Hydrology and Biogeochemistry of Mangrove Forests

Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 216)

Abstract

Situated at the interface between land and sea, the structure and function of mangrove forests, perhaps more than any other forest type, are closely linked to hydrology. For a part of every day, tidal waters flood and ebb through these coastal forests of low latitudes, and in most locations are influenced by waves and other circulatory processes. The pantropical distribution of mangroves is delimited by the major ocean currents and the 20°C winter isotherm of seawater. Mangroves are limited globally by temperature but rainfall, tides, waves, and river flow are of fundamental importance at the regional and local scale.

Keywords

Forest Floor Dissolve Inorganic Carbon Particulate Organic Carbon Mangrove Forest Mangrove Ecosystem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alongi DM (1998) Coastal ecosystem processes. CRC Press, Boca RatonGoogle Scholar
  2. Alongi DM (2009) The energetics of mangrove forests. Springer, DordrechtGoogle Scholar
  3. Alongi DM, Boto KG, Robertson AI (1992) Nitrogen and phosphorus cycles. In: Robertson AI, Alongi DM (eds) Tropical mangrove ecosystems. American Geophysical Union, Washington, pp 251–292Google Scholar
  4. Alongi DM, Trott LA, Wattayakorn G et al (2002) Below-ground nitrogen cycling in relation to net canopy production in mangrove forests for southern Thailand. Mar Biol 140:855–864CrossRefGoogle Scholar
  5. Ayukai T, Wolanski E (1996) Importance of biologically-mediated removal of fine particles from the Fly River plume, Papua New Guinea. Est Coast Shelf Sci 44:629–639CrossRefGoogle Scholar
  6. Barnes J, Purvaja R, Ramesh R et al (2007) Nitrous oxide fluxes in Indian mangroves: tidal production mechanisms, fluxes and global significance. In: Tateda Y (ed) Greenhouse gas and carbon balances in mangrove coastal ecosystems. Gendai Tosho, Kanagawa, pp 139–151Google Scholar
  7. Berger U, Adams M, Grimm V et al (2006) Modelling secondary succession of neotropical mangroves: causes and consequences of growth reduction in pioneer species. Ecol Model 132:287–302CrossRefGoogle Scholar
  8. Borges AV, Djenidi S, Lacroix G et al (2003) Atmospheric CO2 flux from mangrove surrounding waters. Geophys Res Lett. doi: 10.1029/2003GL017143 Google Scholar
  9. Boto KG, Bunt JS (1981) Dissolved oxygen and pH relationships in northern Australian mangrove waterways. Limnol Oceanogr 26:1176–1178CrossRefGoogle Scholar
  10. Bouillon S, Borges AV, Castañeda-Moya E et al (2007) Mangrove production and carbon sinks: a revision of global budget estimates. Glob Biogeochem Cycles 22:GB2013. doi: 10.1029/2007GB003OS2
  11. Dittmar T, Hertkorn N, Kattner G, Lara RJ (2006) Mangroves, a major source of dissolved organic carbon to the oceans. Glob Biogeochem Cycles 20: GB1012. doi: 10.1029/2005GB002570
  12. Drexler JZ, DeCarlo EW (2002) Source water partitioning as a means of characterizing hydrologic function in mangroves. Wetlands Ecol Manage 10:103–113CrossRefGoogle Scholar
  13. Feller IC, McKee KL, Whigham DF et al (2002) Nitrogen vs phosphorus limitation across an ecotonal gradient in a mangrove forest. Biogeochemistry 62:145–175CrossRefGoogle Scholar
  14. Feller IC, Lovelock CE, Berger U et al (2010) Biocomplexity in mangrove ecosystems. Annu Rev Mar Sci 2:395–417CrossRefGoogle Scholar
  15. Furukawa K, Wolanski E, Mueller H (1997) Currents and sediment transport in mangrove forests. Est Coastal Shelf Sci 44:301–310CrossRefGoogle Scholar
  16. Gattuso J-P, Frankignoulle M, Wollast R (1998) Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Syst 29:405–434CrossRefGoogle Scholar
  17. Ghosh S, Jana TK, Singh BN et al (1987) Comparative study of carbon dioxide system in virgin and reclaimed mangrove waters of Sunderbans during freshnet. Mahasagar Bull Natl Inst Oceanogr 20:155–161Google Scholar
  18. Jennerjahn TC, Ittekkot V (2002) Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften 89:23–30Google Scholar
  19. Kitheka JU (1996) Water circulation and coastal trapping of brackish water in a tropical mangrove-dominated bay in Kenya. Limnol Oceanogr 41:169–176CrossRefGoogle Scholar
  20. Kitheka JU, Mwashote BM, Ohowa BO et al (1999) Water circulation, groundwater outflow and nutrient dynamics in Mida Creek, Kenya. Mangr Salt Marsh 3:135–146CrossRefGoogle Scholar
  21. Koné YJ-M, Borges AV (2008) Dissolved inorganic carbon dynamics in the waters surrounding forested mangroves of the Ca Mau Province (Vietnam). Est Coast Shelf Sci 77:409–421CrossRefGoogle Scholar
  22. Kristensen E, Bouillon S, Dittmar T et al (2008) Organic carbon dynamics in mangrove ecosystems: a review. Aquat Bot 89:201–219CrossRefGoogle Scholar
  23. Mazda Y, Kobashi D, Okada S (2005) Tidal-scale hydrodynamics within mangrove swamps. Wetlands Ecol Manage 13:647–655CrossRefGoogle Scholar
  24. Mazda Y, Wolanski E, Ridd PV (2007) The role of physical processes in mangrove environments: manual for the preservation and utilization of mangrove ecosystems. TERRAPUB, TokyoGoogle Scholar
  25. McKee KL, Feller IC, Popp M et al (2002) Mangrove isotopic (15δN and 13δC) fractionation across a nitrogen vs phosphorus limitation gradient. Ecology 83:1065–1075Google Scholar
  26. Nixon SW (1988) Physical energy inputs and the comparative ecology of lake and marine ecosystems. Limnol Oceanogr 33:1005–1025CrossRefGoogle Scholar
  27. Odum EP (1968) A research challenge: evaluating the productivity of coastal and estuarine water. In: Proceedings of the second sea grant congress. University of Rhode Island, Graduate School of Oceanography, Kingston, pp 63–64Google Scholar
  28. Odum WE, Odum EP, Odum HT (1995) Nature’s pulsing paradigm. Estuaries 18:547–555CrossRefGoogle Scholar
  29. Ovalle ARC, Rezende CE, Lacerda LD et al (1990) Factors affecting the hydrochemistry of a mangrove tidal creek, Sepetiba Bay, Brazil. Est Coast Shelf Sci 31:639–650CrossRefGoogle Scholar
  30. Ralison OH, Borges AV, Dehairs F et al (2008) Carbon biogeochemistry of the Betsiboka estuary (north-western Madagascar). Org Geochem 39:137–149CrossRefGoogle Scholar
  31. Ram ASP, Nair S, Chandramohan D (2003) Seasonal shift in net ecosystem production in a tropical estuary. Limnol Oceanogr 48:1601–1607CrossRefGoogle Scholar
  32. Richey JE, Melack JM, Aufdenkampe AK (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620CrossRefGoogle Scholar
  33. Ridd PV (1996) Flow through animal burrows in mangrove creeks. Est Coast Shelf Sci 43:617–625CrossRefGoogle Scholar
  34. Ridd PV, Wolanski E, Mazda Y (1990) Longitudinal diffusion in mangrove-fringed tidal creeks. Est Coast Shelf Sci 31:541–554CrossRefGoogle Scholar
  35. Ridd PV, Steiglitz T, Larcombe P (1998) Density-driven secondary circulation in a tropical mangrove estuary. Est Coast Shelf Sci 47:621–632CrossRefGoogle Scholar
  36. Robertson AI, Alongi DM, Boto KG (1992) Food chains and carbon fluxes. In: Robertson AI, Alongi DM (eds) Tropical mangrove ecosystems. American Geophysical Union, Washington, pp 293–326Google Scholar
  37. Sam R, Ridd PV (1998) Spatial variations of groundwater salinity in a mangrove-salt flat system, Cocoa Creek, Australia. Mangr Salt Marsh 2:121–132CrossRefGoogle Scholar
  38. Stieglitz T, Ridd PV (2001) Trapping of mangrove propagules due to density-driven secondary circulation in the Normanby River estuary, NE Australia. Mar Ecol Progr Ser 211:131–142CrossRefGoogle Scholar
  39. Susilo A, Ridd PV (2005) The bulk hydraulic conductivity of mangrove soil perforated with animal burrows. Wetlands Ecol Manag 13:123–133CrossRefGoogle Scholar
  40. Twilley RR, Chen R (1998) A water budget and hydrology model of a basin mangrove forest in Rookery Bay, Florida. Mar Freshwater Res 49:309–323CrossRefGoogle Scholar
  41. Upstill-Goddard RC, Barnes J, Ramesh R (2007) Are mangroves a source or sink for greenhouse gases? In: Tateda Y (ed) Greenhouse gas and carbon balances in mangrove coastal ecosystems. Gendai Tosho, Kanagawa, pp 127–138Google Scholar
  42. Wanek W, Hofmann J, Feller IC (2007) Canopy interactions of rainfall in an offshore mangrove ecosystem dominated by Rhizophora mangle (Belize). J Hydrol 345:70–79CrossRefGoogle Scholar
  43. Wolanski E (1992) Mangrove hydrodynamics. In: Robertson AI, Alongi DM (eds) Tropical mangrove ecosystems. American Geophysical Union, Washington, pp 43–62Google Scholar
  44. Wolanski E (1995) Transport of sediment in mangrove swamps. Hydrobiologia 295:31–42CrossRefGoogle Scholar
  45. Wolanski E (2007) Estuarine ecohydrology. Elsevier, AmsterdamGoogle Scholar
  46. Wolanski E, Ridd P (1986) Tidal mixing and trapping in mangrove swamps. Est Coast Shelf Sci 23:759–771CrossRefGoogle Scholar
  47. Wolanski E, Mazda Y, King B et al (1990) Dynamics, flushing and trapping in Hinchinbrook Channel, a giant mangrove swamp. Est Coast Shelf Sci 31:555–579CrossRefGoogle Scholar
  48. Woodroffe C (1992) Mangrove sediments and geomorphology. In: Robertson AI, Alongi DM (eds) Tropical mangrove ecosystems. American Geophysical Union, Washington, pp 7–41Google Scholar
  49. Woodroffe CD (2003) Coasts: form, process and evolution. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Australian Institute of Marine ScienceTownsvilleAustralia

Personalised recommendations