Skip to main content

Nosologic Imaging of Brain Tumors Using MRI and MRSI

  • Chapter
  • First Online:
Tumors of the Central Nervous system, Volume 3

Abstract

A new technique is presented to create nosologic images of the brain based on magnetic resonance imaging and magnetic resonance spectroscopic imaging (MRSI). A nosologic image summarizes the presence of different tissues and lesions in a single image by color coding each voxel or pixel according to the histopathological class it is assigned to. The proposed technique applies advanced methods from image processing as well as pattern recognition to segment and classify brain tumors. First, a registered brain atlas and a subject-specific abnormal tissue prior, obtained from MRSI data, are used for the segmentation. Next, the detected abnormal tissue is classified based on supervised pattern recognition methods. Class probabilities are also calculated for the segmented abnormal region. Compared to previous approaches, the new framework is more flexible and able to better exploit spatial information leading to improved nosologic images. The combined scheme offers a new way to produce high-resolution nosologic images, representing tumor heterogeneity and class probabilities, which may help clinicians in decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barker FG II, Chang SM, Huhn SL, Davis RL, Gutin PH, McDermott MW, Wilson CB, Prados MD (2000) Age and the risk of anaplasia in magnetic resonance-nonenhancing supratentorial cerebral tumors. Cancer 80:936–941

    Google Scholar 

  • Croteau D, Scarpace L, Hearshen D, Gutierrez J, Fisher JL, Rock JP, Mikkelsen T (2001) Correlation between magnetic resonance spectroscopy imaging and image-guided biopsies: Semiquantitative and qualitative histopathological analyses of patients with untreated glioma. Neurosurgery 49:823–829

    PubMed  CAS  Google Scholar 

  • Devos A, Lukas L, Suykens JAK, Vanhamme L, Tate AR, Howe FA, Majos C, Moreno-Torres A, van der Graaf M, Arus C, Van Huffel S (2004) Classification of brain tumours using short echo time 1H MR spectra. J Magn Reson 170:164–175

    Article  PubMed  CAS  Google Scholar 

  • Devos A, Simonetti AW, van der Graaf M, Lukas L, Suykens JAK, Vanhamme L, Buydens LMC, Heerschap A, Van Huffel S (2005) The use of multivariate MR imaging intensities versus metabolic data from MR spectroscopic imaging for brain tumour classification. J Magn Reson 173:218–228

    Article  PubMed  CAS  Google Scholar 

  • Di Costanzo A, Scarabino T, Trojsi F, Giannatempo GM, Popolizio T, Catapano D, Bonavita S, Maggialetti N, Tosetti M, Salvolini U, d’angelo VA,, Tedeschi G (2006) Multiparametric 3T MR approach to the assessment of cerebral gliomas: tumor extent and malignancy. Neuroradiology 48:622–631

    Article  PubMed  Google Scholar 

  • Galanaud D, Nicoli F, Chinot O, Confort-Gouny S, Figarella-Branger D, Roche P, Fuentes S, Le Fur Y, Ranjeva J-P, Cozzone PJ (2006) Noninvasive diagnostic assessment of brain tumors using combined in vivo MR imaging and spectroscopy. Magn Reson Med 55:1236–1245

    Article  PubMed  CAS  Google Scholar 

  • Ganslandt O, Stadlbauer A, Fahlbusch R, Kamada K, Buslei R, Blumcke I, Moser E, Nimsky C (2005) Proton magnetic resonance spectroscopic imaging integrated into image-guided surgery: correlation to standard magnetic resonance imaging and tumor cell density. Neurosurgery 56:291–298

    Article  PubMed  Google Scholar 

  • Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13:129–153

    Article  PubMed  CAS  Google Scholar 

  • Ho S, Bullitt E, Gerig G 2002. Level-set evolution with region competition: Automatic 3-D segmentation of brain tumors. In Proceedings of the 16th International Conference on Pattern Recognition. Quebec, 532–535

    Google Scholar 

  • Jackson RJ, Fuller GN, Abi-Said D, Lang FF, Gokaslan ZL, Shi WM, Wildrick DM, Sawaya R (2001) Limitations of stereotactic biopsy in the initial management of gliomas. Neuro Oncol 3:193–200

    PubMed  CAS  Google Scholar 

  • Karsmakers P, Pelckmans K, Suykens JAK 2007. Multi-class kernel logistic regression: a fixed-size implementation. In Proceedings of the 20th International Joint Conference on Neural Networks. Orlando, 1756–1761

    Google Scholar 

  • Kaus M, Warfield SK, Nabavi A, Black PM, Jolesz FA, Kikinis R (2001) Automated segmentation of MRI of brain tumors. Radiology 218:586–591

    PubMed  CAS  Google Scholar 

  • Kelm BM 2007. Evaluation of vector-valued clinical image data using probabilistic graphical models: quantification and pattern recognition. Ph.D. Thesis, University of Heidelberg

    Google Scholar 

  • Laudadio T, Martinez-Bisbal MC, Celda B, Van Huffel S (2008) Fast nosological imaging using canonical correlation analysis of brain data obtained by two-dimensional turbo spectroscopic imaging. NMR Biomed 21:311–321

    Article  PubMed  CAS  Google Scholar 

  • Law M, Yang S, Wang H, Babb JS, Johnson G, Cha S, Knopp EA, Zagzag D (2003) Glioma grading: Sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. Am J Neuroradiol 24:1989–1998

    PubMed  Google Scholar 

  • Li X, Lu Y, Pirzkall A, McKnight TR, Nelson SJ (2002) Analysis of the spatial characteristics of metabolic abnormalities in newly diagnosed glioma patients. J Magn Reson Imaging 16:229–237

    Article  PubMed  Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2007) World Health Organization classification of tumours of the central nervous system. Lyon, IARC

    Google Scholar 

  • Luts J, Heerschap A, Suykens JAK, Van Huffel S (2007) A combined MRI and MRSI based multiclass system for brain tumour recognition using LS-SVMs with class probabilities and feature selection. Artif Intell Med 40:87–102

    Article  PubMed  Google Scholar 

  • Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16:187–198

    Article  PubMed  CAS  Google Scholar 

  • McKnight TR, Lamborn KR, Love TD, Berger MS, Chang S, Dillon WP, Bollen A, Nelson SJ (2007) Correlation of magnetic resonance spectroscopic and growth characteristics within grades II and III gliomas. J Neurosurg 106:660–666

    Article  PubMed  CAS  Google Scholar 

  • Pijnappel WWF, van den Boogaart A, de Beer R, van Ormondt D (1992) SVD-based quantification of magnetic resonance signals. J Magn Reson 97:122–134

    Google Scholar 

  • Prastawa M, Bullitt E, Ho S, Gerig G (2004) A brain tumor segmentation framework based on outlier detection. Med Image Anal 8:275–283

    Article  PubMed  Google Scholar 

  • Prastawa M, Bullitt E, Moon N, Van Leemput K, Gerig G (2003) Automatic brain tumor segmentation by subject specific modification of atlas priors. Acad Radiol 10:1341–1348

    Article  PubMed  Google Scholar 

  • Price SJ, Jena R, Burnet NG, Hutchinson PJ, Dean AF, Pena A, Pickard JD, Carpenter TA, Gillard JH (2006) Improved delineation of glioma margins and regions of infiltration with the use of diffusion tensor imaging: an image-guided biopsy study. Am J Neuroradiol 27:1969–1974

    PubMed  CAS  Google Scholar 

  • Ricci R, Bacci A, Tugnoli V, Battaglia S, Maffei M, Agati R, Leonardi M (2007) Metabolic findings on 3T 1H-MR spectroscopy in peritumoral brain edema. Am J Neuroradiol 28:1287–1291

    Article  PubMed  CAS  Google Scholar 

  • Simonetti AW, Melssen WJ, Szabo de Edelenyi F, van Asten JJA, Heerschap A, Buydens LMC (2005) Combination of feature-reduced MR spectroscopic and MR imaging data for improved brain tumor classification. NMR Biomed 18:34–43

    Article  PubMed  Google Scholar 

  • Simonetti AW, Melssen WJ, van der Graaf M, Heerschap A, Buydens LMC (2002) Automated correction of unwanted phase jumps in reference signals which corrupt MRSI spectra after eddy current correction. J Magn Reson 159:151–157

    Article  PubMed  CAS  Google Scholar 

  • Simonetti AW, Melssen WJ, van der Graaf M, Heerschap A, Buydens LMC (2003) A new chemometric approach for brain tumor classification using magnetic resonance imaging and spectroscopy. Anal Chem 75:5352–5361

    Article  PubMed  CAS  Google Scholar 

  • Stadlbauer A, Gruber S, Nimsky C, Fahlbusch R, Hammen T, Buslei R, Tomandl B, Moser E, Ganslandt O (2006) Preoperative grading of gliomas by using metabolite quantification with high-spatial-resolution proton MR spectroscopic imaging. Radiology 238:958–969

    Article  PubMed  Google Scholar 

  • Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3): 293–300

    Article  Google Scholar 

  • Szabo de Edelenyi F, Rubin C, Esteve F, Grand S, Decorps M, Lefournier V, Le Bas JF, Remy C (2000) A new approach for analyzing proton magnetic resonance spectroscopic images of brain tumors: nosologic images. Nat Med 6:1287–1289

    Article  CAS  Google Scholar 

  • Van Gestel T, Suykens JAK, Lanckriet G, Lambrechts A, De Moor B, Vandewalle J (2002) Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel Fisher discriminant analysis. Neural Comput 14:1115–1147

    Article  PubMed  Google Scholar 

  • Warfield SK, Kaus M, Jolesz FA, Kikinis R (2000) Adaptive template moderated spatially varying statistical classification. Med Image Anal 4:43–55

    Article  PubMed  CAS  Google Scholar 

  • Wu T, Lin C, Weng R (2004) Probability estimates for multi-class classification by pairwise coupling. J Mach Learn Res 5:975–1005

    Google Scholar 

Download references

Acknowledgements

NMR in Biomedicine and John Wiley and Sons are gratefully acknowledged for the license agreement. Jan Luts is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO-Vlaanderen); Research Council KUL: GOA-MaNet, Centers-of-excellence optimisation, GOA/2004/05 (Mixing and Analyzing Real and Virtual Environments and Lighting); Flemish Government: FWO: PhD/postdoc grants, projects, G.0302.07 (Support vector machines and kernel methods), G.0566.06 (Computational strategies for shape modeling and matching and their application in medical image analysis); Belgian Federal Government: DWTC (IUAP IV-02 (1996–2001), IUAP V-22 (2002–2006): Dynamical Systems and Control: Computation, Identification & Modelling) and Belgian Federal Science Policy Office IUAP P6/04 (Dynamical systems, control and optimization, 2007–2011); EU: eTUMOUR (contract no. FP6-2002-LIFESCIHEALTH 503094), FAST (contract no. FP6-019279-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Luts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Luts, J. et al. (2011). Nosologic Imaging of Brain Tumors Using MRI and MRSI. In: Hayat, M. (eds) Tumors of the Central Nervous system, Volume 3. Tumors of the Central Nervous System, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1399-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1399-4_16

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1398-7

  • Online ISBN: 978-94-007-1399-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics