Skip to main content

Hydrology and Biogeochemistry of Temperate Forests

  • Chapter
  • First Online:
Book cover Forest Hydrology and Biogeochemistry

Part of the book series: Ecological Studies ((ECOLSTUD,volume 216))

Abstract

Temperate forests are distributed extensively in middle latitude regions, where the mean annual temperature range is 3–18°C and the mean annual precipitation range is 500–3,300 mm (for cooler region 500–2,000 mm; warmer season 500–3,300 mm). The total area and biomass of the world’s temperate forests are slightly less than those of tropical and boreal forests; their net productivity is second to that of tropical wet and moist forests, and is greater than that of boreal forests (Table 12.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber J, Nadelhoffer K, Steudler P et al (1989) Nitrogen saturation in northern forest ecosystems. Bioscience 39:378–386

    Article  Google Scholar 

  • Aber J, McDowell W, Nadelhoffer K et al (1998) Nitrogen saturation in temperate forest ecosystems. Bioscience 48:921–934

    Article  Google Scholar 

  • Ågren GI, Bosatta E (1988) Nitrogen saturation of terrestrial ecosystems. Environ Pollut 54:185–197

    Article  Google Scholar 

  • Alcamo J, Amann M, Hettelingh J-P et al (1987) Acidification in Europe: a simulation model for evaluating control strategies. Ambio 16:232–245

    Google Scholar 

  • Andrews Experimental Forest Long-Term Ecological Research (2010) Master data catalog. http://andrewsforest.oregonstate.edu/data/mastercatalog.cfm. Accessed 20 June 2010

  • Asano Y, Uchida T, Ohte N (2002) Residence times and flow paths of water in steep unchanneled catchments, Tanakami, Japan. J Hydrol 261:173–192

    Article  Google Scholar 

  • Band LE, Tague CL, Groffman P et al (2001) Forest ecosystem processes at the watershed scale: hydrological and ecological controls of nitrogen export. Hydrol Process 15:2013–2028

    Article  Google Scholar 

  • Baron JS, Campbell DH (1997) Nitrogen fluxes in a high elevation Colorado Rocky Mountain basin. Hydrol Process 11:783–799

    Article  Google Scholar 

  • Bernhardt ES, Likens GE, Hall RO et al (2005) Can’t see the forest for the stream? In-stream processing and terrestrial nitrogen exports. Bioscience 55:219–230

    Article  Google Scholar 

  • Beven KJ, Moore ID (1993) Terrain analysis and distributed modeling in hydrology. Wiley, Chichester

    Google Scholar 

  • Bormann FH, Likens GE (1979) Pattern and process in a forested ecosystem: disturbance, development, and the steady state based on the Hubbard Brook Ecosystem Study. Springer, New York

    Google Scholar 

  • Bormann FH, Likens GE, Melillo JM (1977) Nitrogen budget for an aggrading northern hardwood forest ecosystem. Science 196:981–983

    Article  Google Scholar 

  • Burns DA, Kendall C (2002) Analysis of d15N and d18O to differentiate NO 3 sources in runoff at two watersheds in the Catskill Mountains of New York. Water Resour Res 38:1051. doi:1010.1029/2001WR000292

    Article  Google Scholar 

  • Buttle JM, Creed IF, Pomeroy JW (2000) Advances in Canadian forest hydrology, 1995–1998. Hydrol Process 14:1551–1578

    Article  Google Scholar 

  • Christophersen NC, Neal RP, Hooper RD et al (1990) Modeling stream water chemistry as a mixture of soil water end-members – a step towards second-generation acidification models. J Hydrol 116:307–320

    Article  Google Scholar 

  • Church MR (1989) Direct/delayed response project; predicting future long-term effects of acidic deposition on surface water chemistry. Eos Trans AGU 70:801

    Article  Google Scholar 

  • Cosby B, Hornberger G, Galloway J et al (1985) Modeling the effects of acid deposition: assessment of a lumped parameter model of soil water and streamwater chemistry. Water Resour Res 21:51–63

    Article  Google Scholar 

  • Coweeta Long Term Ecological Research (2010) Coweeta LTER data catalog. http://coweeta.uga.edu/results_catalog_b.php. Accessed 20 June 2010

  • Curtis CJ, Evans CD, Helliwell RC et al (2005) Nitrate leaching as a confounding factor in chemical recovery from acidification in UK upland waters. Environ Pollut 137:73–82

    Article  Google Scholar 

  • Davies JJL, Jenkins A, Monteith DT et al (2005) Trends in surface water chemistry of acidified UK freshwaters, 1988–2002. Environ Pollut 137:27–39

    Article  Google Scholar 

  • de Wit HA, Hindar A, Hole L (2008) Winter climate affects long-term trends in stream water nitrate in acid-sensitive catchments in southern Norway. Hydrol Earth Syst Sci 12:393–403

    Article  Google Scholar 

  • Driscoll CT, Likens GE, Church MR (1998) Recovery of surface waters in the northeastern U.S. from decreases in atmospheric deposition of sulfur. Water Air Soil Pollut 105:319–329

    Article  Google Scholar 

  • Driscoll CT, Driscoll KM, Roy KM et al (2003) Chemical response of lakes in the Adirondack region of New York to declines in acidic deposition. Environ Sci Technol 37:2036–2042

    Article  Google Scholar 

  • Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: 200 years of change. Ambio 31:64–71

    Google Scholar 

  • Galloway JN, Schlesinger WH, Levy H II et al (1995) Nitrogen fixation: anthropogenic enhancement-environmental response. Glob Biogeochem Cycles 9:227–234

    Article  Google Scholar 

  • Goodale CL, Aber JD, McDowell WH (2000) The long-term effects of disturbance on organic and inorganic nitrogen export in the White Mountains, New Hampshire. Ecosystems 3:433–450

    Article  Google Scholar 

  • Goodale C, Thomas S, Fredriksen G et al (2009) Unusual seasonal patterns and inferred processes of nitrogen retention in forested headwaters of the Upper Susquehanna River. Biogeochemistry 93:197–218

    Article  Google Scholar 

  • Goolsby DA (2000) Mississippi basin nitrogen flux believed to cause Gulf hypoxia. Eos Trans AGU 81:321–327

    Article  Google Scholar 

  • Grip H, Bishop K (1991) Chemical dynamics of an acid stream rich in dissolved organics. In: Mason BJ (ed) The surface water acidification program. Cambridge University Press, London, pp 75–84

    Google Scholar 

  • Halldin S, Gryning SE, Gottschalk L et al (1999) Energy, water, and carbon exchange in a boreal forest landscape – NOPEX experiences. Agr Forest Meteorol 98–99:5–29

    Article  Google Scholar 

  • Hooper RP, Christophersen N, Peters NE (1990) Modeling stream water chemistry as a mixture of soil water end-members – an application to the Panola Mountain catchment, Georgia, U.S.A. J Hydrol 116:321–343

    Article  Google Scholar 

  • Horton RE (1933) The role of infiltration in the hydrologic cycle. Trans Am Geophys Union 14:446–460

    Google Scholar 

  • Houghton RA, Skole DL (1990) Carbon. In: Turner BL II et al (eds) The earth as transformed by human action. Cambridge University Press, Cambridge, pp 393–408

    Google Scholar 

  • Kabeya N, Katsuyama M, Kawasaki M et al (2007) Estimation of mean residence times of subsurface waters using seasonal variation in deuterium excess in a small headwater catchment in Japan. Hydrol Process 21:308–322

    Article  Google Scholar 

  • Kelliher FM, Lloyd J, Arneth A et al (1998) Evaporation from a central Siberian pine forest. J Hydrol 205:279–296

    Article  Google Scholar 

  • Kimball JS, White MA, Running SW (1997) BIOME-BGC simulations of stand hydrologic processes for BOREAS. J Geophys Res 102:29043–29051

    Article  Google Scholar 

  • Kinzig AP, Socolow RH (1994) Human impacts on the nitrogen cycle. Phys Today 47(11):24–31

    Article  Google Scholar 

  • Kirkby MJ (1978) Hillslope hydrology. Wiley, New York

    Google Scholar 

  • Kosugi Y, Katsuyama M (2007) Evapotranspiration over a Japanese cypress forest. II. Comparison of the eddy covariance and water budget methods. J Hydrol 334:305–311

    Article  Google Scholar 

  • Kuraji K (1996) Water balance studies in moist tropical forested catchments. J Jpn For Soc 78:89–99 (in Japanese)

    Google Scholar 

  • Likens GE, Bormann FH (1974) Acid rain: a serious regional environmental problem. Science 184:1176–1179

    Article  Google Scholar 

  • Likens GE, Johnson NM, Galloway JN et al (1976) Acid precipitation: strong and weak acids. Science 194:643–645

    Article  Google Scholar 

  • Likens GE, Bormann FH, Pierce RS et al (1977) Biogeochemistry of a forested ecosystem. Springer, New York

    Google Scholar 

  • Lovett GM, Weathers KC, Sobczak WV (2000) Nitrogen saturation and retention in forested watersheds of the Catskill Mountains, New York. Ecol Appl 10:73–84

    Article  Google Scholar 

  • Matzner E (2004) Biogeochemistry of forested catchments in a changing environment. Ecology studies series, vol 172. Springer, New York

    Google Scholar 

  • McDonnell JJ (1990) The influence of macropores on debris flow initiation. Q J Eng Geol Hydrogeol 23:325–331

    Article  Google Scholar 

  • Mitchell MJ, Driscoll CT, Kahl JS et al (1996) Climatic control of nitrate loss from forested watersheds in the northeast United States. Environ Sci Technol 30:2609–2612

    Article  Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resour Res 30:1153–1171

    Article  Google Scholar 

  • Mulholland PJ (1992) Regulation of nutrient concentrations in a temperate forest stream – roles of upland, riparian, and instream processes. Limnol Oceanogr 37:1512–1526

    Article  Google Scholar 

  • Mulholland PJ (2004) The importance of in-stream uptake for regulating stream concentrations and outputs of N and P from a forested watershed: evidence from long-term chemistry records for Walker Branch Watershed. Biogeochemistry 70:403–426

    Article  Google Scholar 

  • Mulholland PJ, Hill WR (1997) Seasonal patterns in streamwater nutrient and dissolved organic carbon concentrations: separating catchment flow path and in-stream effects. Water Resour Res 33:1297–1306

    Article  Google Scholar 

  • Mulholland PJ, Helton AM, Poole GC (2008) Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452:202–205

    Article  Google Scholar 

  • Murdoch PS, Stoddard JL (1992) The role of nitrate in the acidification of streams in the Catskill Mountains of New York. Water Resour Res 28:2707–2720

    Article  Google Scholar 

  • Nakano H (1976) Forest hydrology. Kyoritsu, Tokyo (in Japanese)

    Google Scholar 

  • Nihlgård B (1985) The ammonium hypothesis: an additional explanation to the forest dieback in Europe. Ambio 14:2–8

    Google Scholar 

  • Nihlgård B, Lindgren L (1977) Plant biomass, primary production and bioelements of three mature beech forests in south Sweden. Oikos 28:95–104

    Article  Google Scholar 

  • Nilsson SI (1986) Limits for the nitrogen deposition to forest soils. In: Nilsson J (ed) Critical loads for nitrogen and sulphur. Nordic council of ministers report 11, Copenhagen, pp 211–221

    Google Scholar 

  • Oda T, Asano Y, Suzuki M (2009) Transit time evaluation using a chloride concentration input step shift after forest cutting in a Japanese headwater catchment. Hydrol Process 23:2705–2713

    Article  Google Scholar 

  • Odum EP (1963) Ecology. Holt, Rinehart and Winston, New York

    Google Scholar 

  • Ohrui K, Mitchell MJ (1997) Nitrogen saturation in Japanese forested watersheds. Ecol Appl 7:391–401

    Article  Google Scholar 

  • Ohta T, Hiyama T, Tanaka H et al (2001) Seasonal variation in the energy and water exchanges above and below a larch forest in eastern Siberia. Hydrol Process 15:1459–1476

    Article  Google Scholar 

  • Ohte N, Tokuchi N (1999) Geographical variation of the acid buffering of vegetated catchments: factors determining the bicarbonate leaching. Glob Biogeochem Cycles 13:969–996

    Article  Google Scholar 

  • Ohte N, Mitchell M, Shibata H et al (2001) Comparative evaluation on nitrogen saturation of forest catchments in Japan and northeastern United States. Water Air Soil Pollut 130:649–654

    Article  Google Scholar 

  • Ohte N, Tokuchi N, Katsuyama M et al (2003) Episodic increases in nitrate concentrations in streamwater due to the partial dieback of a pine forest in Japan: runoff generation processes control seasonality. Hydrol Process 17:237–249

    Article  Google Scholar 

  • Ohte N, Fujimoto M, Mimasu Y (2006) Information behind the seasonal variation in nitrate discharge from the forested catchment. Eos transactions AGU: 87, fall meeting supplement, Abstract H13A-1345

    Google Scholar 

  • Okunishi K (1994) Concept and methodology of hydrogeomorphology. Trans Jpn Geomorph Union 15A:5–18

    Google Scholar 

  • Okunishi K, Okuda S, Suwa H (1987) A large-scale debris avalanche as an episode in slope-channel processes. IAHS Publ 165:225–232

    Google Scholar 

  • Paces T (1982) Natural and anthropogenic fluxes of major elements from central Europe. Ambio 11:206–208

    Google Scholar 

  • Rabalais NN (2002) Nitrogen in aquatic ecosystems. Ambio 31:102–112

    Google Scholar 

  • Reuss JO, Johnson DW (1986) Acid deposition and the acidification of soils and waters. Springer, New York

    Book  Google Scholar 

  • Reuss JO, Cosby BJ, Wright RF (1987) Chemical processes governing soil and water acidification. Nature 329:27–32

    Article  Google Scholar 

  • Rogora M (2007) Synchronous trends in N-NO3 export from N-saturated river catchments in relation to climate. Biogeochemistry 86:251–268

    Article  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academic Press, San Diego

    Google Scholar 

  • Schulze E-D (2000) Carbon and nitrogen cycling in European forest ecosystems. Springer, Heidelberg

    Google Scholar 

  • Sebestyen SD, Boyer EW, Shanley JB et al (2008) Sources, transformations, and hydrological processes that control stream nitrate and dissolved organic matter concentrations during snowmelt in an upland forest. Water Resour Res 44: doi: 10.1029/102008WR006983

  • Seibert P (1994) Hydrological characteristics of the NOPEX research area. Thesis paper, Uppsala University, Institute of Earth Science, Uppsala, Sweden

    Google Scholar 

  • Sickman J, Melack J (1998) Nitrogen and sulfate export from high elevation catchments of the Sierra Nevada, California. Water Air Soil Pollut 105:217–226

    Article  Google Scholar 

  • Spoelstra J, Schiff SL, Elgood RJ et al (2001) Tracing the sources of exported nitrate in the Turkey Lakes watershed using 15N/14N and 18O/16O isotopic ratios. Ecosystems 4:536–544

    Article  Google Scholar 

  • Stewart MK, McDonnell JJ (1991) Modeling base flow soil water residence times from deuterium concentrations. Water Resour Res 27:2681–2693

    Article  Google Scholar 

  • Stoddard JL (1994) Long-term changes in watershed retention of nitrogen. In: Baker LA (ed) Environmental chemistry of lakes and reservoirs, Advances in chemistry series. American Chemical Society, Washington, pp 223–284

    Google Scholar 

  • Suzuki M (1980) Evapotranspiration from a small catchment in hilly mountains (I): spatial variations in evapotranspiration, rainfall interception and transpiration. J Jpn For Soc 62:46–53

    Google Scholar 

  • Swank WT, Crossley JDA (1988) Forest hydrology and ecology at Coweeta. Springer, New York

    Google Scholar 

  • Swank WT, Vose JM (1997) Long-term nitrogen dynamics of Coweeta forested watersheds in the southeastern United States of America. Glob Biogeochem Cycles 11:657–671

    Article  Google Scholar 

  • Tague CL, Band LE (2004) RHESSys: Regional Hydro-Ecologic Simulation System: an object-oriented approach to spatially distributed modeling of carbon, water, and nutrient cycling. Earth Interact 8:1–42

    Article  Google Scholar 

  • Tietema A, Beier C (1995) A correlative evaluation of nitrogen cycling in the forest ecosystems of the EC projects NITREX and EXMAN. Forest Ecol Manag 71:143–151

    Article  Google Scholar 

  • Turner RE, Rabalais NN (1991) Changes in Mississippi River water quality this century. Bioscience 41:140–147

    Article  Google Scholar 

  • Ulrich B, Matzner E (1986) Anthropogenic and natural acidification in terrestrial ecosystems. Cell Mol Life Sci 42:344–350

    Article  Google Scholar 

  • US Long Term Ecological Research Network (2010) The US long term ecological research network data portal. http://metacat.lternet.edu/das/lter/index.jsp. Accessed 29 March 2010

  • Valentini R (2003) Fluxes of carbon, water and energy of European forests. Ecology studies series, vol 163. Springer, New York

    Google Scholar 

  • Van Breemen N, Driscoll CT, Mulder J (1984) Acidic deposition and internal proton sources in acidification of soils and waters. Nature 307:599–604

    Article  Google Scholar 

  • Veselý J, Majer V, Norton SA (2002) Heterogeneous response of central European streams to decreased acidic atmospheric deposition. Environ Pollut 120:275–281

    Article  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Vitvar T, Balderer W (1997) Estimation of mean water residence times and runoff generation by180 measurements in a pre-Alpine catchment (Rietholzbach, eastern Switzerland). Appl Geochem 12:787–796

    Article  Google Scholar 

  • Watmough SA, Eimers MC, Aherne J et al (2004) Climate effects on stream nitrate concentrations at 16 forested catchments in south central Ontario. Environ Sci Technol 38:2383–2388

    Article  Google Scholar 

  • Whittaker RH (1975) Communities and ecosystems. Macmillan, New York

    Google Scholar 

  • Wolford RA, Bales RC, Sorooshian S (1996) Development of a hydrochemical model for seasonally snow-covered alpine watersheds: application to Emerald Lake watershed, Sierra Nevada, California. Water Resour Res 32:1061–1074

    Article  Google Scholar 

  • Wright RF, Gjessing ET (1976) Acid precipitation: changes in the chemical composition of lakes. Ambio 5:219–223

    Google Scholar 

  • Wright RF, Alewell C, Cullen JM et al (1999) Trends in nitrogen deposition and leaching in acid-sensitive streams in Europe. Hydrol Earth Syst Sci 5:299–310

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhito Ohte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ohte, N., Tokuchi, N. (2011). Hydrology and Biogeochemistry of Temperate Forests. In: Levia, D., Carlyle-Moses, D., Tanaka, T. (eds) Forest Hydrology and Biogeochemistry. Ecological Studies, vol 216. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1363-5_12

Download citation

Publish with us

Policies and ethics