A Review of the Evolution of the Diatoms from the Origin of the Lineage to Their Populations

Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 19)


The diatoms are, without doubt, one of the most successful groups of unicellular algae and contribute significantly to the global carbon cycle. They arose within the heterokont lineage no earlier than 250 Ma. The radiation of the pigmented heterokonts and that of the haptophytes and dinoflagellates was likely a response to the Permian–Triassic (PT) extinction event when host cells with a red algal endosymbiont had an adaptive advantage. There are three major clades of diatoms, which have been formally recognized at the class level, and their monophyly is clearly linked to the type of analysis done, the alignment by the secondary structure of the ribosomal RNA molecule, and the number of out-groups. The auxospore continues to be the defining feature of the deeper clades/classes of the diatoms; the three classes being the radial centrics, the bipolar centrics, which include the radial Thalassiosirales, and the pennate diatoms. Additional important defining features are the position of the cribrum in loculate areolae and the presence or absence of a central structure in the annulus. Sublineages within each class generally follow traditional orders of diatoms based on morphology. The araphid diatoms are shown to comprise two groups: the basal araphids that have both a properizonial auxospore like the bipolar, mediophycean diatoms and a perizonial auxospore like the raphid diatoms and the core araphids that have a perizonial auxospore like the raphid diatoms. Raphid diatoms are monophyletic with the Eunotiales as a basal lineage. Canal raphe diatoms have arisen twice. The Bacillariales are a basal divergence, whereas the Surirellales diverged more recently with the canal raphe evolving from amphoroid diatoms through Entomoneis to Surirella. Nearly all of the cosmopolitan diatom species that have been investigated with molecular techniques have been shown to be composed of cryptic species. Breeding studies help to confirm that the cryptic species conform to a biological species concept and underscore the premise that the diatoms are underclassified as a group at the species level. Genetic diversity studies have shown that the diatoms have strongly structured populations both spatially and temporally.


Diatom phylogeny Evolution Auxospore evolution 


  1. Alverson, A.J. (2008) Molecular systematics and the diatom species. Protist 159: 339–353.PubMedCrossRefGoogle Scholar
  2. Alverson, A.J., Cannone, J.J., Gutell, R.R. and Theriot, E.C. (2006) The evolution of elongate shape in diatoms. J. Phycol. 42: 655–668.CrossRefGoogle Scholar
  3. Amato, A., Kooistra, W.H.C.F., Hee, J., Ghiron, L., Mann, D.G., Pröschold, T. and Montresor, M. (2007) Reproductive isolation among sympatric cryptic species in marine diatoms. Protist 158: 193–207.PubMedCrossRefGoogle Scholar
  4. Armbrust, E., Berges, J., Bowler, C., Green, B., Martinez, D., Putnam, N., Zhou, S., Allen, A. et al. (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306: 79–86.PubMedCrossRefGoogle Scholar
  5. Berney, C. and Pawlowski, J. (2006) A molecular time-scale for eukaryotic evolution recalibrated with the continuous microfossil record. Proc. R. Soc. B 273: 1867–1872.CrossRefGoogle Scholar
  6. Beszteri, B., Acs, E. and Medlin L.K. (2005a) Conventional and geometric morphometric studies of valve ultrastructural variation in two closely related Cyclotella species (Bacillariophyceae), Eur. J. Phycol. 40: 73–88.CrossRefGoogle Scholar
  7. Beszteri, B., Acs, E., and Medlin L.K. (2005b) Ribosomal DNA sequence variation among sympatric strains of the Cyclotella meneghiniana complex (Bacillariophyceae) reveals cryptic diversity. Protist 156: 317–333.PubMedCrossRefGoogle Scholar
  8. Beszteri, B., John, U. and Medlin, L.K. (2007) Congruent variation at a nuclear and a plastid locus suggests that the diatom Cyclotella menegheniana is a species complex. Eur. J. Phycol. 42: 47–60.CrossRefGoogle Scholar
  9. Bhattacharya, D. and Medlin, L.K. (1995) The phylogeny of plastids. A review based on comparisons of small subunit ribosomal RNA coding regions. J. Phycol. 31: 489–498.CrossRefGoogle Scholar
  10. Bourne, C.E.M. (1992) Chloroplast DNA structure, variation and phylogeny in closely related species of Cyclotella. Ph.D. dissertation, University of Michigan, Ann Arbor.Google Scholar
  11. Bowler, C. et al. (2008) The Phaeodactylum genome reveals the dynamic nature and multi-lineage evolutionary history of diatom genomes. Nature 456: 239–244.Google Scholar
  12. Bruder, K. and Medlin, L.K. (2007) Molecular assessment of phylogenetic relationships in selected species/genera in the naviculoid diatoms (Bacillariophyta). I. The genus Placoneis. Nova Hedw. 85: 331–352.CrossRefGoogle Scholar
  13. Bruder, K. and Medlin, L.K. (2008a) Molecular assessment of phylogenetic relationships in selected species/genera in the naviculoid diatoms (Bacillariophyta). II. The genus Hippondonta. Diatom Res 23: 283–329.Google Scholar
  14. Bruder, K. and Medlin, L.K. (2008b) Molecular assessment of phylogenetic relationships in selected species/genera in the naviculoid diatoms (Bacillariophyta). III. Selected genera and families Diatom Res. 23: 331–347.Google Scholar
  15. Bruder, K., Sato, S. and Medlin, L.K. (2008) Molecular assessment of phylogenetic relationships in selected species/genera in the naviculoid diatoms (Bacillariophyta). IV. The genera Pinnularia and Caloneis. Diatom 24: 8–24.Google Scholar
  16. Casteleyna, G. Leliaert, F., Backeljau, T., Debeer, A-E., Kotaki, Y., Rhodes, L., Lundholm, N., Sabbe, K. and Vyverman, W. (2010) Limits to gene flow in a cosmopolitan marine planktonic diatom. PNAS 107: 12952–12957.Google Scholar
  17. Cavalier-Smith, T. and Chao, E.E.-Y. (2006) Phylogeny and megasystematics of phagotrophic heterokonts (Kingdom Chromista). J. Mol. Evol. 62: 388–420.PubMedCrossRefGoogle Scholar
  18. Chepurenov, V.A. et al. (2005) Sexual reproduction, mating system, chloroplast dynamics and abrupt cell size reduction in Pseudo-nitzschia pungens from the North Sea (Bacillariophyta). Eur. J. Phycol. 40: 379–395.CrossRefGoogle Scholar
  19. Choi, H.G., Joo, H.M., Jung, W., Hong, S.S., Kang, J.S. and Kang, S.H. (2008) Morphology and phylogenetic relationships of some psychrophilic polar diatoms (Bacillariophyta). Nova Hedw. Beih. 133: 7–30.Google Scholar
  20. Cleve, P.T. (1894–1895) Synopsis of the naviculoid Diatoms. Kongl. svenska VetenskAkad. Handl. 26: 1–194.Google Scholar
  21. Cox, E.J. (1988) Variation within the genus Pinnularia Ehrenb.: further evidence for the use of live material in diatom systematics, In: F.E. Round (ed.) Proccedings of the 9th International Diatom Symposium. Biopress, Bristol, pp. 437–447.Google Scholar
  22. Cox, E.J. (2002) Diatoms: the evolution of morphogenetic complexity in single-celled plants, In: Q.C.B. Cronk, R.M. Bateman and J.A. Hawkins (eds.) Developmental Genetics and Plant Evolution. Taylor & Francis, London, pp. 459–492.CrossRefGoogle Scholar
  23. Cox, E.J. and Reid, G.R. (2004) Generic relationships within the Naviculineae: a preliminary cladistic analysis, In: M. Poulin (ed.) Proceedings of the 17th International Diatom Symposium. Biopress, Bristol, pp. 49–62.Google Scholar
  24. Crawford, R.M. and Sims, P.A. (2006) The diatoms Radialiplicata sol (Ehrenb.) Gleser and R. clavigera (Grun.) Gleser and their transfer to Ellerbeckia, thus a genus with freshwater and marine representatives. Nova Hedw. Beih. 130: 137–162.Google Scholar
  25. Crawford, R.M. and Sims, P.A. (2007) Some principles of chain formation as evidenced by the early diatom fossil record. Nova Hedw. Beih. 133: 171–186.Google Scholar
  26. Edgar, S.M. and Theiot, E.C. (2004) Phylogeny of Aulacoseira (Bacillariophyta) based on molecules and morphology. J. Phycol. 40: 772–788.CrossRefGoogle Scholar
  27. Ehara, M., Inagaki, Y., Watanabe, K.I. and Ohama, T. (2000) Phylogenetic analysis of diatom coxI genes and implications of a fluctuating GC content on mitochondrial genetic code evolution. Curr. Genet. 37: 29–33.CrossRefGoogle Scholar
  28. Evans, K.M., Bates, S.S., Medlin, L.K. and Hayes, P.K. (2004) Microsatellite marker development and genetic variation in the toxic marine diatom Pseudo-nitzschia. multiseries (Bacillariophyceae). J. Phycol. 40: 911–920.CrossRefGoogle Scholar
  29. Evans, K.M., Kühn, S.F. and Hayes, P.K. (2005) High levels of genetic diversity and low levels of genetic differentiation in North Sea Pseudo-nitzschia pungens (Bacillariophyceae) populations. J. Phycol. 41: 506–514.CrossRefGoogle Scholar
  30. Evans, K.M., Wortley, A.H. and Mann, D.G. (2007) An assessment of potential diatom barcode genes (cox1, rbcL, 18S, ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist 158: 349–361.PubMedCrossRefGoogle Scholar
  31. Evans, K.M., Chepurnov, V.A., Sluiman, H.J., Thomas, S.J., Spears, B.M. and Manna, D.G. (2009) Highly differentiated populations of the freshwater diatom Sellaphora capitata suggest limited dispersal and opportunities for allopatric speciation. Protist 160: 386–396.PubMedCrossRefGoogle Scholar
  32. Falkowski, P.G., Katz, M.E., Knoll, A.J., Quigg, A., Raven, J.A., Schofield, O. and Taylor, F.J.R. (2004a) The evolution of the modern phytoplankton. Science 305: 354–359.PubMedCrossRefGoogle Scholar
  33. Falkowski, P.G., Schofield, O., Katz, M.E., van de Schootbrugge, B. and Knoll, A. (2004b) Why is the land green and the ocean red? In: H. Thierstein and J. Young (eds.) Coccolithophores – From Molecular Processes to Global Impact. Elsevier, Amsterdam, pp. 429–453.Google Scholar
  34. Finlay, B. (2002) Global dispersal of free-living microbial eukaryote species. Science 296: 1061–1063.PubMedCrossRefGoogle Scholar
  35. Fox M.G. and Sorhannus, U.M. (2003) rpoA: useful gene for phylogenetic analysis in Diatoms. J. Eukaryot. Microbiol. 50: 471–475.CrossRefGoogle Scholar
  36. Frommolt, R., Werner, S., Paulsen, H., Goss, R., Wilhelm, C., Zauner, S., Maier, U.G., Grossman, A.R., Bhattacharya, D. and Lohr, M. (2008) Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis. Mol. Biol. Evol. 25: 2653–2657.PubMedCrossRefGoogle Scholar
  37. Gallagher, J.C. (1982) Physiological variation and electrophoretic banding-patterns of genetically different seasonal populations of Skeletonema costatum (Bacillariophyceae). J. Phycol. 18: 148–162.CrossRefGoogle Scholar
  38. Gersonde, R. and Harwood, D.M. (1990) Lower cretaceous diatoms from ODP leg 113 site 693 (Weddell Sea) II. Vegetative cells, In: P.F. Barker, J.P. Kennett et al. (eds) Proceedings of the Ocean Drilling Program Scientific Results vol. 113. College Station, Texas, pp. 365–403.Google Scholar
  39. Graham, L.E. and Wilcox, L.W. (2000) Algae. Prentice-Hall, London.Google Scholar
  40. Guillou, L., Chrétiennot-Dinet, M.-J., Medlin, L.K., Claustre, H., Loiseaux-de Goër, S. and Vaulot, D. (1999) Bolidomonas, a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). J. Phycol. 35: 368–381.CrossRefGoogle Scholar
  41. Harwood, D.M., Chang, K.H. and Nikolaev, V.A. (2004) Late Jurassic to earliest Cretaceous diatoms from Jasong Synthem, Southern Korea: evidence for a terrestrial origin, In: A. Witkowski, T. Radziejewska, B. Wawrzyniak-Wydrowska, G. Daniszewska-Kowalczyk and M. Bąk (eds.) Abstracts, 18th International Diatom Symposium, Miedzyzdroje, Poland, p. 81.Google Scholar
  42. Hasle, G.R. (1974) The ‘mucilage pore’ of pennate diatoms. Nova Hedw. Beih. 45: 167–194.Google Scholar
  43. Hillis, D. M., Moritz, C. and Mable, B. K. (1996) Molecular Systematics. Sinauer Associates, Sunderland.Google Scholar
  44. Houk, V. and Klee, R. (2004) The stelligeroid taxa of the genus Cyclotella (Kutzing) Brebisson (Bacillariophyceae) and their transfer into the new genus Discostella gen. nov. Diatom Res. 19: 203–228.Google Scholar
  45. Ichinomiya, M., Yoshikawas, S., Kamiya, M., Ohki, K., Takaichi, S., and Kuwata, A. (2011) Isolation and characterisation of Parmales (Heterokonta/Heterokontophyta/Stramenopiles) from the Oyashio Region Western North Pacific. J. Phycol. 47: 144–151.Google Scholar
  46. Jablonski D. (2005) Mass extinctions and macroevolution. Paleobiology 31: 192–210.CrossRefGoogle Scholar
  47. Jung, S.W., Han, M-S. and Ki, J.-S. (2009) Molecular genetic divergence of the centric diatom Cyclotella and Discotella (Bacillariophyceae) revealed by nuclear ribosomal DNA comparisons. J. Applied Phycol. 22: 319–329.Google Scholar
  48. Kaczmarska, I., Ehrman, J.M. and Bates S.S. (2001) A review of auxospore structure, ontogeny and diatom phylogeny, In: A. Economou-Amilli (ed.) Proceedings of the 16th International Diatom Symposium. University of Athens, Greece, pp. 153–168.Google Scholar
  49. Kaczmarska,, I., Beaton, M., Benoit, A.C. and Medlin, L.K. (2005) Molecular phylogeny of selected members of the order Thalassiosirales (Bacillariophyta) and evolution of the fultoportula. J. Phycol. 42: 121–138.CrossRefGoogle Scholar
  50. Keeling, P.J. (2004) Diversity and evolutionary history of plastids and their hosts. Am. J. Bot. 91: 1481–1493.PubMedCrossRefGoogle Scholar
  51. Kociolek, J.P. and Stoermer, E.F. (1993) The diatom genus Gomphocymbella In: O. Mller (ed.): Taxonomy, ultrastructure and phylogenetic relationships. Nova Hedw., Beih. 106: 71–92.Google Scholar
  52. Kooistra, W.H.C.F. and Medlin, L.K. (1996) The evolution of the diatoms (Bacillariophyta) IV. A reconstruction of their age from small subunit rRNA coding regions and the fossil record. Mol. Phylogenet. Evol. 6: 391–407.CrossRefGoogle Scholar
  53. Kooistra, W.H.C.F., de Stefano, M., Mann, D.G., Salma, N. and Medlin, L.K. (2003) The phylogenetic position of Toxarium within the diatoms (Bacillariophyceae). J. Phycol. 39: 185–197.CrossRefGoogle Scholar
  54. Kooistra, W.H.C.F., Forlani, G., Sterrenburg, F.A.S. et al. (2004) Molecular phylogeny and morphology of the marine diatom Talaroneis posidoniae sp. nov. (Bacillariophyta) advocate the return of the Plagiogrammaceae to the pennate diatoms. Phycologia 43: 58–67.CrossRefGoogle Scholar
  55. Kooistra, W.H.C.F., Sarno, D., Andersen, R.A., Percopo I. and Zingone, A. (2006) Global diversity and biogeography of Skeletonema species (Bacillariophyta). Protist 159: 177–193.CrossRefGoogle Scholar
  56. Kooistra, W.H.C.F., Forlani, G. and De Stefano, M. (2008) Adaptation of araphid pennate diatoms to a planktonic existed. Mar. Ecol. 30: 1–15. CrossRefGoogle Scholar
  57. Krammer, K. (2000) The genus Pinnularia. In: Diatoms of Europe: diatoms of the European inland waters and comparable habitats. (Lange-Bertalot, H. ed.), 1–703, A.R.G. Gantner, Ruggell.Google Scholar
  58. Krammer, K. and Lange-Bertalot, H. (1985) Naviculaceae. Neue und wenig bekannte Taxa, neue Kombinationen und Synonyme sowie Bemerkungen zu einigen Gattungen. Bibliotheca Diatomologica 9: 5–230.Google Scholar
  59. Kühn, S.F., Klein, G., Halliger, H., Hargraves, P. and Medlin,, L.K. (2006) A new diatom, Mediopyxis helysia gen. nov. and sp. nov. (Mediophyceae) from the North Sea and the Gulf of Maine as determined from morphological and phylogenetic characteristics. Nova Hedw. Beih. 130: 307–324.Google Scholar
  60. Kützing, F.T. (1844) Die kieselschaligen Bacillarien oder Diatomeen. Nordhausen, Ferd. Förstemann, 1–152.Google Scholar
  61. Lauterborn, R. (1896) Untersuchungen über Bau, Kernteilung und Bewegund der Diatomeen. Engleman Leipzig 165 pp.Google Scholar
  62. Lipps, J.H. (1970) Plankton evolution. Evolution 24: 1–22.CrossRefGoogle Scholar
  63. Mann, D.G. (1984) An ontogenetic approach to diatom systematics, In: Mann D.G. (ed.) Proceedings of the 7th International Diatom Symposium. Koeltz, Koenigstein, pp. 113–144.Google Scholar
  64. Mann, D.G. (1985) In vivo observation of plastid and cell division in raphid diatoms and their relevance to diatom systematics. Ann. Bot. 55: 95–108.Google Scholar
  65. Mann, D.G. (1989) The species concept in diatoms: evidence for morphologically distinct, sympatric gamodemes in four epipelic species. Plant Syst. Evol. 164: 215–237.CrossRefGoogle Scholar
  66. Mann, D.G. (1999) The species concept in diatoms. Phycologia 38: 437–495.CrossRefGoogle Scholar
  67. Mann, D.G. and Evans, K.M. (2008) Molecular genetics and the neglected art of diatomics, In: J. Lewis and J. Broadie (eds.) Unravelling the Algae, the Past, the Present and Future. Elsevier, London, pp. 231–265.Google Scholar
  68. Mann, D.G. and Marchant, H.J. (1989) The origin of the diatom and its life cycle, In: J.C. Green, B.S.C. Leadbeater and W.L. Diver (eds.) The Chromophyte Algae: Problems and Perspectives. Clarendon Press, Oxford, pp. 307–323.Google Scholar
  69. Medlin, L.K. (2002) Why silica or better yet why not silica? Speculations as to why the diatoms utilise silica as their cell wall material. Diatom Res. 17: 453–459.Google Scholar
  70. Medlin, L.K. (2004) Comment in reply to Schmid (2003), The evolution of the silicified diatom cell wall revisited. Diatom Res. 19: 345–351.Google Scholar
  71. Medlin, L.K. (2008) Molecular clocks and inferring evolutionary milestones and biogeography in the microalgae, In: H. Okada, S.F. Mawatari, N. Suzuki and P. Gautam (eds.) Origin and Evolution of Natural Diversity, Sapporo, Japan, pp. 31–42.Google Scholar
  72. Medlin, L.K. (2009) The use of the terms centrics and pennates. Diatom Res. 24: 499–501.Google Scholar
  73. Medlin, L.K. (2010a) Pursuit of a natural classification of diatoms: An incorrect comparison of ­published data. Eur. Phycol. J. 28: 261–275.Google Scholar
  74. Medlin, L.K. (2010b) A timescale for diatom evolution based on four molecular markers and assigning off ghost lineages to original discoverers. Abstracts of the 21st International Diatom Symposium, Minneapolis, Mn p. 35.Google Scholar
  75. Medlin, L.K. (2011) The Permian Triassic Extinction forces the radiation of the modern phytoplankton. Phycologia, 80: 10.Google Scholar
  76. Medlin, L.K. and Kaczmarska, I. (2004) Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia 43: 245–270.CrossRefGoogle Scholar
  77. Medlin, L.K. and Sato, S. (2009) The biological reality of the core and basal groups of araphid diatoms. Diatom Res. 24: 503–508.Google Scholar
  78. Medlin, L.K., Williams, D.M. and Sims, P.A. (1993) The evolution of the diatoms (Bacillariophyta): I. Origin of the group and assessment of the monophyly of its major divisions. Eur. J. Phycol. 28: 261–275.CrossRefGoogle Scholar
  79. Medlin, L.K., Kooistra, W.C.H.F., Gersonde, R., Sims, P. and Wellbrock, U. (1997a) Is the origin of diatoms related to the end-Permian mass extinction. Nova Hedw. Festschrift für U. Geissler. 65: 1–11.Google Scholar
  80. Medlin, L.K., Kooistra, W.H.C.F., Potter, D., Saunders, G.W. and Andersen, R.A. (1997b) Phylogenetic relationships of the ‘golden algae’ (haptophytes, heterokont chromophytes) and their plastids, In: D. Bhattacharya (ed.) Origins of Algae and Their Plastids. Springer-Verlag, Wien, pp. 187–219.Google Scholar
  81. Medlin, L.K., Kooistra, W.H.C.F. and Schmid, A.M.M. (2000a) A review of the evolution of the diatoms – a total approach using molecules, morphology and geology, In: A. Witkowski and J. Sieminska (eds.) The Origin and Early Evolution of the Diatoms: Fossil, Molecular and Biogeographical Approaches. Szafer Institute of Botany, Polish Academy of Science, Cracow, pp. 13–35.Google Scholar
  82. Medlin, L.K., Lange, M. and Noethig, E.V. (2000b) Genetic diversity in the marine phytoplankton: a review and a consideration of Antarctic phytoplankton. Antarctic Sci. 12: 325–331.CrossRefGoogle Scholar
  83. Medlin, L., Jung, I., Bahulikar, R., Mendgen, K., Kroth, P. and Kooistra, W.H.C.F. (2008a) Evolution of the Diatoms. VI. Assessment of the new genera in the araphids using molecular data. Nova Hedw. Beih. 133: 81–100.Google Scholar
  84. Medlin, L.K., Sato, S., Mann, D.G. and Kooistra, W.C.H.F. (2008b) Molecular evidence confirms sister relationship of Ardissonea, Climacosphenia and Toxarium within the bipolar centric diatoms (Mediophyceae, Bacillariophyta). J. Phycol. 44: 1340–1348.CrossRefGoogle Scholar
  85. Mereschkowsky, C. (1902–3) Les types de l’endochrome chez les Diatomées. Scripta Botanica. Horti Univ. Imp. Petropol. 21: 107–193.Google Scholar
  86. Moustafa A., Beszteri B., Maier U.G., Bowler C., Valentin K. and Bhattacharya, D. (2009) Genomic footprints of a cryptic endosymbiosis in diatoms. Sci. 324: 1724–1726.Google Scholar
  87. Pascher, A. (1921) Űber die einstimmungen zwischen Diatomeen, Heterokonten und Chrysomonaden. Ber. Deutsch Bot. Ges. 39: 236–240.Google Scholar
  88. Petersen, J., Teich, R., Brinkmann, H. and Cerff, R. (2007) A “green” phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates. J. Mol. Evol. 62: 43–57.Google Scholar
  89. Pfitzer, E. (1871) Untersuchungen fiber Bau und Entwicklung der Bacillariaceen (Diatomaceen). Bot. Abhandl. 2: 1–189.Google Scholar
  90. Phillippe, H., Sorhanuus, U., Baroin, A., Perasso, R., Gasse, F. and Adoutte, A. (1994) Comparison of molecular and paleotontoligcal diatom in diatom suggests a major gap in the fossil record. J. Evol. Biol. 7: 247–265.CrossRefGoogle Scholar
  91. Rampen, S.W., Schouten, S., Panoto, F.E., Brink, M., Andersen, R.A., Muyzer, G., Abbas, B., and Sinninghe Damsté, J.S. (2009) Phylogenetic position of Attheya longicornis and Attheya septentrionalis (Bacillariophyta). J. Phycol. 45: 444–453.CrossRefGoogle Scholar
  92. Round, F.E., Crawford, R.M. and Mann, D.G. (1990) The Diatoms: Biology and Morphology of the Genera. Cambridge University Press, Cambridge.Google Scholar
  93. Ruck, E.C. and Kociolek, J.P. (2004) A preliminary phylogeny of the family Surirellaceae (Bacillariophyta). Bib. Diatom 50: 1–235.Google Scholar
  94. Ruck, E.C. and Theriot, E.C. (2011) Origin and evolution of the canal raphe system in diatoms. ­Protist doi:10.1016/j.protis.2011.02.003.Google Scholar
  95. Rynearson, T.A. and Armbrust, E.V. (2000) DNA fingerprinting reveals extensive genetic diversity in a field population of the centric diatom Ditylum brightwellii. Limnol. Oceanogr. 45: 1329–1340.CrossRefGoogle Scholar
  96. Rynearson, T.A. and Armbrust, E.V. (2004) Genetic differentiation among populations of the planktonic marine diatom Ditylum brightwellii (Bacillariophyceae). J. Phycol. 40: 34–43.CrossRefGoogle Scholar
  97. Rynearson, T.A. and Armbrust, E.V. (2005) Maintenance of clonal diversity during a spring bloom of the centric diatom Ditylum brightwellii. Mol. Ecol. 14: 1631–1640.PubMedCrossRefGoogle Scholar
  98. Rynearson, T.A., Newton, J.A. and Armbrust, E.V. (2006) Spring bloom development, genetic variation and population succession in the planktonic diatom Ditylum brightwellii. Limnol. Oceangr. 51: 1249–1261.CrossRefGoogle Scholar
  99. Sabbe, K., Vyverman, W. and Casteleyn, G. (2009) Species structure and biogeography of the marine diatom Pseudo-nitzschia pungens. Phycologist 76: 8 (abstract).Google Scholar
  100. Sarno, D., Kooistra, W.H.C.F., Medlin, L.K., Percopo, I. and Zingone, A. (2005) Diversity in the genus Skeletonema (Bacillariophyceae) Skeletonema costatum (Bacillario-phyceae) consists of several genetically and morphologically distinct species with the description of four new species. J. Phycol. 41: 151–176.CrossRefGoogle Scholar
  101. Sato, S. (2008) Phylogeny of araphid diatoms, inferred from morphological and molecular data. PhD Dissertation. University of Bremen. http, //elib.suub.uni-bremen.de/diss/docs/00011057.pdf.Google Scholar
  102. Schmid, A.-M.M. (1988) The special Golgi–ER–mitochondrium unit in the diatom genus Coscinodiscus. Pl. Syst. Evol. 158: 211–233.CrossRefGoogle Scholar
  103. Sims, P.A., Mann, D.G. and Medlin, L.K. (2006) Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45: 361–402.CrossRefGoogle Scholar
  104. Simonsen R. (1972) Ideas for a more natural system of the centric diatoms. Nova Hedwigia, Beiheft 39: 37–54.Google Scholar
  105. Sinninghe-Damsté, J.S., Muyzer, G., Abbas, B., Rampen, S.W., Masse, G., Allard, W.G., Belt, S.T., Robert, J.-M., Rowland, S.J., Moldowan, J.M., Barbanti, S.M., Fago, F.J., Denisevich, P., Dahl, J., Trindade, L.A.F. and Schouten, S. (2004) The rise of the rhizosolenoid diatoms. Science 304: 584–587.CrossRefGoogle Scholar
  106. Sörhannus, U. (1997) The origination time of diatoms: an analysis based on ribosomal RNA data. Micropaleontology 43: 215–218.CrossRefGoogle Scholar
  107. Sorhannus, U. (2004) Diatom phylogenetics inferred based on direct optimization of nuclear-encoded SSU rRNA sequences. Clad 20: 487–497.Google Scholar
  108. Sörhannus, U. (2007) A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution. Mar. Micropaleont. 65: 1–12.CrossRefGoogle Scholar
  109. Sörhannus, U., Gasse, F., Perasso, R. and Baroin Tourancheau, A. (1995) A preliminary phylogeny of diatoms based on 28S ribosomal RNA sequence data. Phycologia 34: 65–73.CrossRefGoogle Scholar
  110. Theriot, E., Alverson, D. and Gutell, R. (2009) The limits of nuclear-encoded SSU rDNA for resolving the diatom phylogeny. Eur. J. Phycol 44: 277–290.Google Scholar
  111. Van den Hoek, C., Mann, D.G. and Jahns, H.M. (1995) Algae, an Introduction to Phycology. Cambridge University Press, Cambridge.Google Scholar
  112. Van Mooy, B.A.S., Fredricks, H.F., Pedler, B.E., Dyhrman, A.T., Karl, D.M., Koliizek, M., Lomas, M.W., Mincer, T.J., Moore, L.R., Moutin, T., Rappe, M.W. and Webb, E.A. (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458: 69–72.PubMedCrossRefGoogle Scholar
  113. Vanormelingen, P., Chepurnov, V.A., Mann, D.G., Cousin, S. and Vyverman, W. (2007) Congruence of morphological, reproductive and ITS rDNA sequence data in some Australasian Eunotia bilunaris (Bacillariophyta). Eur. J. Phycol. 42: 61–79.CrossRefGoogle Scholar
  114. Vanormelingen, P., Chepurnov, V.A., Mann, D.G., Sabbe, K. and Vyverman, W. (2008a) Genetic divergence and reproductive barriers among morphologically heterogeneous sympatric clones of Eunotia bilunaris sensu lato (Bacillariophyta). Protist 159: 73–90.PubMedCrossRefGoogle Scholar
  115. Von Stosch, H. (1950) Oogany in a centric diatom. Nature 165: 531–532.CrossRefGoogle Scholar
  116. Williams, D.M. (2007) Classsification and diatom systematics, the past, the present and the future, In: J. Brodie and J. Lewis (eds.) Unravelling the Algae. CRC Press, Boca Raton, pp. 57–91.CrossRefGoogle Scholar
  117. Williams, D.M. and Kociolek, J.P. (2007) The rejection of paraphyletic taxa. Eur. J. Phycol. 42: 313–319.Google Scholar
  118. Wood, A.M., Lande, R. and Fryxell, G.A. (1987) Quantitative genetic analysis of morphological variation in an antarctic diatom grown at two light intensities. J. Phycol. 23: 42–54.Google Scholar
  119. Yoon, H.S., Hackett, J.D., Pinto, G. and Bhattacharya, D. (2002) The single ancient origin of chromist plastids. Proc. Natl. Acad. Sci. USA 99: 15507–15512.PubMedCrossRefGoogle Scholar
  120. Yoon, H.S., Hackett, J., Ciniglia, C., Pinto, G. and Bhattacharya, D. (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol. Biol. Evol. 21: 809–818.PubMedCrossRefGoogle Scholar
  121. Zingone, A., Percopo, I., Sims, P. and Sarno, D. (2005) Diversity in the genus Skeletonema (Bacillariophyceae) I. A re-examination of the type material of S. costatum with the description of S. grevillei sp. nov. J. Phycol. 41: 135–150.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2011

Authors and Affiliations

  1. 1.UPMC Univ Paris 06, UMR 7621, LOMIC, Observatoire OcéanologiqueBanyuls/merFrance
  2. 2.CNRS, UMR 7621, LOMIC, Observatoire OcéanologiqueBanyuls/merFrance

Personalised recommendations