Advertisement

Ocean Energy

  • Tushar K. Ghosh
  • Mark A. Prelas
Chapter

Abstract

Oceans are the largest collector of solar energy on the earth’s surface. Considering oceans cover more than 70% of the earth’s surface, the amount of energy stored by the oceans is enormous. The energy can be harvested from the ocean by taking advantage of waves, tidal current, and the thermal gradients that exist within the body of water. The gravitational pull of the moon primarily drives the tides, and the wind powers the ocean waves. In theory, these ocean-based renewable resources could meet the world’s energy requirements many times over, but they are extremely difficult to harvest economically for large scale production. In this chapter, various methods including three main techniques; wave power, tide power and ocean thermal energy conversion, are discussed for harvesting energy from oceans.

Keywords

Wave Height Wave Energy Significant Wave Height Tidal Energy Momentum Balance Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anon (2007) A drop in the ocean. Nature (London, UK) 450(7167):135Google Scholar
  2. 2.
    Aoyagi T (1994) The future energy technology. Optronics 155:153–159Google Scholar
  3. 3.
    Banner ML, Tian X (1996) Energy and momentum growth rates in breaking water waves. Phys Rev Lett 77:2953–2956CrossRefGoogle Scholar
  4. 4.
    Callaway E (2007) Energy: to catch a wave. Nature (London, UK) 450(7167):156–159Google Scholar
  5. 5.
    Charlier RH (1982) Oceans and electrical power. Part I. Int J Environ Stud 18:159–168CrossRefGoogle Scholar
  6. 6.
    Kiho S (2002) Ocean energy. Kemikaru Enjiniyaringu 47(12):902–907Google Scholar
  7. 7.
    Arida H (1978) Developments in use of sea water as energy resources. Kagaku Keizai 25(10):67–75Google Scholar
  8. 8.
    Duedall IW, Kester DR, Park PK, Ketchum BH (1985) Energy, waste, and the ocean: choices for the future. Wastes Ocean 4:759–784Google Scholar
  9. 9.
    Kiho S (2001) Ocean energy. Nippon Enerugi Gakkaishi 80(3):148–153Google Scholar
  10. 10.
    Ogi T (2009) Ocean energy. J Jpn Inst Energy 88(8):716–718Google Scholar
  11. 11.
    Raju VS, Ravindran M (1985) Ocean energy in the Indian context. Mahasagar 18(2):211–217Google Scholar
  12. 12.
    Sims REH (2008) Hydropower, geothermal, and ocean energy. MRS Bull 33(4):389–395CrossRefGoogle Scholar
  13. 13.
    Uehar H (2007) Current status and prospect of ocean utilization technology. Kagaku Kogaku 71(5):305–310Google Scholar
  14. 14.
    Uehara H (1990) Ocean energy. Nippon Kikai Gakkaishi 93(860):560–566Google Scholar
  15. 15.
    Honma T (1983) The future for energy from the ocean (2): electric power generation from the tidal and wave motions. Kurinikaru sutadi Clin study 4:620–623Google Scholar
  16. 16.
    Veziroglu TN (ed) (1985) Alternative energy sources VI, vol. 3, Wind/Ocean/Nuclear/ HydrogenGoogle Scholar
  17. 17.
    Robinson MC (2006) Renewable energy technologies for use on the outer continental shelf. NREL. http://ocsenergy.anl.gov/documents/docs/NREL_Scoping_6_06_2006_web.pdf Accessed 16 Nov 2010
  18. 18.
    Thorpe TW (1999) An overview of wave energy technologies: status, performance and costs. Wave power: moving towards commercial viability. As reported in The Energy Report, May 2008, Texas Comptroller of Public Accounts, Broadway House, Westminster, 30 Nov 1999Google Scholar
  19. 19.
    Center for Renewable Energy Sources (2002) Wave energy utilization in Europe, current status and perspective. http://www.cres.gr/kape/pdf/download/Wave\%20Energy\%20Brochure.pdf. Accessed 18 Nov 2010
  20. 20.
    McCormick ME (1981) Ocean wave energy conversion. Wiley, New YorkGoogle Scholar
  21. 21.
    National Oceanic and Atmospheric Administration (NOAA) (2010) Beaufort wind scale. http://www.spc.noaa.gov/faq/tornado/beaufort.html. Accessed 18 Nov 2010
  22. 22.
    Scruggs J, Jacob P (2009) Harvesting ocean wave energy. Science (Washington, DC, USA) 323(5918):1176–1178Google Scholar
  23. 23.
    Leijon M, Danielsson O, Eriksson M, Thorburn K, Bernhoff H, Isberg J, Sundberg J, Ivanova I, Sjostedt E, Agren O, Karlsson KE, Wolfbrandt A (2006) An electrical approach to wave energy conversion. Renew Energy 31:1309–1319CrossRefGoogle Scholar
  24. 24.
    Open University Course Team (2000) Waves, tides, and shallow water processes. Elsevier, New YorkGoogle Scholar
  25. 25.
    United States Army Corps of Engineers: Coastal Engineering Research Center (1984) Shore protection manual volume 1. Vicksburg, Miss: Dept. of the Army, Waterways Experiment Station, Corps of Engineers, Coastal Engineering Research Center, Washington, DC : For sale by the Supt. of Docs., U.S. G.P.OGoogle Scholar
  26. 26.
    Shaw R (1982) Wave energy: a design challenge. Ellis Hardwood Ltd, New YorkGoogle Scholar
  27. 27.
    Falnes J (1992) Ocean-wave energy research in Norway. Renewable energy: technol environ, In: Proceedings of the world renewable energy congress, 2nd, vol. 5, pp 2451–2460Google Scholar
  28. 28.
    European Thematic Network on Wave Energy (ETNWE) (2003) Results from the work of the European thematic network on wave energy, ERK5-CT-1999–20001, 2000–2003. www.wave-energy.net Accessed 18 Nov 2010
  29. 29.
    Bedard R, Hagerman G, Previsic M, Siddiqui O, Thresher R, Ram B (2005) Offshore wave power feasibility demonstration project. Final Summary Report, Project Definition Study, EPRI Global WP 009-US Rev 1Google Scholar
  30. 30.
    Danielsson O, Eriksson M, Leijon M (2006) Study of a longitudinal flux permanent magnet linear generator for wave energy converters. Int J Energy Res 30:1130–1145CrossRefGoogle Scholar
  31. 31.
    Duckers LJ, Lockett FP, Loughridge BW, Peatfield AM, West MJ, White PRS (1992) Towards a prototype floating circular CLAM wave energy converter. Renewable Energy: Technol Environ, In: Proceedings of the world renewable energy congress, 2nd, vol. 5, pp 2541–2546Google Scholar
  32. 32.
    Eriksson M, Isberg J, Leijon M (2005) Hydrodynamic modelling of a direct drive wave energy converter. Int J Eng Sci (Oxford, UK) 43(17–18):1377–1387Google Scholar
  33. 33.
    Martellucci L (1997) Evaluation of a sea wave energy converter with variable trim. In: Proceedings of the intersociety energy conversion engineering conference 32nd, pp 1990–1995Google Scholar
  34. 34.
    Parker RPM, Harrison GP, Chick JP (2007) Energy and carbon audit of an offshore wave energy converter. Proc Inst Mech Eng, A: J Power Energy 221:1119–1130CrossRefGoogle Scholar
  35. 35.
    Sarmento AJNA, Neumann F, Brito-Melo A (2007) Non-technical barriers to large-scale wave energy utilisation. In: New and renewable energy technologies for sustainable development, [Evora international conference on new and renewable energy technologies for sustainable development], Evora, Portugal, 28 June–1 July 2004, pp 225–233Google Scholar
  36. 36.
    Setoguchi T, Santhakumar S, Maeda H, Takao M, Kaneko K (2001) A review of impulse turbines for wave energy conversion. Renew Energy 23:261–292CrossRefGoogle Scholar
  37. 37.
    Temeev AA, Antuf’ev BA (1997) Floating wave power plants as promising components of ecologically safe power generation. Izvestiya Akademii Nauk, Energetika, pp 70–76Google Scholar
  38. 38.
    Temeev AA, Belokopytov VP, Temeev SA (2005) An integrated system of the floating wave energy converter and electrolytic hydrogen producer. Renew Energy 31:225–239Google Scholar
  39. 39.
    Temeev AA, Kvasnikov LA (1997) Prospects for developing ecologically safe electric power complexes based on floating wave power plants. Izvestiya Akademii Nauk, Energetika, pp 77–84Google Scholar
  40. 40.
    Temeev AA, Kvasnikov LA, Temeev SA, Matouchevsky GV (1999) A natural-artificial power-industrial system based on wave energy conversion. In: Proceedings of the intersociety energy conversion engineering conference 34th, pp 339–344Google Scholar
  41. 41.
    Waters R, Staalberg M, Danielsson O et al (2007) Experimental results from sea trials of an offshore wave energy system. Appl Phys Lett 90(3):034105/034101–034105/034103Google Scholar
  42. 42.
    Kawaguty K, Ueki H, Yuda K, Akamine S, Sagara K (1998) Research and development on inclined wave-energy pump (2nd report, development of simulation model for wave-energy pump with inclined cylinder). Nippon Kikai Gakkai Ronbunshu, B-hen 64(617):142–147Google Scholar
  43. 43.
    Salomon RE (1980) Protonic conduction wave energy converter. Chemistry Department Temple University Philadelphia, PhiladelphiaGoogle Scholar
  44. 44.
    Research Institute for Sustainable Energy (2010) Wave. http://www.rise.org.au/info/Tech/wave/index.html. Accessed 10 May 2010
  45. 45.
    International Energy Agency (2002) Status and research and development priorities 2003: wave and marine current energy. Report No. DTI-FES-R-132, AEAT report number AEAT/ENV/1054Google Scholar
  46. 46.
    Department of Business, Economic Development, and Tourism, Hawaii, USA (2002) Feasibility of developing wave power as a renewable energy resource for Hawaii. House Resolution No. 8 (HR 8) – “Requesting the Department of Business, Economic Development, and Tourism (DBEDT) to Study the Feasibility of Developing Wave Power as a Renewable Energy Resource for Hawaii,” was adopted by the House of Representatives of the Twenty-First Legislature of the State of Hawaii, Regular Session of 2001. This report is the DBEDT’s response to HR 8Google Scholar
  47. 47.
    Hagerman G (1992) Wave energy resource and economic Assessment for the State of Hawaii. Prepared by SEASUN Power Systems for the Department of Business, Economic Development, and Tourism, Final Report, June 1992Google Scholar
  48. 48.
    Tjugen KJ (1993) TAPCHAN ocean energy project. In: Proceedings of European wave energy symposium, pp 265–276Google Scholar
  49. 49.
    Duckers LJ (1994) Wave energy: crests and troughs. Renew Energy 5(5–8):1444–1452CrossRefGoogle Scholar
  50. 50.
    Drew B, Plummer AR, Sahinkaya MN (2009) A review of wave energy converter technology. Proc Inst Mech Eng, A: J Power Energy 223(8):887–902CrossRefGoogle Scholar
  51. 51.
    Basar MF, Rahman AA, Din A, Yahaya MS, Mahmod Z (2010) Design and development of green electricity generation system using ocean surface wave. In: PEA-AIT international conference on energy and sustainable development: issues and strategies (ESD 2010) The Empress Hotel, Chiang Mai, Thailand. 2–4 June 2010Google Scholar
  52. 52.
    Budal K, Falnes J (1979) Interacting point absorbers with controlled motion. Proceedings of a conference on power from sea waves, Edinburgh, UK, pp 129–142Google Scholar
  53. 53.
    Boyle G (1996) Ocean energy, energy information administration, US Department of Energy. http://www.mms.gov/mmsKids/PDFs/OceanEnergyMMS.pdf. Accessed 16 Nov 2010
  54. 54.
    French MJ, Bracewell RH (1986) Heaving point absorbers reacting against an internal mass. In: Evans D, de Falcao AFO (eds) Hydrodynamics of ocean wave energy utilisation, IUTAM symposium, Lisbon 1985. Springer, Berlin, pp 248–255Google Scholar
  55. 55.
    Evans DV (1976) A theory for wave power absorption by oscillating bodies. J Fluid Mech 77(1):1–25zbMATHCrossRefGoogle Scholar
  56. 56.
    Folley M (1991) The design of point absorbing wave energy converters. PhD thesis, Lancaster University, Sept 1991Google Scholar
  57. 57.
    Budal K, Falnes J (1975) A resonant point absorber of ocean-wave power. Nature 256:478–479CrossRefGoogle Scholar
  58. 58.
    Evans DV (1981) Max. power absorption under motion constraints. Appl Ocean Res 3:200–203CrossRefGoogle Scholar
  59. 59.
    Carter RG, Hurdle DP (1983) Wave energy absorption by a small body moving in surge. Applied Ocean Res 5(1):24–29CrossRefGoogle Scholar
  60. 60.
    Falnes L, Budal K (1978) Wave power conversion by point absorbers. Norwegian Maritime Res 6(4):2–11Google Scholar
  61. 61.
    Budal K, Falnes J (1980) Interacting point absorbers with controlled motion. In: Count B (ed) Power from sea waves. Academic, London, pp 381–399Google Scholar
  62. 62.
    Pizer DJ (1993) Maximum wave-power absorption of point absorbers under motion constraints. Appl Ocean Res 15(4):227–234CrossRefGoogle Scholar
  63. 63.
    McCabe AP, Aggidis GA (2009) Optimum mean power output of a point-absorber wave energy converter in irregular waves. Proc Inst Mech Eng, A: J Power Energy 223(7):773–781CrossRefGoogle Scholar
  64. 64.
    Wegener PT, Berg J (2010) Configuration and method for wave energy extraction. United States Patent 7770390Google Scholar
  65. 65.
    Hirohisa T (1982) Sea trial of a heaving buoy wave power absorber. In: Berge H (ed). Proceedings of 2nd international symposium on wave energy utilization, Trondheim, Norway, pp 403–417Google Scholar
  66. 66.
    Budal K, Falnes J, Iversen LC, Lillebekken PM, Oltedal G, Hals (1982) The Norwegian wave-power buoy project. In: Berge H (ed) Proceedings of 2nd international symposium on wave energy utilization, Trondheim, Norway, pp 323–344Google Scholar
  67. 67.
    Nielsen K, Smed PF (1998) Point absorberoptimization and survival testing. In: Proceedings of 3rd European wave energy conference, Patras, Greece, pp 207–214Google Scholar
  68. 68.
    Elwood D, Schacher A, Rhinefrank K, Prudell J, Yim S, Amon E (2009) Numerical modelling and ocean testing of a direct-drive wave energy device utilizing a permanent magnet linear generator for power take-off. In: Proceedings of 28th international conference on ocean offshore arctic engineering, ASME, Honolulu, Hawaii: Paper No. OMAE2009-79146Google Scholar
  69. 69.
    Cruz J (2008) Ocean wave energy: current status and future perspective. Springer, BerlinGoogle Scholar
  70. 70.
    Carcas M (2010) The pelamis wave energy converter. Ocean Power Delivery Ltd. 10 Dec 2010Google Scholar
  71. 71.
    Pizer DJ, Retzler C, Ross M, Henderson FL, Cowieson M, Shaw G, Dickens B, Rosalind H (2005) Pelamis WEC – recent advances in the numerical and experimental modeling programme. In: 6th European wave and tidal energy conference Glasgow, UK, 29 Aug–2 Sept 2005Google Scholar
  72. 72.
    Yemm R (2003) Pelamis WEC – Full scale joint system test. Ocean Power Delivery Ltd. V/06/00191/00/00/REP DTI URN 03/1435Google Scholar
  73. 73.
    Previsic M (2004) System level design, performance and costs for San Francisco California Pelamis offshore wave power plant. EPRI, Report No. E 21 EPRI Global-006A-SFGoogle Scholar
  74. 74.
    Anderson C (2003) Pelamis WEC-main body structural design and materials selection. Ocean Power Delivery Ltd. V/06/00197/00/00/REP DTI URN 03/1439Google Scholar
  75. 75.
    Dalton GJ, Alcorn R, Lewis T (2010) Case study feasibility analysis of the Pelamis wave energy converter in Ireland, Portugal, and North America. Renew Energy 35(2):443–455CrossRefGoogle Scholar
  76. 76.
    Mehlum E (1986) Tapchan. In: Evans DV, de Falcaõ AFO (eds) Hydrodynamics of ocean wave energy utilization. Springer, Berlin, pp 51–55Google Scholar
  77. 77.
    Graw KU (2004) Eine Einfü hrung in die Nutzung der Wellenenergie, Universität Leipzig. http://www.uni-leipzig.de/_grw/welle/wenergie_3_80.html\#zwei. Accessed 16 Nov 2010
  78. 78.
    Kofoed JP, Frigaard P, Friis-Madsen E, Srensen HC (2006) Prototype testing of the wave energy converter wave dragon. Renew Energy 31:181–189CrossRefGoogle Scholar
  79. 79.
    Margheritini L, Vicinanza D, Frigaard P (2007) Hydraulic characteristics of seawave slot-cone generator pilot plant at Kvitsøy (Norway). In: Proceedings of 7th European wave tidal energy conference, PortoGoogle Scholar
  80. 80.
    Vicinanza D, Frigaard P (2008) Wave pressure acting on a seawave slot-cone generator. Coastal Eng 55:553–568CrossRefGoogle Scholar
  81. 81.
    Travassos C, Marques N, Martinho R (2008) The shoreline OWC wave power plant at the Azores. in3.dem.ist.utl.pt/master/01itt/assign1c.pps. Accessed 16 Nov 2010Google Scholar
  82. 82.
    Fujita Research (2000) Wave and tidal power. http://www.mms.gov/mmsKids/PDFs/OceanEnergyMMS.pdf. Accessed 16 Nov 2010
  83. 83.
    National Oceanic and Atmospheric Administration (2010) US Department of Commerce. http://celebrating200years.noaa.gov/magazine/wave_energy/water_column.html. Accessed 16 Nov 2010
  84. 84.
    Argonne National Laboratory (4/20/2009) Ocean wave energy. http://ocsenergy.anl.gov/guide/wave/index.cfm. Accessed 16 Nov 2010
  85. 85.
    Oregon State University (2010) Wallace energy systems and renewables facilities. http://eecs.oregonstate.edu/wesrf/. Accessed 16 Nov 2010
  86. 86.
    Wave energy: Technology transfer and generic R?+?D recommendations, DTI Pub/URN 01/799Google Scholar
  87. 87.
    Cruz J (2007) Wave power. Pelamis Wave Power, Edinburgh. www.sep.org.uk/catalyst/articles/catalyst_18_1_330.pdf Accessed 27 May 2011
  88. 88.
    Wave Dragon APS (2005) Copenhagen, Denmark. www.wavedragon.net. Accessed 18 Nov 2010
  89. 89.
    Kofoed JP, Madsen-Friis E, Soerensen HC, Christensen L (2005) Hydrokinetic technologies technical and environmental issues workshop the wave dragon case. HWETTEI-Workshop, Washington DC, USA, 26–28 Oct 2005Google Scholar
  90. 90.
    Anon (2002) Tidal energy. Chemistry & Industry, London, 10Google Scholar
  91. 91.
    Charlier RH (1998) Re-invention or aggiornamento? Tidal power at 30 years. Renew Sustain Energy Rev 1:271–289CrossRefGoogle Scholar
  92. 92.
    Figueroa A, Matsuoka J, Ishimura A, Okayama S, Kamiyama S, Yamasaki T (1993) Hydrogen gas production using MHD generator operated by tidal wave energy. Frontiers Science Series 7:167–172Google Scholar
  93. 93.
    Kyozuka Y, Gunji T, Wakahama H (2006) Tidal current power generation by using bridge pier. Sogo Rikogaku Hokoku (Kyushu Daigaku Daigakuin) 27:361–366Google Scholar
  94. 94.
    Nicholls-Lee RF, Turnock SR (2008) Tidal energy extraction: renewable, sustainable and predictable. Sci Prog 91:81–111CrossRefGoogle Scholar
  95. 95.
    Usachev IN (2000) Scientific justification for utilization of tidal energy. Hydrotechnical construction (trans: Gidrotekhnicheskoe Stroitel’Stvo) vol.33, pp 540–544Google Scholar
  96. 96.
    Davis BV (1997) Low head tidal power. In: Proceedings of the intersociety energy conversion engineering conference, 32nd, Honolulu, pp 1982–1989Google Scholar
  97. 97.
    Gorlov AM (1981) Hydrogen as an activating fuel for a tidal power plant. Int J Hydrogen Energy 6(3):243–253CrossRefGoogle Scholar
  98. 98.
    National Oceanic and Atmospheric Administration, US Department of Commerce. http://co-ops.nos.noaa.gov/restles4.html
  99. 99.
    The Department of Trade and Industry (DTI) (2010) The world offshore renewable energy report 2004–2008. Report No URN 04/393CD. http://www.ppaenergy.co.uk/web-resources/resources/356866df2d2.pdf. Accessed 18 Nov 2010
  100. 100.
    Windows to the universe (2010) http://www.windows.ucar.edu/tour/link=/earth/Water/ocean_currents.html. Accessed 2 Dec 2010
  101. 101.
    The University of Texas (2010) Technology white paper on ocean current energy potential on the U.S. Outer continental shelf, Minerals Management Service, Renewable Energy and Alternate Use Program, U.S. Department of the Interior http://ocsenergy.anl.gov. Accessed 17 Nov 2010
  102. 102.
    Bedard R (2007) Power and energy from the ocean energy waves and tides: a primer. EPRI. http://www.oceanrenewable.com/wp-content/uploads/2009/05/power-and-energy-from-the-ocean-waves-and-tides.pdf. Accessed 20 Nov 2010
  103. 103.
    Bryden IG, Grinsted T, Melville GT (2005) Assessing the potential of a simple tidal channel to deliver useful energy. Appl Ocean Res 26(5):200–206Google Scholar
  104. 104.
    Gorlov AM (2001) Tidal energy. Academic, LondonGoogle Scholar
  105. 105.
    Blue Energy Ltd (2010) www.blueenergy.com/index.html. Accessed 17 Nov 2010
  106. 106.
  107. 107.
    Electric Power Research Institute (2006) Methodology for estimating tidal current energy resources and power production by tidal in-stream energy conversion (TISEC) devices. Report No. EPRI-TP-001 NA Rev 2Google Scholar
  108. 108.
    U.S. Department of the Interior (2010) Technology white paper on ocean current energy potential on the U.S. Outer continental shelf, Minerals Management Service. Renewable Energy and Alternate Use Program. http://ocsenergy.anl.gov. Accessed 20 Nov 2010
  109. 109.
    VerdErg (2009) Spectral marine energy converter SMEC. http://www.verderg.com/attachments/-01_SMEC_Doc_Oct\%2009.pdf. Accessed 18 Nov 2010
  110. 110.
    Huang BJ, Lee HT (1993) Feasibility analysis of an OTEC plant as the bottom cycle of the third nuclear power plant. J Chin Inst Eng 16(6):807–816CrossRefGoogle Scholar
  111. 111.
    Kondrikov NB (1990) Problems of seawater electrolysis for ocean energy utilization and hydrogen production. Adv Hydrogen Energy 8:649–658Google Scholar
  112. 112.
    LaQue FL (1979) Qualifying aluminum and stainless alloys for OTEC heat exchangers. In: Proceedings of the ocean thermal energy conversion conference 6th, 12/12/12–12/12/15Google Scholar
  113. 113.
    LaQue FL (1979) Qualification of aluminum for OTEC heat exchangers. Argonne National Laboratory, Argonne, 32Google Scholar
  114. 114.
    Mann MJ (1979) Possible copper-nickel-clad steel material and abrasive slurry cleaning system for plate-fin-type OTEC heat exchangers. In: Proceedings of the ocean thermal energy conversion conference 6th, 12/10/11–12/10/16Google Scholar
  115. 115.
    Maurer JR (1979) Use of the new stainless alloys for OTEC heat exchangers. In: Proceedings of the ocean thermal energy conversion conference 6th, 12/13/11–12/13/19Google Scholar
  116. 116.
    Rosales LA, Dvorak TC, Kwan MM, Bianchi MP (1978) Materials selection for ocean thermal energy conversion heat exchangers. In: Proceedings of the ocean thermal energy conversion conference 5th, vol. 4, pp VIII/231–VIII/264Google Scholar
  117. 117.
    Teel RB (1980) The stress-corrosion cracking of steels in ammonia. A survey with consideration given to OTEC design. Argonne National Laboratory, Argonne, 39Google Scholar
  118. 118.
    Tosteson TR, Zaidi BR, Revuelta R, Imam SH, Axtmayer RV, DeVore D, Ballantine DL, Sasscer S, Morgan TR, Rivera D (1982) OTEC biofouling, corrosion, and materials study from a moored platform at Punta Tuna Puerto Rico. Part II – Microbiofouling. Ocean Sci Eng 7:21–73Google Scholar
  119. 119.
    Wilson ILW, Yeske RA, Fabis T, Walker H, Kratz JL (1980) Materials performance in ammonia environments for OTEC applications. In: Proceedings of the ocean energy conference 7th, 5 3–1/5 3–8Google Scholar
  120. 120.
    Bonewitz RA (1977) Application of aluminum alloys to OTEC. In: Proceedings – annual conference ocean thermal energy conversion 4th, Section VII, pp 37–40Google Scholar
  121. 121.
    Dexter SC (1979) Oxygen, temperature, and pH effects on corrosion of aluminum in seawater. In: Proceedings of the ocean thermal energy conversion conference, 6th (Conf-790631, vol. 2): 12/4/1–/4/1Google Scholar
  122. 122.
    Dexter SC (1980) Localized corrosion of aluminum alloys for OTEC heat exchangers. College of Marine Studies University, Delaware LewesGoogle Scholar
  123. 123.
    Craig HL, Munier RSC (1977) Cataloging of oceanographic parameters of interest to biofouling and corrosion. In: Proceedings – annual conference ocean thermal energy conversion, 4th, Section VII, pp 26–33Google Scholar
  124. 124.
    Ikegami Y (2009) Present status and prospect of ocean thermal energy conversion – for sustainable energy, water resources, and fishery resources. J Jpn Inst Energy 88(7):554–560MathSciNetGoogle Scholar
  125. 125.
    Little B, Morse J, Loeb G, Spiehler F (1979) A biofouling and corrosion study of ocean thermal energy conversion (OTEC) heat exchanger candidate metals. In: Proceedings of the ocean thermal energy conversion conference 6th, (Conf-790631, vol. 2): 12/3/1–/3/9Google Scholar
  126. 126.
    Mann MJ (1979) Possible copper-nickel-clad steel material and abrasive slurry cleaning system for plate-fin-type OTEC heat exchangers. In: Proceedings of the ocean thermal energy conversion conference 6th, (Conf-790631, vol. 2): 12/0/1–/0/6Google Scholar
  127. 127.
    Maurer JR (1979) Use of the new stainless alloys for OTEC heat exchangers. In: Proceedings of the ocean thermal energy conversion conference 6th (Conf-790631, Vol. 2): 12/3/1–/3/9Google Scholar
  128. 128.
    Panchal CB (1988) Experimental investigation of marine biofouling and corrosion for tropical seawater. NATO ASI Series, Series E: Applied Sciences 145(Fouling Sci. Technol.), pp 241–247Google Scholar
  129. 129.
    Saaski EW, Owzarski PC (1977) Compatibility studies for the ammonia-titanium-seawater system as related to ocean thermal energy conversion. In: Proceedings – annual conference ocean thermal energy conversions, 4th, Section VII, pp 46–53Google Scholar
  130. 130.
    National Renewable Energy Laboratory (2010) Ocean thermal energy conversion. http://www.nrel.gov/otec/what.html. Accessed 18 Nov 2010
  131. 131.
    Avery WH, Wu C (1994) Renewable energy from the ocean: a guide to OTEC. Oxford University Press, New YorkGoogle Scholar
  132. 132.
    Iqbal KZ, Starling KE (1976) Use of mixture as working fluids in ocean thermal energy conversion cycles. Proc Okla Acad Sci 56:114–120Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Nuclear Science & Engineering InstituteUniversity of Missouri, ColumbiaColumbiaUSA

Personalised recommendations