegawa N, Ishihara H, Suzuki A, Tamaura Y (2004) The ZnFe2O4/(ZnO + Fe3O4) system for H-2 production using concentrated solar energy. Solid State Ionics 172(1–4):113–116

    Article  Google Scholar 

  380. Tamaura Y, Kaneko H (2005) Oxygen-releasing step of ZnFe2O4/(ZnO + Fe3O4)-system in air using concentrated solar energy for solar hydrogen production. Sol Energy 78(5):616–622

    Article  Google Scholar 

  381. Kaneko H, Kojima N, Hasegawa N, Inoue M, Uehara R, Gokon N, Tamaura Y, Sano T (2002) Reaction mechanism of H2 generation for H2O/Zn/Fe3O4 system. Int J Hydrogen Energy 27(10):1023–1028

    Article  Google Scholar 

  382. Gokon N, Murayama H, Umeda J, Hatamachi T, Kodama T (2009) Monoclinic zirconia-supported Fe3O4 for the two-step water-splitting thermochemical cycle at high thermal reduction temperatures of 1400–1600 ∘ C. Int J Hydrogen Energy 34(3):1208–1217

    Article  Google Scholar 

  383. Scheffe JR, Li J, Weimer AW (2010) A spinel ferrite/hercynite water-splitting redox cycle. Int J Hydrogen Energy 35(8):3333–3340

    Article  Google Scholar 

  384. Diver RB, Miller JE, Allendorf MD, Siegel NP, Hogan RE (2008) Solar thermochemical water-splitting ferrite-cycle heat engines. J Sol Energy Eng 130(4):041001–041008

    Article  Google Scholar 

  385. Kodama T, Shimizu T, Satoh T, Nakata M, Shimizu KI (2002) Stepwise production of CO-rich syngas and hydrogen via solar methane reforming by using a Ni(II)-ferrite redox system. Sol Energy 73(5):363–374

    Article  Google Scholar 

  386. Lorentzou S, Agrafiotis C, Konstandopoulos A (2008) Aerosol spray pyrolysis synthesis of water-splitting ferrites for solar hydrogen production. Granular Matter 10(2):113–122

    Article  Google Scholar 

  387. Han SB, Kang TB, Joo OS, Jung KD (2007) Water splitting for hydrogen production with ferrites. Sol Energy 81(5):623–628

    Article  Google Scholar 

  388. Galvez ME, Frei A, Albisetti G, Lunardi G, Steinfeld A (2008) Solar hydrogen production via a two-step thermochemical process based on MgO/Mg redox reactions-Thermodynamic and kinetic analyses. Int J Hydrogen Energy 33(12):2880–2890

    Article  Google Scholar 

  389. Vishnevetsky I, Epstein M (2009) Tin as a possible candidate for solar thermochemical redox process for hydrogen production. J Sol Energy Eng 131(2):021007–021008

    Article  Google Scholar 

  390. Charvin P, Abanades S, Lemont F, Flamant G (2008) Experimental study on SnO2/SnO/Sn thermochemical systems for solar production of hydrogen. AlChE J 54(10):2759–2767

    Article  Google Scholar 

  391. Abanades S, Flamant G (2006) Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides. Sol Energy 80(12):1611–1623

    Article  Google Scholar 

  392. Huang C, T-Raissi A (2005) Analysis of sulfur-iodine thermochemical cycle for solar hydrogen production. Part I: decomposition of sulfuric acid. Sol Energy 78(5):632–646

    Google Scholar 

  393. Leach JW, Copeland RJ (1986) Solar hydrogen production: the sulfur-iodine cycle versus water vapor electrolysis. In: Proceedings of the 21st Intersociety Energy Conversion Engineering Conference,vol 2, pp 702–707

    Google Scholar 

  394. Leach JW, Copeland RJ (1990) Solar hydrogen production: the sulfur-iodine cycle versus water vapor electrolysis. Int J Energy Syst 10(1):55–59

    Google Scholar 

  395. Norman JH, Besenbruch G, Brown L (1982) Solar production of hydrogen using the sulfur-iodine thermochemical water-splitting cycle. Gen. Atomic Co. San Diego, CA, USA, GA-A16493

    Google Scholar 

  396. Prosini PP, Cento C, Giaconia A, Caputo G, Sau S (2009) A modified sulphur-iodine cycle for efficient solar hydrogen production. Int J Hydrogen Energy 34(3):1218–1225

    Article  Google Scholar 

  397. Bilgen C, Bilgen E (1984) Solar hydrogen production using the sulfur-iodine thermochemical process. Advances in Hydrogen Energy 4(Hydrogen Energy Progress 5, vol 2), pp 517–528

    Google Scholar 

  398. Graf D, Monnerie N, Roeb M, Schmitz M, Sattler C (2008) Economic comparison of solar hydrogen generation by means of thermochemical cycles and electrolysis. Int J Hydrogen Energy 33(17):4511–4519

    Article  Google Scholar 

  399. Lewis MA, Basco JK (2004) Kinetic study of the hydrogen and oxygen production reactions in the copper-chloride thermochemical cycle, Serban, Manuela (Argonne National Laboratory, Chemical Engineering Division). In: 2004 AIChE Spring National Meeting, Conference Proceedings, pp 2690–2698

    Google Scholar 

  400. Fletcher EA (2001) Solar thermal processing: a review. J Solar Energy Eng 123:63–74

    Article  Google Scholar 

  401. Fletcher EA, Macdonald F, Kunnerth D (1985) High temperature solar electrothermal processing II. Zinc from zinc oxide. Energy 10:1255–1272

    Google Scholar 

  402. Steinfeld A, Brack M, Meier A, Weidenkaff A, Wuillemin D (1998) A solar chemical reactor for the Co-production of zinc and synthesis gas. Energy 23:803–814

    Article  Google Scholar 

  403. Kraupl S, Steinfeld A (2003) Operational performance of a 5 kW solar chemical reactor for the Co-production of zinc and syngas. ASME J Sol Energy Eng 125:124–126

    Article  Google Scholar 

  404. Steinfeld A, Kuhn P, Reller A, Palumbo R, Murray JP, Tamaura Y (1998) Solar-processed metals as clean energy carriers and water-splitters. Int J Hydrogen Energy 23:767–774

    Article  Google Scholar 

  405. International Energy Agency (2006) Hydrogen production and storage R&D priorities and gaps. IEA-Hydrogen Coordination Group. OECD/IEA-2006. IEA, Paris, France.

    Google Scholar 

  406. Agbossou K, Chahine R, Hamelin J, Laurencelle F, Anouar A, St-Arnaud JM, Bose TK (2001) Renewable energy systems based on hydrogen for remote applications. J Power Sources 96(1):168–172

    Article  Google Scholar 

  407. Aguado M, Ayerbe E, Azcarate C, Blanco R, Garde R, Mallor F, Rivas DM (2009) Economical assessment of a wind-hydrogen energy system using WindHyGen software. Int J Hydrogen Energy 34(7):2845–2854

    Article  Google Scholar 

  408. Altmann M, Gamallo F (1998) Design of an isolated wind-hydrogen energy supply system. In: Hydrogen energy progress XII, Proceedings of the world hydrogen energy conference, 12th, Buenos Aires, 21–26 June 1998 vol 2, pp 1699–1706

    Google Scholar 

  409. Bechrakis DA, Varkaraki E (2009) Chapter 5: Hydrogen production from wind energy. In: Gupta RB (ed) Hydrogen fuel production transport, and storage. CRC, Boca Raton, pp 161–183

    Google Scholar 

  410. Bernal-Agustin JL, Dufo-Lopez R (2008) Hourly energy management for grid-connected wind-hydrogen systems. Int J Hydrogen Energy 33(22):6401–6413

    Article  Google Scholar 

  411. Calderon M, Calderon AJ, Ramiro A, Gonzalez JF (2010) Automatic management of energy flows of a stand-alone renewable energy supply with hydrogen support. Int J Hydrogen Energy 35(6):2226–2235

    Article  Google Scholar 

  412. El-Osta W, Mussa M, Yagob A (1996) Harnessing the wind for hydrogen production: a possible strategic program for Libya. In: Hydrogen energy progress XI, Proceedings of the world hydrogen energy conference, 11th, Stuttgart, 23–28 June 1996, vol 1, pp 435–441

    Google Scholar 

  413. Fairlie M, Mazaika DM, Scott PB (2003) Wind generated hydrogen fueling station. Hydrogen planet, 14th world hydrogen energy conference, Montreal, QC, Canada, 9–13 June 2002, pp 381–389

    Google Scholar 

  414. Fingersh LJ (2004) Optimization of utility-scale wind-hydrogen-battery systems. World renewable energy congress VIII: linking the world with renewable energy, 8th, Denver, CO, United States, 29 Aug–3 Sept 2004, pp 909–913

    Google Scholar 

  415. Giatrakos GP, Tsoutsos TD, Mouchtaropoulos PG, Naxakis GD, Stavrakakis G (2009) Sustainable energy planning based on a stand-alone hybrid renewableenergy/hydrogen power system: application in Karpathos island, Greece. Renewable Energy 34(12):2562–2570

    Article  Google Scholar 

  416. Glazkov VA, Solovey VV, Pishuk VK, Lotosky MV, Aliyev AM (2005) Autonomous wind-hydrogen stations. Hydrogen materials science and chemistry of carbon nanomaterials, international conference, 9th, Sevastopol, Ukraine, 5–11 Sept 2005 pp 1168–1171

    Google Scholar 

  417. Glockner R, Kloed C, Nyhammer F, Ulleberg O (2003) Wind/hydrogen systems for remote areas – a Norwegian case study. Hydrogen planet, World hydrogen energy conference, 14th, Montreal, QC, Canada, 9–13 June 2002, pp 398–409

    Google Scholar 

  418. Greiner CJ, Korpaas M, Gjengedal T (2008) Dimensioning and operating wind-hydrogen plants in power markets. In: New aspects of circuits, Proceedings of the WSEAS international conference on circuits, 12th, Heraklion, Greece, 22–24 July 2008, pp 405–414

    Google Scholar 

  419. Greiner CJ, Korpas M, Holen AT (2007) A Norwegian case study on the production of hydrogen from wind power. Int J Hydrogen Energy 32(10–11):1500–1507

    Article  Google Scholar 

  420. Harrison KW, Martin G (2010) The wind-to-hydrogen project: results and lessons learned. Am Chem Soc Div Pet Chem Prepr 55(1):64

    Google Scholar 

  421. Hart D (2000) Hydrogen storage – technically viable and economically sensible? IMechE Seminar Publication (7, Renewable Energy Storage), pp 51–54

    Google Scholar 

  422. Hexeberg I, Hagen EF (2005) Renewable hydrogen energy systems. In: Proceedings of the world petroleum congress,18th, HEXE1-HEXE8

    Google Scholar 

  423. Honnery D, Moriarty P (2009) Estimating global hydrogen production from wind. Int J Hydrogen Energy 34(2):727–736

    Article  Google Scholar 

  424. Infield D (2004) Hydrogen from renewable energy sources. In: Fuel cells for automotive applications, pp 75–88

    Google Scholar 

  425. Ipsakis D, Voutetakis S, Seferlis P, Stergiopoulos F, Elmasides C (2009) Power management strategies for a stand-alone power system using renewable energy sources and hydrogen storage. Int J Hydrogen Energy 34(16):7081–7095

    Article  Google Scholar 

  426. Jensen SH, Larsen PH, Mogensen M (2007) Hydrogen and synthetic fuel production from renewable energy sources. Int J Hydrogen Energy 32(15):3253–3257

    Article  Google Scholar 

  427. Khan MJ, Iqbal MT (2009) Analysis of a small wind-hydrogen stand-alone hybrid energy system. Appl Energy 86(11):2429–2442

    Article  Google Scholar 

  428. Kottenstette R, Cotrell J (2004) Hydrogen storage in wind turbine towers. Int J Hydrogen Energy 29(12):1277–1288

    Article  Google Scholar 

  429. Lee J-Y, An S, Cha K, Hur T (2010) Life cycle environmental and economic analyses of a hydrogen station with wind energy. Int J Hydrogen Energy 35(6):2213–2225

    Article  Google Scholar 

  430. Levene JI, Mann MK, Margolis RM, Milbrandt A (2007) An analysis of hydrogen production from renewable electricity sources. Sol Energy 81(6):773–780

    Article  Google Scholar 

  431. Linnemann J, Steinberger-Wilckens R (2007) Realistic costs of wind-hydrogen vehicle fuel production. Int J Hydrogen Energy 32(10–11):1492–1499

    Article  Google Scholar 

  432. Mantz RJ, De Battista H (2008) Hydrogen production from idle generation capacity of wind turbines. Int J Hydrogen Energy 33(16):4291–4300

    Article  Google Scholar 

  433. Matera FV, Sapienza C, Andaloro L, Dispensa G, Ferraro M, Antonucci V (2009) An integrated approach to hydrogen economy in Sicilian islands. Int J Hydrogen Energy 34(16):7009–7014

    Article  Google Scholar 

  434. Menzl F, Wenske M, Lehmann J (1998) Hydrogen production by a windmill powered electrolyser. In: Hydrogen energy progress XII, Proceedings of the world hydrogen energy conference, 12th, Buenos Aires, 21–26 June 1998, vol 1, pp 757–765

    Google Scholar 

  435. Neill DR, Yu C, Guo Q, Huang N (1992) HNEI wind-hydrogen program. Sol World Congr Proc Bienn Congr Int Sol Energy Soc 1(Pt. 2):745–750

    Google Scholar 

  436. Perez-Herranz V, Perez-Page M, Beneito R (2010) Monitoring and control of a hydrogen production and storage system consisting of water electrolysis and metal hydrides. Int J Hydrogen Energy 35(3):912–919

    Article  Google Scholar 

  437. Shahbazov SS, Usubov IM (1996) Hydrogen obtained by using wind energy. In: Hydrogen energy progress XI, Proceedings of the world hydrogen energy conference, 11th, Stuttgart, 23–28 June 1996 vol 1, pp 955–958

    Google Scholar 

  438. Sherif SA, Barbir F, Veziroglu TN (2005) Wind energy and the hydrogen economy – review of the technology. Sol Energy 78(5):647–660

    Article  Google Scholar 

  439. Sopian K, Fudholi A, Ruslan MH, Sulaiman MY, Alghoul MA, Yahya M, Amin N, Haw LC, Zaharim A (2009) Hydrogen production from combined wind/PV energy hybrid system in Malaysia. In: Recent advances in energy and environment, Proceedings of the IASME/WSEAS international conference on energy & environment, 4th, Cambridge, United Kingdom, 24–26 Feb 2009, pp 431–434

    Google Scholar 

  440. Sopian K, Ibrahim MZ, Daud WRW, Othman MY, Yatim B, Amin N (2009) Performance of a PV-wind hybrid system for hydrogen production. Renewable Energy 34(8):1973–1978

    Article  Google Scholar 

  441. Ulleberg O, Nakken T, Ete A (2010) The wind/hydrogen demonstration system at Utsira in Norway: evaluation of system performance using operational data and updated hydrogen energy system modeling tools. Int J Hydrogen Energy 35(5):1841–1852

    Article  Google Scholar 

  442. Venturini NR (1996) Wind-hydrogen energy demonstration plant in Argentina: preliminary economic analysis. In: Hydrogen energy progress XI, Proceedings of the world hydrogen energy conference, 11th, Stuttgart, 23–28 June 1996, vol 1, pp 373–378

    Google Scholar 

  443. Yang W-J, Aydin O (2001) Wind energy-hydrogen storage hybrid power generation. Int J Energy Res 25(5):449–463

    Article  Google Scholar 

  444. Milbrandt A, Mann M (2007) Potential for hydrogen production from key renewable resources in the United States. National Renewable Energy Laboratory, Golden, CO, Report No. TP-640-41134

    Google Scholar 

  445. Saxena RC, Seal D, Kumar S, Goyal HB (2008) Thermo-chemical routes for hydrogen rich gas from biomass: a review. Renew Sustain Energy Rev 12(7):1909–1927

    Article  Google Scholar 

  446. Ni M, Leung DYC, Leung MKH, Sumathy K (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87(5):461–472

    Article  Google Scholar 

  447. Milne TA, Elam CC, Evans RJ (2002) Hydrogen from biomass, State of the art and research challenges. A report for the international energy agency. Agreement on the production and utilization of hydrogen task 16, hydrogen from carbon-containing materials, IEA/H2/TR-02/001

    Google Scholar 

  448. Esswein AJ, Nocera DG (2007) Hydrogen production by molecular photocatalysis. Chem Rev(Washington, DC, USA) 107(10):4022–4407

    Google Scholar 

  449. Kudo A (2007) Photocatalysis and solar hydrogen production. Pure Appl Chem 79(11):1917–1927

    Article  Google Scholar 

  450. Lee M-T, Hwang DJ, Greif R, Grigoropoulos CP (2009) Nanocatalyst fabrication and the production of hydrogen by using photon energy. Int J Hydrogen Energy 34(4):1835–1843

    Article  Google Scholar 

  451. Rangan K, Arachchige SM, Brown JR, Brewer KJ (2009) Solar energy conversion using photochemical molecular devices: photocatalytic hydrogen production from water using mixed-metal supramolecular complexes. Energy Environ Sci 2(4):410–419

    Article  Google Scholar 

  452. Ryu SY, Choi J, Balcerski W, Lee TK, Hoffmann MR (2007) Photocatalytic production of H2 on nanocomposite catalysts. Ind Eng Chem Res 46(23):7476–7488

    Article  Google Scholar 

  453. Wang X, Shih K, Li XY (2010) Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts. Water Sci Technol 61(9):2303–2308

    Article  Google Scholar 

  454. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11(3):401–425

    Article  Google Scholar 

  455. Wolcott A, Kuykendall T, Smith WA, Zhao Y, Zhang JZ (2008) Photoelectrochemical hydrogen production utilizing metal oxide nanomaterials. Abstracts of papers, 235th ACS national meeting, New Orleans, LA, United States, 6–10 Apr 2008, PHYS-504

    Google Scholar 

  456. Menth A, Stucki S (1979) Present state and outlook of the electrolytic hydrogen production route. Advances in Hydrogen Energy 1(Hydrogen Energy Syst., vol 1) pp 55–63

    Google Scholar 

  457. Willner I, Steinberger-Willner B (1988) Solar hydrogen production through photobiological, photochemical, and photoelectrochemical assemblies. Int J Hydrogen Energy 13(10):593–604

    Article  Google Scholar 

  458. Benemann JR (1997) Feasibility analysis of photobiological hydrogen production. Int J Hydrogen Energy 22(10–11):979–987

    Article  Google Scholar 

  459. Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrogen Energy 27(11–12):1185–1193

    Article  Google Scholar 

  460. Das D, Khanna N, Veziroglu TN (2008) Recent developments in biological hydrogen production processes. Chem Ind Chem Eng Q 14(2):57–67

    Article  Google Scholar 

  461. Das D, Veziroglu TN (2007) Advances in biological hydrogen production processes. Al’ternativnaya Energetika i Ekologiya 7:72–84

    Google Scholar 

  462. Akano T, Miura Y, Fukatsu K, Miyasaka H, Ikuta Y, Matsumoto H, Hamasaki A, Shioji N, Mizoguchi T, et al. (1996) Hydrogen production by photosynthetic microorganisms. Applied Biochemistry and Biotechnology 57/58(Seventeenth Symposium on Biotechnology for Fuels and Chemicals, 1995), pp 677–688

    Google Scholar 

  463. Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrogen Energy 27(11–12): 1195–1208

    Article  Google Scholar 

  464. Anon (2009) An improved photobioreactor design for photobiological hydrogen production. Biotechnol Bioeng 104(1): fmv

    Google Scholar 

  465. Asada Y (1996) Photobiological hydrogen production-state of the art with special reference to IEA’s hydrogen program. In: Hydrogen energy progress XI, Proceedings of the world hydrogen energy conference, 11th, Stuttgart, 23–28 June 1996, vol 1, pp 403–406

    Google Scholar 

  466. Asada Y, Miyake J (1999) Photobiological hydrogen production. J Biosci Bioeng 88(1):1–6

    Article  Google Scholar 

  467. Benemann JR (1994) Feasibility analysis of photobiological hydrogen production. In: Hydrogen energy progress X, Proceedings of the world hydrogen energy conference, 10th, vol 2, pp 931–940

    Google Scholar 

  468. Benemann JR (1994) Photobiological hydrogen production. In: Proceedings of the intersociety energy conversion engineering conference 29TH(PT. 4), pp 1636–1640

    Google Scholar 

  469. Blake DM, Amos WA, Ghirardi ML, Seibert M (2008) Materials requirements for photobiological hydrogen production. In: Thomas GJ, Jones RH (eds) Materials for the hydrogen economy. CRC, Boca Raton, pp 123–145

    Google Scholar 

  470. Carlozzi P, Lambardi M (2009) Fed-batch operation for bio-H2 production by Rhodopseudomonas palustris (strain 42OL). Renewable Energy 34(12):2577–2584

    Article  Google Scholar 

  471. Dawar S, Masukawa H, Mohanty P, Sakurai H (2006) Prospects of biohydrogen production using cyanobacteria – an overview. Proc Indian Natl Sci Acad 72(4):213–223

    Google Scholar 

  472. Dickson DJ, Page CJ, Ely RL (2009) Photobiological hydrogen production from Synechocystis sp. PCC 6803 encapsulated in silica sol-gel. Int J Hydrogen Energy 34(1):204–215

    Google Scholar 

  473. Gaudernack B (1998) Photoproduction of hydrogen. Annex 10 of the IEA Hydrogen Program. In: Hydrogen energy progress XII, Proceedings of the world hydrogen energy conference, 12th, Buenos Aires, 21–26 June 1998, vol 3, pp 2011–2023

    Google Scholar 

  474. Ghirardi ML (2007) Hydrogenases as catalysts for renewable hydrogen production. Abstracts of papers, 233rd ACS national meeting, Chicago, IL, United States, 25–29 Mar 2007, INOR-482

    Google Scholar 

  475. Ghirardi ML (2007) Photobiological and bio-hybrid hydrogen production based on the activity of hydrogenase enzymes. Abstracts of papers, 233rd ACS national meeting, Chicago, IL, United States, 25–29 March 2007, PHYS-114

    Google Scholar 

  476. Ghirardi ML, Cohen J, King P, Schulten K, Kim K, Seibert M (2006) [FeFe]-hydrogenases and photobiological hydrogen production. In: Proceedings of SPIE-The International Society for Optical Engineering 6340(Solar Hydrogen and Nanotechnology): 63400X/1-63400X/6

    Google Scholar 

  477. Ghirardi ML, Dubini A, Yu J, Maness P-C (2009) Photobiological hydrogen-producing systems. Chem Soc Rev 38(1):52–61

    Article  Google Scholar 

  478. Ghirardi ML, Kosourov S, Seibert M (2001) Cyclic photobiological algal H2-production. In: Proceedings of the 2001 US DOE hydrogen program review, Baltimore, MD, United States, 17–19 Apr 2001, pp 67–76

    Google Scholar 

  479. Hemschemeier A, Melis A, Happe T (2009) Analytical approaches to photobiological hydrogen production in unicellular green algae. Photosynth Res 102(2–3):523–540

    Article  Google Scholar 

  480. Ikuta Y, Akano T, Shioji N, Maeda I (1998) Hydrogen production by photosynthetic microorganisms. In: BioHydrogen, [Proceedings of an international conference on biological hydrogen production], Waikoloa, HI, 23–26 June 1997, pp 319–328

    Google Scholar 

  481. Juantorena AU, Sebastian PJ, Santoyo E, Gamboa SA, Lastres OD, Sanchez-Escamilla D, Bustos A, Eapen D (2007) Hydrogen production employing Spirulina maxima 2342: a chemical analysis. Int J Hydrogen Energy 32(15):3133–3136

    Article  Google Scholar 

  482. Masukawa H, Nakamura K, Mochimaru M, Sakurai H (2001) Photobiological hydrogen production and nitrogenase activity in some heterocystous cyanobacteria. Biohydrogen II: an approach to environmentally acceptable technology [Workshop on Biohydrogen], 2nd, Tsukuba, Japan, June 1999, pp 63–66

    Google Scholar 

  483. Melandri BA, Zannoni D, Casadio R, De Santis A (1985) Photobiological hydrogen production by facultative photosynthetic bacteria. Inst. Bot Univ Bologna, Bologna

    Google Scholar 

  484. Melis A, Melnicki MR (2006) Integrated biological hydrogen production. Int J Hydrogen Energy 31(11):1563–1573

    Article  Google Scholar 

  485. Ogbonna JC, Tanaka H (2001) Photobioreactor design for photobiological production of hydrogen. Biohydrogen II: an approach to environmentally acceptable technology, [Workshop on Biohydrogen], 2nd, Tsukuba, Japan, June 1999, pp 245–261

    Google Scholar 

  486. Prince R, Kheshgi H (2005) The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol 31(1):19–31

    Article  Google Scholar 

  487. Raghavendra AS, Vallejos RH (1980) Photobiological production of hydrogen. Proc Int Symp Biol Appl Sol Energy: 193–195

    Google Scholar 

  488. Rai AN, Soderback E, Bergman B (2000) Tansley review no. 116: Cyanobacterium-plant symbioses. New Phytol 147(3):449–481

    Google Scholar 

  489. Sakurai H, Masukawa H, Dawar S, Yoshino F (2004) Photobiological hydrogen production by cyanobacteria utilizing nitrogenase systems: present status and future development. Biohydrogen III: renewable energy system by biological solar energy conversion, [International Symposium on Biohydrogen], 3rd, Kyoto, Japan, Oct 2002, pp 83–92

    Google Scholar 

  490. Sasikala C, Ramana CV, Rao PR, Venkataraman LV (1996) Hydrogen by bio-routes: a perspective. Proc Natl Acad Sci India B Biol Sci 66(1):1–20

    Google Scholar 

  491. Schutz K, Happe T, Troshina O, Lindblad P, Leitao E, Oliveira P, Tamagnini P (2004) Cyanobacterial H(2) production – a comparative analysis. Planta 218(3):350–359

    Article  Google Scholar 

  492. Seibert M, Lien S, Weaver PF (1979) Photobiological hydrogen production. Sol Energy Res Inst, Golden

    Google Scholar 

  493. Seibert M, Lien S, Weaver PF (1980) Photobiological hydrogen production. Proc Jt US/USSR Conf Microb Enzyme React Proj US/USSR Jt Work Group Prod Subst Microbiol Means, 5th, pp 480–498

    Google Scholar 

  494. Seibert M, Lien S, Weaver PF, Janzen AF (1981) Photobiological production of hydrogen and electricity. Sol Energy Convers 2 [Two], Sel Lect Int Symp Sol Energy Util, pp 273–292

    Google Scholar 

  495. Tramm-Werner S, Hackethal M, Weng M, Hartmeier W (1996) Photobiological hydrogen production using a new plate loop reactor. In: Hydrogen energy progress XI, Proceedings of the world hydrogen energy conference, 11th, Stuttgart, 23–28 June 1996, vol 3, pp 2407–2416

    Google Scholar 

  496. Tramm-Werner S, Weng M, Hartmeier W, Modigell M (1996) Photobiological hydrogen production using immobilized Rhodobacteria: biofilm formation in a loop reactor. In: Biomass for energy and the environment, Proceedings of the European Bioenergy Conference, 9th, Copenhagen, 24–27 June 1996, vol 3, pp 1674–1679

    Google Scholar 

  497. Weaver P, Lien S, Seibert M (1979) Photobiological production of hydrogen: a solar energy conversion option. Sol Energy Res Inst Golden, CO, USA, Report No. SERI/TR-33-122

    Google Scholar 

  498. Weaver PF, Lien S, Seibert M (1980) Photobiological production of hydrogen. Sol Energy 24(1):3–45

    Article  Google Scholar 

  499. Wuenschiers R (2003) Photobiological hydrogen metabolism and hydrogenases from green algae. In: Nalwa HS (ed) Handbook of photochemistry and photobiology, vol 4. American Scientific Publishers, North Lewis Way, pp 353–382

    Google Scholar 

  500. Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. The Journal of General Physiology 26(2):219–240

    Article  Google Scholar 

  501. Miyamoto K (1997) Renewable biological systems for alternative sustainable energy production (FAO agricultural services bulletin - 128). FAO – Food and Agriculture Organization of the United Nations, Rome. ISBN 92-5-104059-1

    Google Scholar 

  502. Fujishima A, Honda K (1971) Verification of the photo senitized electrolytic oxidation of TiO2 electrode by pH measurement. J Chem Soc Japan 74:355–360

    Google Scholar 

  503. Arakawa H, Shiraishi C, Takeuchi A, Yamaguchi T (2006) Solar hydrogen production by water splitting using TiO2 based photoelectrodes. In: Proceedings of SPIE-The International Society for Optical Engineering 6340(Solar Hydrogen and Nanotechnology): 63400G/1-63400G/14

    Google Scholar 

  504. Augustynski J, Calzaferri G, Courvoisier JC, Gratzel M (1996) Photoelectrochemical hydrogen production: state of the art with special reference to IEA’s Hydrogen Program. In: Hydrogen Energy Progress XI, Proceedings of the World Hydrogen Energy Conference, 11th, Stuttgart, 23–28 June 1996 vol 3, pp 2379–2387

    Google Scholar 

  505. Bandara J, Udawatta CPK, Rajapakse CSK (2005) Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O. Photochem Photobiol Sci 4(11):857–861

    Article  Google Scholar 

  506. Best JP, Dunstan DE (2009) Nanotechnology for photolytic hydrogen production: colloidal anodic oxidation. Int J Hydrogen Energy 34(18):7562–7578

    Article  Google Scholar 

  507. Broda E (1978) Hydrogen production through solar radiation by means of water photolysis in membranes. Int J Hydrogen Energy 3(1):119–121

    Article  Google Scholar 

  508. Caramori S, Cristino V, Argazzi R, Meda L, Bignozzi CA (2010) Photoelectrochemical behavior of sensitized TiO2 photoanodes in an aqueous environment: application to hydrogen production. Inorg Chem (Washington, DC, USA) 49(7):3320–3328

    Google Scholar 

  509. Chiarello GL, Forni L, Selli E (2009) Photocatalytic hydrogen production by liquid- and gas-phase reforming of CH3OH over flame-made TiO2 and Au/TiO2. Catal Today 144(1–2): 69–74

    Article  Google Scholar 

  510. Chung K-H, Park D-C (1996) Water photolysis reaction on cerium oxide photocatalysts. Catal Today 30(1–3):157–162

    Article  Google Scholar 

  511. Dholam R, Patel N, Adami M, Miotello A (2009) Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. Int J Hydrogen Energy 34(13):5337–5346

    Article  Google Scholar 

  512. Berr M, Vaneski A, Susha A, Rodriguez-Fernandez J, Doblinger M, Jackel F, Rogach AL, Feldmann J (2010) Colloidal CdS nanorods decorated with subnanometer sized Pt clusters for photocatalyti hydrogen generation. Appl Phys Lett 97(9):093108–093111

    Article  Google Scholar 

  513. Girginer B, Galli G, Chiellini E, Bicak N (2009) Preparation of stable CdS nanoparticles in aqueous medium and their hydrogen generation efficiencies in photolysis of water. Int J Hydrogen Energy 34(3):1176–1184

    Article  Google Scholar 

  514. Ikuma Y, Bessho H (2007) Effect of Pt concentration on the production of hydrogen by a TiO2 photocatalyst. Int J Hydrogen Energy 32(14):2689–2692

    Article  Google Scholar 

  515. Ingler WB Jr, Naseem A (2010) Indium oxide/indium iron oxide thin films for photoelectrochemical hydrogen production with a-silicon solar cells. J Mater Res 25(1):25–31

    Article  Google Scholar 

  516. Jang JS, Choi SH, Kim DH, Jang JW, Lee KS, Lee JS (2009) Enhanced photocatalytic hydrogen production from water-methanol solution by nickel intercalated into titanate nanotube. J Phys Chem C 113(20):8990–8996

    Article  Google Scholar 

  517. Jang JS, Hwang DW, Lee JS (2007) CdS-AgGaS2 photocatalytic diodes for hydrogen production from aqueous Na2S/Na2SO3 electrolyte solution under visible light (l > = 420 nm). Catal Today 120(2):174–181

    Article  Google Scholar 

  518. Jang JS, Ji SM, Bae SW, Son HC, Lee JS (2007) Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (l > = 420 nm). J Photochem Photobiol, A 188(1):112–119

    Article  Google Scholar 

  519. Jang JS, Kim HG, Joshi UA, Jang JW, Lee JS (2008) Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation. Int J Hydrogen Energy 33(21):5975–5980

    Article  Google Scholar 

  520. Jing D, Guo L (2007) WS2 sensitized mesoporous TiO2 for efficient photocatalytic hydrogen production from water under visible light irradiation. Catal Commun 8(5):795–799

    Article  MathSciNet  Google Scholar 

  521. Kanade KG, Baeg J-O, Kong K-j, Kale BB, Lee SM, Moon S-J (2008) A novel nanostructured semiconductor photocatalyst for solar hydrogen production. In: Proceedings of SPIE 7044(Solar Hydrogen and Nanotechnology III): 70440O/1-70440O/11

    Google Scholar 

  522. Kanade KG, Kale BB, Baeg J-O, Lee SM, Lee CW, Moon S-J, Chang H (2007) Self-assembled aligned Cu doped ZnO nanoparticles for photocatalytic hydrogen production under visible light irradiation. Mater Chem Phys 102(1):98–104

    Article  Google Scholar 

  523. Kawai T, Sakata T (1980) Photocatalytic hydrogen production from liquid methanol and water. J Chem Soc, Chem Commun 15:694–695

    Article  Google Scholar 

  524. Kiwi J (1980) Hydrogen and oxygen production via redox catalysis in colloidal systems. Isr J Chem 18(3–4):369–374

    Google Scholar 

  525. Kiwi J, Gratzel M (1979) Hydrogen evolution from water induced by visible light mediated by redox catalysis. Nature(London, UK) 281(5733):657–658

    Google Scholar 

  526. Krishna Reddy J, Suresh G, Hymavathi CH, Durga Kumari V, Subrahmanyam M (2009) Ce (III) species supported zeolites as novel photocatalysts for hydrogen production from water. Catal Today 141(1–2):89–93

    Article  Google Scholar 

  527. Kryukov AI, Smirnova NP, Korzhak AV, Eremenko AM, Kuchmii SY (1997) Photocatalysis of reaction of hydrogen production by cadmium and zinc sulfide nanoparticles incorporated into silicate matrixes. Theor Exp Chem(Translation of Teoreticheskaya i Eksperimental’naya Khimiya) 33(1):30–33

    Google Scholar 

  528. Kwak BS, Chae J, Kim J, Kang M (2009) Enhanced hydrogen production from methanol/water photo-splitting in TiO2 including Pd component. Bull Korean Chem Soc 30(5):1047–1053

    Article  Google Scholar 

  529. Lee SG, Kim J-H, Lee S, Lee H-I (2001) Photochemical production of hydrogen from alkaline solution containing polysulfide dyes. Korean J Chem Eng 18(6):894–897

    Article  Google Scholar 

  530. Li Y, Ma G, Peng S, Lu G, Li S (2009) Photocatalytic H2 evolution over basic zincoxysulfide (ZnS1-x-0.5yOx(OH)y) under visible light irradiation. Appl Catal A Gen 363(1–2):180–187

    Google Scholar 

  531. Liu Y, Guo L, Yan W, Liu H (2006) A composite visible-light photocatalyst for hydrogen production. J Power Sources 159(2):1300–1304

    Article  Google Scholar 

  532. Liu Y, Xie L, Li Y, Yang R, Qu J, Li Y, Li X (2008) Synthesis and high photocatalytic hydrogen production of SrTiO3 nanoparticles from water splitting under UV irradiation. J Power Sources 183(2):701–707

    Article  Google Scholar 

  533. Nann T, Ibrahim SK, Woi P-M, Xu S, Ziegler J, Pickett CJ (2010) Water splitting by visible light: a nanophotocathode for hydrogen production. Angew Chem Int Ed 49(9):1574–1577

    Google Scholar 

  534. Navarro Yerga RM, Alvarez Galvan MC, del Valle F, Villoria de la Mano JA, Fierro JLG (2009) Water splitting on semiconductor catalysts under visible-light irradiation. ChemSusChem 2(6):471–485

    Article  Google Scholar 

  535. Park H, Choi W, Hoffmann MR (2008) Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production. J Mater Chem 18(20):2379–2385

    Article  Google Scholar 

  536. Paulauskas IE, Katz JE, Jellison GE, Lewis NS, Boatner LA (2008) Photoelectrochemical studies of semiconducting photoanodes for hydrogen production via water dissociation. Thin Solid Films 516(22):8175–8178

    Article  Google Scholar 

  537. Rocheleau RE, Miller E, Misra A (1996) Photoelectrochemical hydrogen production. In: Proceedings of the US DOE Hydrogen Program Review, Miami, 1–2 May 1996, vol 1, pp 345–357

    Google Scholar 

  538. Rosseler O, Shankar MV, Du Karkmaz-Le M, Schmidlin L, Keller N, Keller V (2010) Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2(anatase/rutile) photocatalysts: influence of noble metal and porogen promotion. J Catal 269(1):179–190

    Article  Google Scholar 

  539. Ryu SY, Balcerski W, Lee TK, Hoffmann MR (2007) Photocatalytic production of hydrogen from water with visible light using hybrid catalysts of CdS attached to microporous and mesoporous silicas. J Phys Chem C 111(49):18195–18203

    Article  Google Scholar 

  540. Sahu N, Upadhyay SN, Sinha ASK (2009) Kinetics of reduction of water to hydrogen by visible light on alumina supported Pt-CdS photocatalysts. Int J Hydrogen Energy 34(1):130–137

    Article  Google Scholar 

  541. Streich D, Astuti Y, Orlandi M, Schwartz L, Lomoth R, Hammarstroem L, Ott S (2010) High-turnover photochemical hydrogen production catalyzed by a model complex of the [FeFe]-hydrogenase active site. Chem Eur J 16(1):60–63, S/1-S/9

    Google Scholar 

  542. Subramanian E, Baeg J-O, Lee SM, Moon S-J, K-j K (2008) Dissociation of H2S under visible light irradiation (l > = 420nm) with FeGaO3 photocatalysts for the production of hydrogen. Int J Hydrogen Energy 33(22):6586–6594

    Article  Google Scholar 

  543. Tode R, Ebrahimi A, Fukumoto S, Iyatani K, Takeuchi M, Matsuoka M, Lee CH, Jiang C-S, Anpo M (2010) Photocatalytic decomposition of water on double-layered visible light-responsive TiO2 thin films prepared by a magnetron sputtering deposition method. Catal Lett 135(1–2):10–15

    Article  Google Scholar 

  544. Turner J, Sverdrup G, Mann MK, Maness P-C, Kroposki B, Ghirardi M, Evans RJ, Blake D (2008) Renewable hydrogen production. Int J Energy Res 32(5):379–407

    Article  Google Scholar 

  545. Villoria JA, Navarro Yerga RM, Al-Zahrani SM, Fierro JLG (2010) Photocatalytic hydrogen production on Cd1-xZnxS solid solutions under visible light: influence of thermal treatment. Ind Eng Chem Res 49(15):6854–6861

    Article  Google Scholar 

  546. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76–80

    Article  Google Scholar 

  547. Wang Y, Zhang Z, Zhu Y, Li Z, Vajtai R, Ci L, Ajayan PM (2008) Nanostructured VO2 photocatalysts for hydrogen production. ACS Nano 2(7):1492–1496

    Article  Google Scholar 

  548. Weidenkaff A, Nuesch P, Wokaun A, Reller A (1997) Mechanistic studies of the water-splitting reaction for producing solar hydrogen. Solid State Ionics 101–103(Pt. 2):915–922

    Article  Google Scholar 

  549. Werner HAF, Bauer R (1996) Hydrogen production by water photolysis using nitrilotriacetic acid as electron donor. J Photochem Photobiol, A 97(3):171–173

    Article  Google Scholar 

  550. Yan H, Yang J, Ma G, Wu G, Zong X, Lei Z, Shi J, Li C (2009) Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J Catal 266(2):165–168

    Article  Google Scholar 

  551. Yang H, Guo L, Yan W, Liu H (2006) A novel composite photocatalyst for water splitting hydrogen production. J Power Sources 159(2):1305–1309

    Article  Google Scholar 

  552. Yuan Y, Zhang X, Liu L, Jiang X, Lv J, Li Z, Zou Z (2008) Synthesis and photocatalytic characterization of a new photocatalyst BaZrO3. Int J Hydrogen Energy 33(21):5941–5946

    Article  Google Scholar 

  553. T-Raissi A, Block D (2004) Hydrogen: automotive fuel of the future. IEEE Power Energy 2(6):43

    Google Scholar 

  554. Sandrock G (2008) Overview of hydrogen storage: gas liquid and solid. DOE EERE/NIST joint workshop on combinatorial materials science for applications in energy (MCMC-14) NIST Combinatorial Center 5 Nov 2008. Zuttel A (2004) Hydrogen storage methods. Naturwissenschaften 91:157–172

    Google Scholar 

  555. Aceves S, Berry G, Espinosa F, Ross T, Switzer V, Weisberg A, Ledesma-Orozco E (2008) Lawrence Livermore National Laboratory, Automotive cryogenic capable pressure vessels for compact, high dormancy (L)H2 storage, DOE Annual Hydrogen Program Merit Review, 10 June 2008

    Google Scholar 

  556. Mori D, Hirose K (2009) Recent challenges of hydrogen storage technologies for fuel cell vehicles. Int J Hydrogen Energy 34:4569–4574

    Article  Google Scholar 

  557. QUANTUM Technologies WorldWide, Inc. Irvine, CA, USA

    Google Scholar 

  558. Anzulovic I (1992) Optimization of gaseous hydrogen storage system. Int J Hydrogen Energy 17(2):129–138

    Article  Google Scholar 

  559. Barthelemy H, Bryselbout J, Barbe C (1983) Testing methods to select steels for gaseous hydrogen storage and transport vessels. Cent Rech Claude-Delorme, Jouy en Josas, pp 366–377

    Google Scholar 

  560. Itoh Y, Tamura Y, Mitsuishi H, Watanabe S (2007) Numerical study of the thermal bahavior on fast filling of compressed gaseous hydrogen tanks. Society of Automotive Engineers, [Special publication] SP SP-2098(Applications of fuel cells in vehicles), pp 19–24

    Google Scholar 

  561. Koroteev AS, Mironov VV, Smolyarov VA (2004) Perspectives in hydrogen use in means of transportation. Isjaee 1:5–13

    Google Scholar 

  562. Eliasson B, Bossel U (2010) The future of the hydrogen economy: bright or bleak? http://www.woodgas.com/hydrogen_economy.pdf. Accessed 20 Nov 2010

  563. Teitel R (1981) Hydrogen storage in glass microspheres. Brookhaven National Laboratories, Report No. BNL 51439

    Google Scholar 

  564. Sass JP, Fesmire JE, Nagy ZF, Sojourner SJ, Morris DL, Augustynowicz SD (2008) Thermal performance comparison of glass microsphere and perlite insulation systems for liquid hydrogen storage tanks. In: AIP Conference Proceedings, vol 985(Advances in Cryogenic Engineering, vol 53B), pp 1375–1382

    Google Scholar 

  565. Amaseder F, Krainz G (2006) Liquid hydrogen storage systems developed and manufactured for the first time for customer cars. Society of Automotive Engineers, [Special publication] SP SP-2009(Hydrogen IC Engines), pp 23–33

    Google Scholar 

  566. Emans M, Mori D, Krainz G (2006) Analysis of back-gas behaviour of an automotive liquid hydrogen storage system during refilling at the filling station. In: CryoPrague 2006, Multiconference, Proceedings, Praha, Czech Republic, 17–21 July 2006: 186/1–186/5

    Google Scholar 

  567. Furuhama S, Sakurai T, Shindo M (1993) Study of evaporation loss of liquid hydrogen storage tank with LH2 pump. Int J Hydrogen Energy 18(1):25–30

    Article  Google Scholar 

  568. Hedayat A, Hastings LJ, Bryant C, Plachta DW (2002) Large scale demonstration of liquid hydrogen storage with zero boiloff. In: AIP Conference Proceedings, vol 613(Advances in Cryogenic Engineering), pp 1276–1283

    Google Scholar 

  569. Khurana TK, Prasad BVSSS, Ramamurthi K, Murthy SS (2006) Thermal stratification in ribbed liquid hydrogen storage tanks. Int J Hydrogen Energy 31(15):2299–2309

    Article  Google Scholar 

  570. Krainz G, Bartlok G, Bodner P, Casapicola P, Doeller C, Hofmeister F, Neubacher E, Zieger A (2004) Development of automotive liquid hydrogen storage systems. In: AIP Conference Proceedings, vol 710(Advances in Cryogenic Engineering), pp 35–40

    Google Scholar 

  571. Londer H, Myneni GR, Adderley P, Bartlok G, Setina J, Knapp W, Schleussner D (2006) New high capacity getter for vacuum-insulated mobile liquid hydrogen storage systems. In: AIP Conference Proceedings, vol 837(Hydrogen in Matter), pp 210–220

    Google Scholar 

  572. Matsuoka Y (2008) Liquid hydrogen storage and transportation technology. Enerugi no Chozo – Yuso, pp 363–376

    Google Scholar 

  573. Peschka W, Edeskuty FJ, Stewart WF (1983) Liquid-hydrogen storage and refueling for automotive applications. Altern Energy Sources 3(5):407–417

    Google Scholar 

  574. Sass JP, St. Cyr WW, Barrett TM, Baumgartner RG, Lott JW, Fesmire JE (2010) Glass bubbles insulation for liquid hydrogen storage tanks. In: AIP Conference Proceedings, vol 1218, pp 772–779

    Google Scholar 

  575. Linde Group. Hydrogen solution. www.linde.com. Accessed 20 Nov 2010

  576. Shimko MA (2005) Combined reverse Brayton Joule Thompson Hydrogen liquefaction cycle. DOE Hydrogen Program. FY 2005 progress report. Contract Number: DE-FG36-05GO15021

    Google Scholar 

  577. Arai M, Utsumi S, Kanamaru M, Urita K, Fujimori T, Yoshizawa N, Noguchi D, Nishiyama K, Hattori Y, Okino F, Ohba T, Tanaka H, Kanoh H, Kaneko K (2009) Enhanced hydrogen adsorptivity of single-wall carbon nanotube bundles by one-step C60-pillaring method. Nano Lett 9(11):3694–3698

    Article  Google Scholar 

  578. Avdeenkov AV, Bibikov AV, Bodrenko IV, Nikolaev AV, Taran MD, Tkalya EV (2009) Modified carbon nanostructures as materials for hydrogen storage. Russ Phys J 52(11):1235–1241

    Article  Google Scholar 

  579. Balathanigaimani MS, Shim W-G, Kim T-H, Cho S-J, Lee J-W, Moon H (2009) Hydrogen storage on highly porous novel corn grain-based carbon monoliths. Catal Today 146(1–2): 234–240

    Article  Google Scholar 

  580. Bianco S, Giorcelli M, Musso S, Castellino M, Agresti F, Khandelwal A, Lo Russo S, Kumar M, Ando Y, Tagliaferro A (2009) Hydrogen adsorption in several types of carbon nanotubes. J Nanosci Nanotechnol 9(12):6806–6812

    Google Scholar 

  581. Bianco S, Giorcelli M, Musso S, Castellino M, Agresti F, Khandelwal A, Russo SL, Kumar M, Ando Y, Tagliaferro A (2010) Hydrogen adsorption in several types of carbon nanotubes. J Nanosci Nanotechnol 10(6):3860–3866

    Article  Google Scholar 

  582. Burress J, Kraus M, Beckner M, Cepel R, Suppes G, Wexler C, Pfeifer P (2009) Hydrogen storage in engineered carbon nanospaces. Nanotechnology 20(20):204026/1–204026/10

    Google Scholar 

  583. Fierro V, Szczurek A, Zlotea C, Mareche JF, Izquierdo MT, Albiniak A, Latroche M, Furdin G, Celzard A (2010) Experimental evidence of an upper limit for hydrogen storage at 77K on activated carbons. Carbon 48(7):1902–1911

    Article  Google Scholar 

  584. Gao F, Zhao D-L, Li Y, Li X-G (2010) Preparation and hydrogen storage of activated rayon-based carbon fibers with high specific surface area. J Phys Chem Solids 71(4):444–447

    Article  Google Scholar 

  585. Gayathri V, Devi NR, Geetha R (2010) Hydrogen storage in coiled carbon nanotubes. Int J Hydrogen Energy 35(3):1313–1320

    Article  Google Scholar 

  586. Geng H-Z, Kim TH, Lim SC, Jeong H-K, Jin MH, Jo YW, Lee YH (2010) Hydrogen storage in microwave-treated multi-walled carbon nanotubes. Int J Hydrogen Energy 35(5): 2073–2082

    Article  Google Scholar 

  587. Hirano S (2010) Fuel cell research and development at Ford Motor Company. J Fuel Cell Tech (Nenryo Denchi) 9(3):38–45

    Google Scholar 

  588. Huang C-C, Chen H-M, Chen C-H, Huang J-C (2010) Effect of surface oxides on hydrogen storage of activated carbon. Sep Purif Technol 70(3):291–295

    Article  Google Scholar 

  589. Jimenez V, Sanchez P, Diaz JA, Valverde JL, Romero A (2010) Hydrogen storage capacity on different carbon materials. Chem Phys Lett 485(1–3):152–155

    Article  Google Scholar 

  590. Jurewicz K (2009) Influence of charging parameters on the effectiveness of electrochemical hydrogen storage in activated carbon. Int J Hydrogen Energy 34(23):9431–9435

    Article  Google Scholar 

  591. Kuchta B, Firlej L, Pfeifer P, Wexler C (2009) Numerical estimation of hydrogen storage limits in carbon-based nanospaces. Carbon 48(1):223–231

    Article  Google Scholar 

  592. Kunowsky M, Marco-Lozar JP, Cazorla-Amoros D, Linares-Solano A (2010) Scale-up activation of carbon fibres for hydrogen storage. Int J Hydrogen Energy 35(6):2393–2402

    Article  Google Scholar 

  593. Lan J, Cao D, Wang W (2009) Li12Si60H60 fullerene composite: a promising hydrogen storage medium. ACS Nano 3(10):3294–3300

    Article  Google Scholar 

  594. Liu C, Chen Y, Wu C-Z, Xu S-T, Cheng H-M (2009) Hydrogen storage in carbon nanotubes revisited. Carbon 48(2):452–455

    Article  Google Scholar 

  595. Martin JB, Kinloch IA, Dryfe RAW (2010) Are carbon nanotubes viable materials for the electrochemical storage of hydrogen? J Phys Chem C 114(10):4693–4703

    Article  Google Scholar 

  596. Meisner GP, Hu Q (2009) High surface area microporous carbon materials for cryogenic hydrogen storage synthesized using new template-based and activation-based approaches. Nanotechnology 20(20):204023/1–204023/10

    Google Scholar 

  597. Muniz AR, Meyyappan M, Maroudas D (2009) On the hydrogen storage capacity of carbon nanotube bundles. Appl Phys Lett 95(16):163111/1–163111/3

    Google Scholar 

  598. Openov LA, Podlivaev AI (2010) Thermal desorption of hydrogen from graphane. Tech Phys Lett 36(1):31–33

    Article  Google Scholar 

  599. Paggiaro R, Benard P, Polifke W (2010) Cryo-adsorptive hydrogen storage on activated carbon. I: thermodynamic analysis of adsorption vessels and comparison with liquid and compressed gas hydrogen storage. Int J Hydrogen Energy 35(2):638–647

    Google Scholar 

  600. Paggiaro R, Michl F, Benard P, Polifke W (2010) Cryo-adsorptive hydrogen storage on activated carbon. II: investigation of the thermal effects during filling at cryogenic temperatures. Int J Hydrogen Energy 35(2):648–659

    Google Scholar 

  601. Qin X, Li F (2010) Synthesis of the novel porous carbon nanotubes. Advanced Materials Research (Zuerich, Switzerland) 96(Advance in Ecological Environment, Functional Materials and Ion Industry), pp 241–243

    Google Scholar 

  602. Reyhani A, Golikand AN, Mortazavi SZ, Irannejad L, Moshfegh AZ (2010) The effects of multi-walled carbon nanotubes graphitization treated with different atmospheres and electrolyte temperatures on electrochemical hydrogen storage. Electrochim Acta 55(16): 4700–4705

    Article  Google Scholar 

  603. Roman TA, Dino WA, Nakanishi H, Kasai H, Sugimoto T, Tange K (2007) Graphite utilization in hydrogen storage: a computational perspective. Condens Matter Theor 21:275–283

    Google Scholar 

  604. Saha D, Wei Z, Valluri SH, Deng S (2010) Hydrogen adsorption in ordered mesoporous carbon synthesized by a soft-template approach. J Porous Media 13(1):39–50

    Article  Google Scholar 

  605. Suarez-Garcia F, Vilaplana-Ortego E, Kunowsky M, Kimura M, Oya A, Linares-Solano A (2009) Activation of polymer blend carbon nanofibres by alkaline hydroxides and their hydrogen storage performances. Int J Hydrogen Energy 34(22):9141–9150

    Article  Google Scholar 

  606. Sufian S, Yusup S, Walker GS, Shariff AM (2009) Synthesis of graphitic nanofibres using iron (III) oxide catalyst for hydrogen storage application. Mater Res Innovations 13(3):221–224

    Article  Google Scholar 

  607. Vasiliev LL, Kanonchik LE (2010) Activated carbon fibres and composites on its base for high performance hydrogen storage system. Chem Eng Sci 65(8):2586–2595

    Article  Google Scholar 

  608. Venkataramanan NS, Mizuseki H, Kawazoe Y (2009) Hydrogen storage on nanofullerene cages. Nano 4(5):253–263

    Article  Google Scholar 

  609. Wu H-C, Li Y-Y, Sakoda A (2010) Synthesis and hydrogen storage capacity of exfoliated turbostratic carbon nanofibers. Int J Hydrogen Energy 35(9):4123–4130

    Article  Google Scholar 

  610. Xia Y, Walker GS, Grant DM, Mokaya R (2009) Hydrogen storage in high surface area carbons: experimental demonstration of the effects of nitrogen doping. J Am Chem Soc 131(45):16493–16499

    Article  Google Scholar 

  611. Zhou Z, Zhao J (2008) Gas adsorption in carbon nanotubes and technological applications. Recent Research Activities of Micro- and Nano-Scale Carbon Related Materials INBN No 978-81-7895-350-2, pp 37–57

    Google Scholar 

  612. Zini G, Marazzi R, Pedrazzi S, Tartarini P (2010) A solar hydrogen hybrid system with activated carbon storage. Int J Hydrogen Energy 35(10):4909–4917

    Article  Google Scholar 

  613. Reyhani A, Mortazavi SZ, Moshfegh AZ, Golikand AN (2010) A study on the effects of Fex/Niy/MgO(1-x-y) catalysts on the volumetric and electrochemical hydrogen storage of multi-walled carbon nanotubes. Int J Hydrogen Energy 35(1):231–237

    Article  Google Scholar 

  614. Schaller R, Mari D, Marques dos Santos S, Tkalcec I, Carreno-Morelli E (2009) Investigation of hydrogen storage in carbon nanotube-magnesium matrix composites. Mate Sci Eng A 521–522:147–150

    Article  Google Scholar 

  615. Xu F, Lu Y, Sun L, Zhi L (2010) A novel ZnO nanostructure: rhombus-shaped ZnO nanorod array. Chem Commun(Cambridge, UK) 46(18):3191–3193

    Google Scholar 

  616. Yamauchi M, Kobayashi H, Kitagawa H (2009) Hydrogen storage mediated by Pd and Pt nanoparticles. Chemphyschem 10(15):2566–2576

    Article  Google Scholar 

  617. Lee H, Huang B, Duan W, Ihm J (2010) Ab initio study of beryllium-decorated fullerenes for hydrogen storage. J Appl Phys 107(8):084304/1–084304/4

    Google Scholar 

  618. Tsao C-S, Liu Y, Li M, Zhang Y, Leao JB, Chang H-W, Yu M-S, Chen S-H (2010) Neutron scattering methodology for absolute measurement of room-temperature hydrogen storage capacity and evidence for spillover effect in a Pt-doped activated carbon. J Phys Chem Lett 1(10):1569–1573

    Article  Google Scholar 

  619. Tsao C-S, Tzeng Y-R, Yu M-S, Wang C-Y, Tseng H-H, Chung T-Y, Wu H-C, Yamamoto T, Kaneko K, Chen S-H (2010) Effect of catalyst size on hydrogen storage capacity of Pt-impregnated active carbon via spillover. J Phys Chem Lett 1(7):1060–1063

    Article  Google Scholar 

  620. Wang L, Lee K, Sun Y-Y, Lucking M, Chen Z, Zhao JJ, Zhang SB (2009) Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 3(10):2995–3000

    Article  Google Scholar 

  621. Wang L, Yang RT (2009) Hydrogen storage properties of N-doped microporous carbon. J Phys Chem C 113(52):21883–21888

    Article  Google Scholar 

  622. Wang P-J, Fang Z-Z, Ma L-P, Kang X-D, Wang P (2010) Effect of carbon addition on hydrogen storage behaviors of Li-Mg-B-H system. Int J Hydrogen Energy 35(7):3072–3075

    Article  Google Scholar 

  623. Wang Q, Sun Q, Jena P (2009) Hydrogen storage in AlN-based nanostructures. Prepr Symp Am Chem Soc, Div Fuel Chem 54(2):751

    Google Scholar 

  624. Wang Z, Yang RT (2010) Enhanced hydrogen storage on Pt-doped carbon by plasma reduction. J Phys Chem C 114(13):5956–5963

    Article  Google Scholar 

  625. Wu HY, Fan XF, Kuo J-L, Deng W-Q (2010) Carbon doped boron nitride cages as competitive candidates for hydrogen storage materials. Chem Commun (Cambridge, UK) 46(6):883–885

    Google Scholar 

  626. Xia J, Yuan S, Wang Z, Kirklin S, Dorney B, Liu D-J, Yu L (2010) Nanoporous polyporphyrin as adsorbent for hydrogen storage. Macromolecules (Washington, DC, USA) 43(7): 3325–3330

    Google Scholar 

  627. Diaz E, Leon M, Ordonez S (2010) Hydrogen adsorption on Pd-modified carbon nanofibres: influence of CNF surface chemistry and impregnation procedure. Int J Hydrogen Energy 35(10):4576–4581

    Article  Google Scholar 

  628. Jeong Y, Mike Chung TC (2010) The synthesis and characterization of a super-activated carbon containing substitutional boron (BCx) and its applications in hydrogen storage. Carbon 48(9):2526–2537

    Article  Google Scholar 

  629. Chang J-K, Chen C-Y, Tsai W-T (2009) Decorating carbon nanotubes with nanoparticles using a facile redox displacement reaction and an evaluation of synergistic hydrogen storage performance. Nanotechnology 20(49):495603/1–495603/7

    Google Scholar 

  630. Lee H, Ihm J, Cohen ML, Louie SG (2010) Calcium-decorated graphene-based nanostructures for hydrogen storage. Nano Lett 10(3):793–798

    Article  Google Scholar 

  631. Lee H, Ihm J, Cohen ML, Louie SG (2009) Calcium-decorated carbon nanotubes for high-capacity hydrogen storage: first-principles calculations. Phys Rev B Condensed Matter Mater Phys 80(11):115412/1–115412/5

    Google Scholar 

  632. Huang L, Liu Y-C, Gubbins KE, Nardelli MB (2010) Ti-decorated C60 as catalyst for hydrogen generation and storage. Appl Phys Lett 96(6):063111/1–063111/3

    Google Scholar 

  633. Yang C-C, Li YJ, Chen W-H (2010) Electrochemical hydrogen storage behavior of single-walled carbon nanotubes (SWCNTs) coated with Ni nanoparticles. Int J Hydrogen Energy 35(6):2336–2343

    Article  Google Scholar 

  634. Yu L-M, Shi G-S, Wang Z-G, Ji G-F, Lu Z-P (2009) Adsorption mechanism of hydrogen on boron-doped fullerenes. Chin Phys Lett 26(8):086804/1–086804/4

    Google Scholar 

  635. Giraudet S, Zhu Z, Yao X, Lu G (2010) Ordered mesoporous carbons enriched with nitrogen: application to hydrogen storage. J Phys Chem C 114(18):8639–8645

    Article  Google Scholar 

  636. Grigorova E, Mandzhukova T, Khristov M, Tzvetkov P, Tsyntsarski B (2010) Investigation of hydrogen storage properties of magnesium based composites with addition of activated carbon derived from apricot stones. Bulg Chem Commun 42(1):70–74

    Google Scholar 

  637. Chang J-K, Chen C-Y, Tsai W-T (2009) Preparation and hydrogen storage performance of Pd nanoparticles decorated carbon nanotubes. ECS Transactions 19(10, Hydrogen Production, Transport, and Storage 3): 33–40

    Google Scholar 

  638. Neiner D, Kauzlarich SM (2010) Hydrogen-capped silicon nanoparticles as a potential hydrogen storage material: synthesis, characterization, and hydrogen release. Chem Mater 22(2):487–493

    Article  Google Scholar 

  639. Ni M, Huang L, Guo L, Zeng Z (2010) Hydrogen storage in Li-doped charged single-walled carbon nanotubes. Int J Hydrogen Energy 35(8):3546–3549

    Article  Google Scholar 

  640. Chen C-Y, Chang J-K, Lin K-Y, Chung S-T, Tsai W-T (2010) Enhanced hydrogen storage in MWCNTs decorated by electroless nickel nanoparticles deposited in supercritical CO2 bath. Mater Sci Forum 638–642, 1148–1151, (Pt. 2, THERMEC 2009)

    Google Scholar 

  641. Liu Q (2010) Monodisperse polystyrene nanospheres with ultrahigh surface area: application for hydrogen storage. Macromol Chem Phys 211(9):1012–1017

    Google Scholar 

  642. Ahmad M, Rafi-ud D, Pan C, Zhu J (2010) Investigation of hydrogen storage capabilities of ZnO-based nanostructures. J Phys Chem C 114(6):2560–2565

    Article  Google Scholar 

  643. Chu Z, He R, Zhang X, Cheng H, Li X, Wang Y (2010) Hydrogen adsorption properties of polymer-derived nanoporous SiCx fibers. Int J Hydrogen Energy 35(7):3165–3169

    Article  Google Scholar 

  644. Hu T, Zhang H, Li T, Liu R, Meng C, Qiu J (2009) Zeolite supported nickel cluster and its adsorption towards hydrogen molecules. Prepr Symp Am Chem Soc, Div Fuel Chem 54(2):591–592

    Google Scholar 

  645. Korili SA, Gil A (2008) Recent advances in hydrogen adsorption and storage on porous materials. Recent Research Developments in Environmental Technology, pp 143–155

    Google Scholar 

  646. Chung K-H (2010) High-pressure hydrogen storage on microporous zeolites with varying pore properties. Energy (Oxford, UK) 35(5):2235–2241

    Google Scholar 

  647. Lim KL, Kazemian H, Yaakob Z, Daud WRW (2010) Solid-state materials and methods for hydrogen storage: a critical review. Chem Eng Technol 33(2):213–226

    Article  Google Scholar 

  648. Hunt AJ, Gross K, Mao SS (2009) Mesoporous oxides and their applications to hydrogen storage. Mater Matters (Milwaukee, WI, USA) 4(2):47–54

    Google Scholar 

  649. Niemann MU, Srinivasan SS, Phani AR, Kumar A, Goswami DY, Stefanakos EK (2009) Room temperature reversible hydrogen storage in polyaniline (PANI) nanofibers. J Nanosci Nanotechnol 9(8):4561–4565

    Article  Google Scholar 

  650. Kuchta B, Firlej L, Cepel R, Pfeifer P, Wexler C (2010) Structural and energetic factors in designing a nanoporous sorbent for hydrogen storage. Colloids Surf A Physicochem Eng Aspects 357(1–3):61–66

    Article  Google Scholar 

  651. Park S-J, Lee S-Y (2010) A study on hydrogen-storage behaviors of nickel-loaded mesoporous MCM-41. J Colloid Interface Sci 346(1):194–198

    Article  Google Scholar 

  652. Reddy ALM, Tanur AE, Walker GC (2010) Synthesis and hydrogen storage properties of different types of boron nitride nanostructures. Int J Hydrogen Energy 35(9):4138–4143

    Article  Google Scholar 

  653. Sepehri S, Cao G (2010) Nanostructured materials for hydrogen storage. Annu Rev Nano Res 3:487–514

    Google Scholar 

  654. Sun X, Hwang J-Y, Shi S (2010) Hydrogen storage in mesoporous metal oxides with catalyst and external electric field. J Phys Chem C 114(15):7178–7184

    Article  Google Scholar 

  655. Zuettel A (2009) Materials for hydrogen storage. In: Barbaro P, Bianchini C (eds) Catalysis for sustainable energy production. Wiley-VCH, Weinheim, pp 107–169

    Chapter  Google Scholar 

  656. Bogdanovic B, Felderhoff M, Streukens G (2009) Hydrogen storage in complex metal hydrides. J Serb Chem Soc 74(2):183–196

    Article  Google Scholar 

  657. Thomas KM (2007) Hydrogen adsorption and storage on porous materials. Catal Today 120:389–398

    Article  Google Scholar 

  658. Darkrim F, Levesque D (2000) High adsorptive property of opened carbon nanotubes at 77 K. J Phys Chem B 104:6773–6776

    Article  Google Scholar 

  659. Wang Q, Johnson JK (1999) Molecular simulation of hydrogen adsorption in single–walled carbon nanotubes and idealized carbon slit pores. J Chem Phys 110:557–567

    Google Scholar 

  660. Yin YF, Mays T, McEnaney B (2000) Molecular simulations of hydrogen storage in carbon nanotube arrays. Langmuir 16:10521–10527

    Article  Google Scholar 

  661. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379

    Article  Google Scholar 

  662. Ye Y, Ahn CC, Witham C, Fultz B, Liu J, Rinzler G, Colbert D, Smith KA, Smalley RE (1999) Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl Phys Lett 74:2307–2309

    Article  Google Scholar 

  663. Dillon AC, Bekkedahl TA, Jones KM, Heben MJ (1996) Oxidative opening and filling by hydrogen of single wall carbon nanotubes. In: Kadish KM, Ruoff RS (eds) Proceedings of the symposium on recent advances in the chemistry and physics of fullerenes and related materials, 5–10 May 1996, Los Angeles, California. Electrochemical Society Proceedings Volume 96–10. Pennington, NJ. The Electrochemical Society, Inc. 3, pp 716–727 NREL Report No. 24407

    Google Scholar 

  664. Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS (1999) Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286:1127–1129

    Article  Google Scholar 

  665. Zhu HW, Ci LJ, Chen A, Mao ZQ, Xu CL, Xiao X, Wei BQ, Liang J, Wu DH (2000) Hydrogen uptake in multi-walled carbon nanotubes at room temperature. In: Mao ZQ, Veziroglu TN (eds) Proceedings of the 13th World Hydrogen Energy Conference, 11–15 June 2000, Beijing, China. International Hydrogen Association 2000, pp 560

    Google Scholar 

  666. Wu H-i LuJ, Li B-L (2000) A coupled oscillatory model mimicking avian circadian regulatory systems. J Biol Phys 26:261–272

    Article  Google Scholar 

  667. Chen P, Wu X, Lin J, Tan KL (1999) High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285:91–93

    Article  Google Scholar 

  668. Yang RT (2000) Hydrogen storage by alkali-doped carbon nanotubes-revisited. Carbon 38:623–626

    Article  Google Scholar 

  669. Pinkerton F, Wickle B, Olk C, Tibbetts G, Meisner G, Meyer MS, Herbst J (2000) Thermogravimetric measurement of hydrogen storage in carbon-based materials: promise and pitfalls. In: Proceedings of the 10th Canadian Hydrogen Conference, Quebec, Canadian Hydrogen Association

    Google Scholar 

  670. Rodriguez N (1996) Hydrogen storage. MRS 1996 Fall Meeting, 2–6 Dec, Boston, Paper D 11.6

    Google Scholar 

  671. Browning DJ, Gerrard ML, Laakeman JB, Mellor IM, Mortimer RJ, Turpin MC (2000) Investigation of the hydrogen storage capacities of carbon nanofibres prepared from an Ethylene precursor. In: Mao ZQ, Veziroglu TN (eds) Proceedings of the 13th World Hydrogen Energy Conference, Beijing, China. International Hydrogen Association, 2000, p 580

    Google Scholar 

  672. Gupta BK, Awasthi K, Srivastava ON (2000) New carbon variants: graphitic nanofibres and nanotubules as hydrogen storage materials. In: Mao ZQ, Veziroglu TN (eds) Proceedings of the 13th World Hydrogen Energy Conference, Beijing, China.International Hydrogen Association, 2000, p 487

    Google Scholar 

  673. Liu C, Chen Y, Wu C-Z, Xu S-T, Cheng H-M (2010) Hydrogen storage in carbon nanotubes revisited. Carbon 48:452–455

    Article  Google Scholar 

  674. Dillon AC, Gennett T, Jones KM, Alleman JL, Parilla PA, Heben MJ (1999) Carbon nanotubes materials for hydrogen storage. In: Proceedings of the 1999 DOE/NREL Hydrogen Program Review, U.S. DOE, Washington DC 1999

    Google Scholar 

  675. Chen X (2002) Hydrogen storage. In: Proceedings of the 3rd Materials Research Society Symposiu. Materials Research Society Press, Boston

    Google Scholar 

  676. Smith MR Jr, Bittner EW, Shi W, Johnson JK, Bockrath BC (2003) Chemical activation of single-walled carbon nanotubes for hydrogen adsorption. J Phys Chem B 107(16):3752–3760

    Article  Google Scholar 

  677. Chambers A, Park C, Baker RTK, Rodriguez NM (1998) Hydrogen storage in graphite nanofibers. J Phys Chem B 102(22):4253–4256

    Article  Google Scholar 

  678. Zhu H, Cao A, Li X, Xu C, Mao Z, Ruan D, Liang J (2001) Hydrogen adsorption in bundles of well aligned carbon nanotubes at room temperature. Appl Surf Sci 178(1–4):50–55

    Article  Google Scholar 

  679. Chen Y, Shaw DT, Bai XD, Wang EG, Lund C, Lu WM, Chung DDL (2001) Hydrogen storage in aligned carbon annotubes. Appl Phys Lett 78(15):2128–2130

    Article  Google Scholar 

  680. Badzian A, Badzian T, Breval E, Piotrowski A (2001) Nanostructured, nitrogen doped carbon materials for hydrogen storage. Thin Solid Films 398–399:170–174

    Article  Google Scholar 

  681. Wang H, Gao Q, Hu J (2009) High hydrogen storage capacity of porous carbons prepared by using activated carbon. J Am Chem Soc 131:7016–7022

    Article  Google Scholar 

  682. Cheng F, Liang J, Zhao J, Tao Z, Chen J (2008) Biomass waste-derived microporous carbons with controlled texture and enhanced hydrogen uptake. Chem Mater 20:1889–1895

    Article  Google Scholar 

  683. Jordá-Beneyto M, Suárez-Garcá F, Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A (2007) Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon 45:293–303

    Article  Google Scholar 

  684. Yang Z, Xia Y, Mokaya R (2007) Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J Am Chem Soc 129:1673–1679

    Article  Google Scholar 

  685. Pacula A, Mokaya R (2008) Synthesis and high hydrogen storage capacity of zeolite-like carbons nanocast using as-synthesized zeolite templates. J Phys Chem C 112:2764–2769

    Article  Google Scholar 

  686. Saha D, Deng S (2009) Hydrogen adsorption in ordered mesoporous carbon Doped with Pt, Pd, Ru and Ni. Langmuir 25(21):12550–12560

    Article  Google Scholar 

  687. Nijkamp MG, Raaymakers JEMJ, Van Dillen AJ, De Jong KP (2001) Hydrogen storage using physisorption-materials demands. Appl Phys A: Mater Sci Process 72:619–623

    Article  Google Scholar 

  688. Pang J, Hampsey JE, Wu Z, Hu Q, Lu Y (2004) Hydrogen adsorption in mesoporous carbons. Appl Phys Lett 85:4887–4889

    Article  Google Scholar 

  689. Parra JB, Ania CO, Arenillas A, Rubiera F, Palacios JM, Pis JJ (2004) Textural development and hydrogen adsorption of carbon materials from PET waste. J Alloy Comp 379:280–289

    Article  Google Scholar 

  690. Takagi H, Hatori H, Soneda Y, Yoshizawa N, Yamada Y (2004) Adsorptive hydrogen storage in carbon and porous materials. Mater Sci Eng B Solid State Mater Advan Technol 108: 143–147

    Google Scholar 

  691. Takagi H, Hatori H, Yamada Y, Matsuo S, Shiraishi M (2004) Hydrogen adsorption properties of activated carbons with modified surfaces. J Alloy Comp 385:257–263

    Article  Google Scholar 

  692. Zhao X, Villar-Rodil S, Fletcher AJ, Thomas KM (2006) Kinetic isotope effect for H2 and D2 quantum molecular sieving in adsorption/desorption on porous carbon materials. J Phys Chem B 110:9947–9955

    Article  Google Scholar 

  693. Zhao XB, Xiao B, Fletcher AJ, Thomas KM (2005) Hydrogen adsorption on functionalized nanoporous activated carbons. J Phys Chem B 109:8880–8888

    Article  Google Scholar 

  694. Schimmel HG, Kearley GJ, Nijkamp MG, Visser CT, de Jong KP, Mulder FM (2003) Hydrogen adsorption in carbon nanostructures: comparison of nanotubes, fibers, and coals. Chem Eur J 9:4764–4770

    Article  Google Scholar 

  695. Schimmel HG, Nijkamp G, Kearley GJ, Rivera A, De Jong KP, Mulder FM (2004) Hydrogen adsorption in carbon nanostructures compared. Mater Sci Eng B Solid State Mater Advan Technol 108:124–129

    Google Scholar 

  696. Texier-Mandoki N, Dentzer J, Piquero T, Saadallah S, David P, Vix-Guterl C (2004) Hydrogen storage in activated carbon materials: role of the nanoporous texture. Carbon 42:2744–2747

    Article  Google Scholar 

  697. Gadiou R, Saadallah SE, Piquero T, David P, Parmentier J, Vix-Guterl C (2005) The influence of textural properties on the adsorption of hydrogen on ordered nanostructured carbons. Microporous Mesoporous Mater 79:121–128

    Article  Google Scholar 

  698. Gogotsi Y, Dash RK, Yushin G, Yildirim T, Laudisio G, Fischer JE (2005) Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. J Am Chem Soc 127:16006–16007

    Article  Google Scholar 

  699. Rowsell JLC, Yaghi OM (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J Am Chem Soc 128:1304–1315

    Article  Google Scholar 

  700. Chapman KW, Southon PD, Weeks CL, Kepert CJ (2005) Reversible hydrogen gas uptake in nanoporous Prussian blue analogues. Chem Commun 26:3322–3324

    Article  Google Scholar 

  701. Chun H, Dybtsev DN, Kim H, Kim K (2005) Synthesis, x-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials. Chem Eur J 11:3521–3529

    Article  Google Scholar 

  702. Kaye SS, Long JR (2005) Hydrogen storage in the dehydrated prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). J Am Chem Soc 127:6506–6507

    Article  Google Scholar 

  703. Dybtsev DN, Chun H, Kim K (2004) Rigid and flexible: a highly porous metal–organic framework with unusual guest-dependent dynamic behavior. Angew Chem Int Ed 43:5033–5036

    Article  Google Scholar 

  704. Chen B, Ockwig NW, Millward AR, Contreras DS, Yaghi OM (2005) High H2 adsorption in a microporous metal-organic framework with open metal sites. Angew Chem Int Ed 44: 4745–4749

    Article  Google Scholar 

  705. Dietzel PDC, Panella B, Hirscher M, Blom R, Fjellvag H (2006) Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chem Commun 9:959–961

    Google Scholar 

  706. Belosludov VR, Subbotin OS, Belosludov RV, Mizuseki H, Kawazoe Y, Kudoh J (2009) Thermodynamics and hydrogen storage ability of binary hydrogen + help gas clathrate hydrate. Int J Nanosci 8(1 & 2):57–63

    Article  Google Scholar 

  707. Di Profio P, Arca S, Rossi F, Filipponi M (2009) Comparison of hydrogen hydrates with existing hydrogen storage technologies: energetic and economic evaluations. Int J Hydrogen Energy 34(22):9173–9180

    Article  Google Scholar 

  708. Gutowski M, Abramov AV (2009) Hierarchical storage of hydrogen in clathrates of ammonia borane. Prepr Symp Am Chem Soc, Div Fuel Chem 54(2):849–852

    Google Scholar 

  709. Lee H, J-W L, Kim DY, Park J, Seo Y-T, Zeng H, Moudrakovski IL, Ratcliffe CI, Ripmeester JA (2005) Tuning clathrate hydrates for hydrogen storage. Nature (London, UK) 434(7034):743–746

    Google Scholar 

  710. Martin A, Peters CJ (2009) Hydrogen storage in sH clathrate hydrates: thermodynamic model. J Phys Chem B 113(21):7558–7563

    Article  Google Scholar 

  711. Mulder FM, Wagemaker M, van Eijck L, Kearley GJ (2008) Hydrogen in porous tetrahydrofuran clathrate hydrate. Chemphyschem 9(9):1331–1337

    Article  Google Scholar 

  712. Nakayama T, Tomura S, Ozaki M, Ohmura R, Mori YH (2010) Engineering investigation of hydrogen storage in the form of clathrate hydrates: conceptual design of hydrate production plants. Energy Fuels 24(4):2576–2588

    Article  Google Scholar 

  713. Ogata K, Tsuda T, Amano S, Hashimoto S, Sugahara T, Ohgaki K (2010) Hydrogen storage in trimethylamine hydrate: thermodynamic stability and hydrogen storage capacity of hydrogen + trimethylamine mixed semi-clathrate hydrate. Chem Eng Sci 65(5):1616–1620

    Article  Google Scholar 

  714. Papadimitriou NI, Tsimpanogiannis IN, Stubos AK (2010) Computational approach to study hydrogen storage in clathrate hydrates. Colloids Surf A Physicochem Eng Aspects 357(1–3): 67–73

    Article  Google Scholar 

  715. Prasad PR, Sum AK, Sloan ED, Koh CA (2009) Hydrogen storage in clathrate materials. Abstracts of Papers, 237th ACS National Meeting, Salt Lake City, UT, United States, 22–26 March 2009, FUEL-154

    Google Scholar 

  716. Prasad PSR, Sugahara T, Kim Y, Sum AK, Sloan ED, Koh CA (2009) Hydrogen storage in clathrate materials. Prepr Symp Am Chem Soc, Div Fuel Chem 54(2):855

    Google Scholar 

  717. Prasad PSR, Sugahara T, Sum AK, Sloan ED, Koh CA (2009) Hydrogen storage in double clathrates with tert-butylamine. J Phys Chem A 113(24):6540–6543

    Article  Google Scholar 

  718. Saha D, Deng S (2009) Enhanced hydrogen adsorption in ordered mesoporous carbon through clathrate formation. Int J Hydrogen Energy 34(20):8583–8588

    Article  Google Scholar 

  719. Shin K, Kim Y, Strobel TA, Prasad PSR, Sugahara T, Lee H, Sloan ED, Sum AK, Koh CA (2009) Tetra-n-butylammonium borohydride semiclathrate: a hybrid material for hydrogen storage. J Phys Chem A 113(23):6415–6418

    Article  Google Scholar 

  720. Sluiter MHF, Adachi H, Belosludov RV, Belosludov VR, Kawazoe Y (2004) Ab initio study of hydrogen storage in hydrogen hydrate clathrates. Mater Trans 45(5):1452–1454

    Article  Google Scholar 

  721. Strobel TA, Hester KC, Koh CA, Sum AK, Sloan ED Jr (2009) Properties of the clathrates of hydrogen and developments in their applicability for hydrogen storage. Chem Phys Lett 478(4–6):97–109

    Article  Google Scholar 

  722. Strobel TA, Kim Y, Andrews GS, Ferrell JR III, Koh CA, Herring AM, Sloan ED (2008) Chemical-clathrate hybrid hydrogen storage: storage in both guest and host. J Am Chem Soc 130(45):14975–14977

    Article  Google Scholar 

  723. Strobel TA, Kim Y, Andrews GS, Ferrell JR III, Koh CA, Herring AM, Sloan ED (2009) Chemical-clathrate hybrid hydrogen storage. Prepr Symp Am Chem Soc, Div Fuel Chem 54(1):314–316

    Google Scholar 

  724. Strobel TA, Koh CA, Sloan ED (2009) Thermodynamic predictions of various tetrahydrofuran and hydrogen clathrate hydrates. Fluid Phase Equilib 280(1–2):61–67

    Article  Google Scholar 

  725. Su F, Bray CL, Carter BO, Overend G, Cropper C, Iggo JA, Khimyak YZ, Fogg AM, Cooper AI (2009) Reversible hydrogen storage in hydrogel clathrate hydrates. Advan Mater 21(23):2382–2386

    Article  Google Scholar 

  726. Sugahara T, Haag JC, Prasad PSR, Warntjes AA, Sloan ED, Sum AK, Koh CA (2009) Increasing hydrogen storage capacity using tetrahydrofuran. J Am Chem Soc 131(41): 14616–14617

    Article  Google Scholar 

  727. Tsuda T, Ogata K, Hashimoto S, Sugahara T, Moritoki M, Ohgaki K (2009) Storage capacity of hydrogen in tetrahydrothiophene and furan clathrate hydrates. Chem Eng Sci 64(19): 4150–4154

    Article  Google Scholar 

  728. Van den Berg AWC, Bromley ST, Jansen JC, Maschmeyer T (2004) Clathrates as potential hydrogen storage materials. Advances in Science and Technology (Faenza, Italy) 42(Computational Modeling and Simulation of Materials III, Part A), pp 549–556

    Google Scholar 

  729. Rovetto LJ, Strobel TA, Hester KC, Dec SF, Koh CA, Miller KT, Solan ED (2006) Molecular hydrogen storage in novel binary clathrate hydrates at near-ambient temperatures and pressures. DOE Hydrogen Program. FY 2006 Program review. http://www.hydrogen.energy.gov/pdfs/progress06/iv_i_11_sloan.pdf. Accessed 22 Nov 2010

  730. Lee H, Lee J-W, Kim DY, Park J, SeoY-T ZH, Moudrakovski IL, Ratcliffe CL, Ripmeester JA (2005) Tuning clathrate hydrates for hydrogen storage. Nature 434(7034):743–746

    Article  Google Scholar 

  731. Hirose K (2010) Handbook of hydrogen storage: new materials for future energy storage. Wiley-VCH, Weinheim

    Google Scholar 

  732. Zuttel A, Schlapbach L (2009) Science and technology of hydrogen: book series on complex metallic alloys 2(Properties and Applications of Complex Intermetallics) pp 331–363

    Google Scholar 

  733. Biniwale RB, Rayalu S, Devotta S, Ichikawa M (2008) Chemical hydrides: a solution to high capacity hydrogen storage and supply. Int J Hydrogen Energy 33(1):360–365

    Article  Google Scholar 

  734. Dornheim M, Eigen N, Barkhordarian G, Klassen T, Bormann R (2006) Tailoring hydrogen storage materials towards application. Adv Eng Mater 8(5):377–385

    Article  Google Scholar 

  735. John V, Pinkerton F, Stetson N (2009) Nanoscale phenomena in hydrogen storage. Nanotechnology 20(20):200201–200202

    Article  Google Scholar 

  736. Nico E, Claude K, Martin D, Thomas K, Rudiger B (2007) Industrial production of light metal hydrides for hydrogen storage. Scr Mater 56(10):847–851

    Article  Google Scholar 

  737. Orimo S-I, Nakamori Y, Eliseo JR, Zuttel A, Jensen CM (2007) Complex hydrides for hydrogen storage. Chem Rev 107(10):4111–4132

    Article  Google Scholar 

  738. Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energy 32(9):1121–1140

    Article  Google Scholar 

  739. Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G (2007) The U.S. Department of Energy’s National Hydrogen Storage Project: progress towards meeting hydrogen-powered vehicle requirements. Catal Today 120(3–4):246–256

    Google Scholar 

  740. Vincent B, Gregg R, Mildred D, Gang C (2007) Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review. Int J Energy Res 31(6–7):637–663

    Google Scholar 

  741. Yamamoto H, Miyaoka H, Hino S, Nakanishi H, Ichikawa T, Kojima Y (2009) Recyclable hydrogen storage system composed of ammonia and alkali metal hydride. Int J Hydrogen Energy 34(24):9760–9764

    Article  Google Scholar 

  742. Sabitu ST, Gallo G, Goudy AJ (2010) Effect of TiH2 and Mg2Ni additives on the hydrogen storage properties of magnesium hydride. J Alloy Comp 499(1):35–38

    Article  Google Scholar 

  743. Kalisvaart WP, Harrower CT, Haagsma J, Zahiri B, Luber EJ, Ophus C, Poirier E, Fritzsche H, Mitlin D (2010) Hydrogen storage in binary and ternary Mg-based alloys: a comprehensive experimental study. Int J Hydrogen Energy 35(5):2091–2103

    Article  Google Scholar 

  744. Weidenthaler C, Pommerin A, Felderhoff M, Sun W, Wolverton C, Bogdanovic B, Schuth F (2009) Complex rare-earth aluminum hydrides: mechanochemical preparation, crystal structure and potential for hydrogen storage. J Am Chem Soc 131(46):16735–16743

    Article  Google Scholar 

  745. Dornheim M, Doppiu S, Barkhordarian G, Boesenberg U, Klassen T, Gutfleisch O, Bormann R (2007) Hydrogen storage in magnesium-based hydrides and hydride composites. Scr Materialia 56(10):841–846

    Article  Google Scholar 

  746. Zidan R, Garcia-Diaz BL, Fewox CS, Harter A, Stowe AC, Gray JR (2009) Aluminum hydride: a reversible material for hydrogen storage. US Department of energy. http://sti.srs.gov/fulltext/SRNL-STI-2009-00015.pdf. Accessed 20 Nov 2010

  747. Khandelwal A, Agresti F, Capurso G, Lo Russo S, Maddalena A, Gialanella S, Principi G (2010) Pellets of MgH2-based composites as practical material for solid state hydrogen storage. Int J Hydrogen Energy 35(8):3565–3571

    Article  Google Scholar 

  748. Molinas B, Ghilarducci AA, Melnichuk M, Corso HL, Peretti HA, Agresti F, Bianchin A, Lo Russo S, Maddalena A, Principi G (2009) Scaled-up production of a promising Mg-based hydride for hydrogen storage. Int J Hydrogen Energy 34(10):4597–4601

    Article  Google Scholar 

  749. Tsubota M, Hino S, Fujii H, Oomatsu C, Yamana M, Ichikawa T, Kojima Y (2010) Reaction between magnesium ammine complex compound and lithium hydride. Int J Hydrogen Energy 35(5):2058–2062

    Article  Google Scholar 

  750. Zhao X, Ma L (2009) Recent progress in hydrogen storage alloys for nickel/metal hydride secondary batteries. Int J Hydrogen Energy 34(11):4788–4796

    Article  Google Scholar 

  751. Liu Y, Liang C, Wei Z, Jiang Y, Gao M, Pan H, Wang Q (2010) Hydrogen storage reaction over a ternary imide Li2Mg2N3H3. Phys Chem Chem Phys 12(13):3108–3111

    Article  Google Scholar 

  752. Lu D-S, Li W-S (2009) Electrochemical codeposition of magnesium and nickel alloy for hydrogen storage. Mater Chem Phys 117(2–3):395–398

    Google Scholar 

  753. Ma L-P, Wang P, Cheng H-M (2010) Hydrogen sorption kinetics of MgH2 catalyzed with titanium compounds. Int J Hydrogen Energy 35(7):3046–3050

    Article  Google Scholar 

  754. Mao J, Guo Z, Yu X, Liu H, Wu Z, Ni J (2010) Enhanced hydrogen sorption properties of Ni and Co-catalyzed MgH2. Int J Hydrogen Energy 35(10):4569–4575

    Article  Google Scholar 

  755. Kwon SN, Mumm DR, Park HR, Song MY (2010) Effects of transition metal oxide and Ni addition on the hydrogen-storage properties of Mg. J Mater Sci 45(19):5164–5170

    Article  Google Scholar 

  756. Langmi HW, Culligan SD, McGrady GS (2009) Mixed-metal Li3N-based systems for hydrogen storage: Li3AlN2 and Li3FeN2. Int J Hydrogen Energy 34(19):8108–8114

    Article  Google Scholar 

  757. Li SL, Wang P, Chen W, Luo G, Chen DM, Yang K (2009) Hydrogen storage properties of LaNi3.8Al1.0M0.2 (M = Ni, Cu, Fe, Al, Cr, Mn) alloys. J Alloy Comp 485(1–2):867–871

    Google Scholar 

  758. Li W, Vajo JJ, Cumberland RW, Liu P, Hwang S-J, Kim C, Bowman RC (2010) Hydrogenation of magnesium nickel boride for reversible hydrogen storage. J Phys Chem Lett 1(1):69–72

    Article  Google Scholar 

  759. Chaise A, de Rango P, Marty P, Fruchart D, Miraglia S, Olives R, Garrier S (2009) Enhancement of hydrogen sorption in magnesium hydride using expanded natural graphite. Int J Hydrogen Energy 34(20):8589–8596

    Article  Google Scholar 

  760. Cho Y, Dahle AK (2010) Characterization of hydrogen sorption properties and microstructure of cast Mg-10wt%Ni alloys. Mater Sci Forum 638–642:1085–1090 (Pt. 2, THERMEC 2009)

    Google Scholar 

  761. Fang W, H-f S, W-b F, Wang B (2009) Effect of Al and Zn additives on grain size of Mg-3Ni-2MnO2 alloy. Trans Nonferrous Met Soc China 19(Spec. 2):s355–s358

    Google Scholar 

  762. Giusepponi S, Celino M, Cleri F, Montone A (2009) Hydrogen storage in MgH2 matrices: a study of Mg-MgH2 interface using CPMD code on ENEA-GRID. Il Nuovo Cimento C 32C(2):139–142

    Google Scholar 

  763. Hong TW, Kim IH, Ur SC, Lee YG, Kim YJ (2005) Hydriding/dehydriding behavior of Mg-Ni systems. Mater Sci Forum 486–487:582–585 (Eco-Materials Processing & Design VI)

    Google Scholar 

  764. Imamura H, Tanaka K, Kitazawa I, Sumi T, Sakata Y, Nakayama N, Ooshima S (2009) Hydrogen storage properties of nanocrystalline MgH2 and MgH2/Sn nanocomposite synthesized by ball milling. J Alloy Comp 484(1–2):939–942

    Article  Google Scholar 

  765. Jain IP, Lal C, Jain A (2010) Hydrogen storage in Mg: a most promising material. Int J Hydrogen Energy 35(10):5133–5144

    Article  Google Scholar 

  766. Jaron T, Grochala W (2010) Y(BH4)3 – an old-new ternary hydrogen store aka learning from a multitude of failures. Dalton Trans 39(1):160–166

    Article  Google Scholar 

  767. Johnson SR, Anderson PA, Edwards PP, Gameson I, Prendergast JW, Al-Mamouri M, Book D, Harris IR, Speight JD, Walton A (2005) Chemical activation of MgH2; a new route to superior hydrogen storage materials. Chem Commun (22): 2823–2825

    Article  Google Scholar 

  768. Liu DM, Fang CH, Zhang QA (2009) Hydrogen storage properties of MgH2-(Sr, Ca)2AlH7 composite. J Alloy Comp 485(1–2):391–395

    Google Scholar 

  769. Milanese C, Girella A, Bruni G, Cofrancesco P, Berbenni V, Matteazzi P, Marini A (2009) Mg-Ni-Cu mixtures for hydrogen storage: a kinetic study. Intermetallics 18(2):203–211

    Article  Google Scholar 

  770. Rousselot S, Guay D, Roue L (2010) Synthesis of fcc Mg-Ti-H alloys by high energy ball milling: structure and electrochemical hydrogen storage properties. J Power Sources 195(13):4370–4374

    Article  Google Scholar 

  771. Niemann MU, Srinivasan SS, Kumar A, Stefanakos EK, Goswami DY, McGrath K (2009) Processing analysis of the ternary LiNH2-MgH2-LiBH4 system for hydrogen storage. Int J Hydrogen Energy 34(19):8086–8093

    Article  Google Scholar 

  772. Spassov T, Delchev P, Madjarov P, Spassova M, Himitliiska T (2010) Hydrogen storage in Mg-10at.% LaNi5 nanocomposites, synthesized by ball milling at different conditions. J Alloy Comp 495(1):149–153

    Google Scholar 

  773. Nogita K, Ockert S, Duguid A, Pierce J, Greaves M (2009) Mechanism of improved hydrogen absorption kinetics in cast Mg-Ni alloys. Mater Sci Forum 618–619:391–394 (Light Metals Technology 2009)

    Google Scholar 

  774. Orban RL, Lucaci M, Salomie D, Orban M (2008) Nanocrystalline Fe-Ti-AI-Ni alloys for hydrogen storage processing by reactive mechanical alloying. Adv Powder Metall Partic Mater 9/251–9/263

    Google Scholar 

  775. Osborn W, Markmaitree T, Shaw LL (2007) Evaluation of the hydrogen storage behavior of a LiNH2 + MgH2 system with 1:1 ratio. J Power Sources 172(1):376–378

    Article  Google Scholar 

  776. Varin RA, Jang M, Polanski M (2009) The effects of ball milling and molar ratio of LiH on the hydrogen storage properties of nanocrystalline lithium amide and lithium hydride (LiNH2  + LiH) system. J Alloy Comp 491(1–2):658–667

    Google Scholar 

  777. Vella C, Renouard J, Goudon JP, Yvart P (2009) Solid hydrogen storage: hydride based composition for gaseous hydrogen generation. In: International Annual Conference of ICT 40th(Energetic Materials), pp 25/1–25/11

    Google Scholar 

  778. Visaria M, Mudawar I, Pourpoint T, Kumar S (2010) Study of heat transfer and kinetics parameters influencing the design of heat exchangers for hydrogen storage in high-pressure metal hydrides. Int J Heat Mass Transfer 53(9–10):2229–2239

    Article  MATH  Google Scholar 

  779. Vojtech D, Guhlova P, Mortanikova M, Janik P (2010) Hydrogen storage by direct electrochemical hydriding of Mg-based alloys. J Alloy Comp 494(1–2):456–462

    Article  Google Scholar 

  780. Wang J, Liu T, Wu G, Li W, Liu Y, Araujo CM, Scheicher RH, Blomqvist A, Ahuja R, Xiong Z, Yang P, Gao M, Pan H, Chen P (2009) Potassium-modified Mg(NH2)2/2 LiH system for hydrogen storage. Angew Chem Int Ed 48(32):5828–5832, S/1–S/2

    Google Scholar 

  781. Wang Y, Adroher XC, Chen J, Yang XG, Miller T (2009) Three-dimensional modeling of hydrogen sorption in metal hydride hydrogen storage beds. J Power Sources 194(2):997–1006

    Article  Google Scholar 

  782. Osborn W, Markmaitree T, Shaw LL (2009) The long-term hydriding and dehydriding stability of the nanoscale LiNH2 + LiH hydrogen storage system. Nanotechnology 20(20):204028/1–204028/9

    Google Scholar 

  783. Shaw LL, Wan X, Hu JZ, Kwak JH, Yang Z (2010) Solid-state hydriding mechanism in the LiBH4 + MgH2 system. J Phys Chem C 114(17):8089–8098

    Article  Google Scholar 

  784. Pentimalli M, Padella F, La Barbera A, Pilloni L, Imperi E (2009) A metal hydride-polymer composite for hydrogen storage applications. Energy Convers Manage 50(12):3140–3146

    Article  Google Scholar 

  785. Pourpoint TL, Velagapudi V, Mudawar I, Zheng Y, Fisher TS (2010) Active cooling of a metal hydride system for hydrogen storage. Int J Heat Mass Transfer 53(7–8):1326–1332

    Article  MATH  Google Scholar 

  786. Ranjbar A, Guo ZP, Yu XB, Calka A, Liu HK (2009) Hydrogen storage properties of Mg-BCC composite. Int J Green Energy 6(6):607–615

    Article  Google Scholar 

  787. Xiao X, Liu G, Peng S, Yu K, Li S, Chen C, Chen L (2010) Microstructure and hydrogen storage characteristics of nanocrystalline Mg + x wt% LaMg2Ni (x = 0–30) composites. Int J Hydrogen Energy 35(7):2786–2790

    Article  Google Scholar 

  788. Xiong Z, Hu J, Wu G, Chen P (2005) Hydrogen absorption and desorption in Mg-Na-N-H system. J Alloy Comp 395(1–2):209–212

    Article  Google Scholar 

  789. Zhang J, Yan W, Bai C, Pan F (2009) Mechanochemical synthesis of a Mg-Li-Al-H complex hydride. J Mater Res 24(9):2880–2885

    Article  Google Scholar 

  790. Zlotea C, Sahlberg M, Moretto P, Andersson Y (2009) Hydrogen sorption properties of a Mg-Y-Ti alloy. J Alloy Comp 489(2):375–378

    Article  Google Scholar 

  791. Ismail M, Zhao Y, Yu XB, Dou SX (2010) Effects of NbF5 addition on the hydrogen storage properties of LiAlH4. Int J Hydrogen Energy 35(6):2361–2367

    Article  Google Scholar 

  792. Principi G, Agresti F, Maddalena A, Lo Russo S (2009) The problem of solid state hydrogen storage. Energy 34:2087–2091

    Article  Google Scholar 

  793. Ahluwalia RK, Hua TQ, Peng JK (2009) Automotive storage of hydrogen in alane. Int J Hydrogen Energy 34(18):7731–7740

    Article  Google Scholar 

  794. Luo K, Liu Y, Wang F, Gao M, Pan H (2009) Hydrogen storage in a Li-Al-N ternary system. Int J Hydrogen Energy 34(19):8101–8107

    Article  Google Scholar 

  795. Xiao X, Fan X, Yu K, Li S, Chen C, Wang Q, Chen L (2009) Catalytic Mechanism of New TiC-Doped Sodium Alanate for Hydrogen Storage. J Phys Chem C 113(48):20745–20751

    Article  Google Scholar 

  796. M-u-d N, S-u R, So CS, Hwang SW, Kim AR, Nahm KS (2009) Thermal decomposition of LiAlH4 chemically mixed with Lithium amide and transition metal chlorides. Int J Hydrogen Energy 34(21):8937–8943

    Article  Google Scholar 

  797. Luo W, Cowgill D, Stewart K, Stavila V (2010) High capacity hydrogen generation on-demand from (NH3 + LiAlH4). J Alloy Comp 497(1–2):L17–L20

    Article  Google Scholar 

  798. Beattie SD, McGrady GS (2009) Hydrogen desorption studies of NaAlH4 and LiAlH4 by in situ heating in an ESEM. Int J Hydrogen Energy 34(22):9151–9156

    Article  Google Scholar 

  799. Mao JF, Guo ZP, Liu HK, Yu XB (2009) Reversible hydrogen storage in titanium-catalyzed LiAlH4-LiBH4 system. J Alloy Comp 487(1–2):434–438

    Article  Google Scholar 

  800. Schmidt T, Roentzsch L (2010) Reversible hydrogen storage in Ti-Zr-codoped NaAlH4 under realistic operation conditions. J Alloy Comp 496(1–2):L38–L40

    Article  Google Scholar 

  801. Dathar GKP, Mainardi DS (2010) Kinetics of hydrogen desorption in NaAlH4 and Ti-containing NaAlH4. J Phys Chem C 114(17):8026–8031

    Article  Google Scholar 

  802. Zheng X, Liu S (2009) Effect of LaCl3 and Ti on hydrogen storage properties of NaAlH4 and LiAlH4. Xiyou Jinshu Cailiao Yu Gongcheng 38(8):1328–1332

    MathSciNet  Google Scholar 

  803. Yang J, Wang X, Mao J, Chen L, Pan H, Li S, Ge H, Chen C (2010) Investigation on reversible hydrogen storage properties of Li3AlH6/2LiNH2 composite. J Alloy Comp 494(1–2):58–61

    Article  Google Scholar 

  804. Liu J, Ge Q (2009) Hydrogen interaction in Ti-doped LiBH4 for hydrogen storage: a density functional analysis. J Chem Theory Comput 5(11):3079–3087

    Article  Google Scholar 

  805. Frankcombe TJ (2010) Calcium borohydride for hydrogen storage: a computational study of Ca(BH4)2 crystal structures and the CaB2Hx intermediate. J Phys Chem C 114(20):9503–9509

    Article  Google Scholar 

  806. Gao L, Guo YH, Xia GL, Yu XB (2009) Low temperature hydrogen generation from ammonia combined with lithium borohydride. J Mater Chem 19(42):7826–7829

    Article  Google Scholar 

  807. Karkamkar A, Heldebrant D, Linehan J, Autrey T (2009) Ammonium borohydride: solid hydrogen storage material with highest gravimetric hydrogen content. Prepr Symp Am Chem Soc, Div Fuel Chem 54(2):889–890

    Google Scholar 

  808. Liu C-H, Kuo Y-C, Chen B-H, Hsueh C-L, Hwang K-J, Ku J-R, Tsau F, Jeng M-S (2010) Synthesis of solid-state NaBH4/Co-based catalyst composite for hydrogen storage through a high-energy ball-milling process. Int J Hydrogen Energy 35(9):4027–4040

    Article  Google Scholar 

  809. Yu XB, Guo YH, Sun DL, Yang ZX, Ranjbar A, Guo ZP, Liu HK, Dou SX (2010) A combined hydrogen storage system of Mg(BH4)2-LiNH2 with favorable dehydrogenation. J Phys Chem C 114(10):4733–4737

    Article  Google Scholar 

  810. Vajo JJ, Skeith SL, Mertens F (2005) Reversible storage of hydrogen in destabilized LiBH4. J Phys Chem B 109(9):3719–3722

    Article  Google Scholar 

  811. Matsunaga T, Buchter F, Mauron P, Bielman M, Nakamori Y, Orimo S, Ohba N, Miwa K, Towata S, Züttel A (2008) Hydrogen storage properties of Mg[BH4]2. J Alloy Comp 459(1–2):583–588

    Article  Google Scholar 

  812. Chater PA, Anderson PA, Prendergast JW, Walton A, Mann VSJ, Book D, David WIF, Johnson SR, Edwards PP (2007) Synthesis and characterization of amide-borohydrides: new complex light hydrides for potential hydrogen storage. J Alloy Comp 446–447:350–354

    Article  Google Scholar 

  813. Basu S, Diwan M, Abiad MG, Zheng Y, Campanella OH, Varma A (2010) Transport characteristics of dehydrogenated ammonia borane and sodium borohydride spent fuels. Int J Hydrogen Energy 35(5):2063–2072

    Article  Google Scholar 

  814. Burrell AK, Diyabalanage HVK, Shrestha RL, Ryan K, Jones MO, David WIF (2009) Hydrogen from ammonia borane and derivatives. Prepr Symp Am Chem Soc, Div Fuel Chem 54(2):858–859

    Google Scholar 

  815. Xiong Z, Yong CK, Wu G, Chen P, Shaw W, Karkamkar A, Autrey T, Jones MO, Johnson SR, Edwards PP, David WIF (2008) High-capacity hydrogen storage in lithium and sodium amidoboranes. Nat Mater 7(2):138–141

    Article  Google Scholar 

  816. Chua YS, Wu G, Xiong Z, He T, Chen P (2009) Calcium amidoborane ammoniate – synthesis, structure, and hydrogen storage properties. Chem Mater 21(20):4899–4904

    Article  Google Scholar 

  817. Demirci UB, Miele P (2010) Hydrolysis of solid ammonia borane. J Power Sources 195(13):4030–4035

    Article  Google Scholar 

  818. Sundberg MR, Sanchez-Gonzalez A (2007) Hydrogen storage in ammonia triborane: properties and behavior of the chemical bonds. Inorg Chem Commun 10(10):1229–1232

    Article  Google Scholar 

  819. Swinnen S, Nguyen V-S, Nguyen M-T (2010) Potential hydrogen storage of lithium amidoboranes and derivatives. Chem Phys Lett 489(4–6):148–153

    Article  Google Scholar 

  820. Wu C, Wu G, Xiong Z, Han X, Chu H, He T, Chen P (2010) LiNH2BH3. NH3BH3: structure and hydrogen storage properties. Chem Mater 22(1):3–5

    Google Scholar 

  821. Demirci UB, Miele P (2009) Sodium borohydride versus ammonia borane, in hydrogen storage and direct fuel cell applications. Energy Environ Sci 2(6):627–637

    Article  Google Scholar 

  822. Diwan M, Hanna D, Varma A (2010) Method to release hydrogen from ammonia borane for portable fuel cell applications. Int J Hydrogen Energy 35(2):577–584

    Article  Google Scholar 

  823. Graham KR, Kemmitt T, Bowden ME (2009) High capacity hydrogen storage in a hybrid ammonia borane-lithium amide material. Energy Environ Sci 2(6):706–710

    Article  Google Scholar 

  824. Himmelberger DW, Yoon CW, Bluhm ME, Carroll PJ, Sneddon LG (2009) Base-promoted ammonia borane hydrogen-release. J Am Chem Soc 131(39):14101–14110

    Article  Google Scholar 

  825. Rassat SD, Aardahl CL, Autrey T, Smith RS (2010) Thermal Stability of Ammonia Borane: A Case Study for Exothermic Hydrogen Storage Materials. Energy Fuels 24(4):2596–2606

    Article  Google Scholar 

  826. Me B, Bradley MG, Butterick I, Kusari U, Sneddon LG (2006) Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids. J Am Chem Soc 128(24):7748–7749

    Article  Google Scholar 

  827. Sirosh N (2002) Hydrogen composite tank program. In: Proceedings of the 2002 US DOE Hydrogen Program Review. Report No. NREL/CP-610-32405

    Google Scholar 

  828. Joseph T (2006) Fuel solutions for industrial applications. Air Products Ltd, Allentown

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar K. Ghosh .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ghosh, T.K., Prelas, M.A. (2011). Hydrogen Energy. In: Energy Resources and Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1402-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1402-1_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1401-4

  • Online ISBN: 978-94-007-1402-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics