The Contribution of the Barcode of Life Initiative to the Discovery and Monitoring of Biodiversity

Chapter

Abstract

Biodiversity has been fundamental to sustain the human population, which is currently estimated at nearly 7 billion people. However, less than one fifth of the extant species are known to science, and among those only a minuscule proportion was described in any biological detail. This huge gap in our knowledge of biodiversity is in deep contrast with the extraordinary level of scientific and technological development that modern society has reached. How can we take advantage of the technology currently available to detect the putative high rates of biodiversity loss? How can we efficiently manage our ecosystems and biological communities if we do not even have a comprehensive inventory of biodiversity to start with?

The Barcode of Life Initiative (BOLI) aims to contribute to resolve these questions by building a new system for species identification using DNA sequences from standardized regions of the genome—DNA barcodes. Once fully implemented, this novel system will greatly facilitate the access to taxonomic knowledge globally and revolutionize our ability to rapidly and rigorously identify life forms in a multitude of scenarios.

We anticipate major contributions of DNA barcodes for biodiversity research when integrated with other ongoing technological, organizational and conceptual developments. This can be illustrated by the growing capacity to monitor biodiversity, which has lead to the recognition of cryptic species, their prevalence and distribution patterns. The coupling of DNA barcoding with next generation sequencing will enable to capture the structure and dynamics of complex communities with unprecedented degree of detail. This can catalyze the rate of species discovery globally and contribute to improve the way in which we conserve biodiversity.

Keywords

Internal Transcribe Spacer Arbuscular Mycorrhizal Fungus Invasive Species Cryptic Species Global Biodiversity Information Facility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This is a contribution from F.O. Costa in the scope of grants PTDC/MAR/69892/2006 from “Fundação para a Ciência e a Tecnologia”, and a European Commission’s Reintegration Grant (ERG-224890). P.M. Antunes thanks the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Ontario Ministry of Natural Resources (OMNR) for financial support. We thank the Consortium for the Barcode of Life for permission to reproduce Fig. 4.1, and John Wiley and Sons publishers for granting permission to reproduce Fig. 4.2. Special thanks to Luisa Borges and Ana Cunha for comments on an early draft of the manuscript.

References

  1. Agnarsson I, Kuntner M (2007) Taxonomy in a changing world: seeking solutions for a science in crisis. Syst Biol 56:531–539CrossRefGoogle Scholar
  2. Anderson IC, Campbell CD, Prosser JI (2003) Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environ Microbiol 5:36–47CrossRefGoogle Scholar
  3. Antunes PM, Koch AM, Morton JB, Rillig MC, Klironomos JN (2011) Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins. New Phytol 189:507–514CrossRefGoogle Scholar
  4. Appeltans W et al. (eds) (2010) World register of marine species. http://www.marinespecies.org. Accessed 03 Feb 2011Google Scholar
  5. Avis PG, Dickie IA, Mueller GM (2006) A ‘dirty’ business: testing the limitations of terminal restriction fragment length polymorphism (TRFLP) analysis of soil fungi. Mol Ecol 15:873–882CrossRefGoogle Scholar
  6. Baird DJ, Sweeney BW (2011) Applying DNA barcoding in benthology: the state of the science. J N Am Benthol Soc 30:122–124CrossRefGoogle Scholar
  7. Begerow D, Nilsson H, Unterseher M, Maier W (2010) Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl Microbiol Biotechnol 87:99–108CrossRefGoogle Scholar
  8. Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10:189CrossRefGoogle Scholar
  9. Besansky NJ, Severson DW, Ferdig MT (2003) DNA barcoding of parasites and invertebrate disease vectors: what you don’t know can hurt you. Trends Parasitol 19:545–546CrossRefGoogle Scholar
  10. Bickford D et al. (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155CrossRefGoogle Scholar
  11. Bidartondo MI et al. (2008) Preserving accuracy in GenBank. Science 319:1616CrossRefGoogle Scholar
  12. Blaxter ML (2004) The promise of a DNA taxonomy. Philos Trans R Soc Lond B Biol Sci 359:669–679CrossRefGoogle Scholar
  13. Boero F (2010) The study of species in the era of biodiversity: a tale of stupidity. Diversity 2:115–126CrossRefGoogle Scholar
  14. Bouchet F (2006) The magnitude of marine biodiversity. In: Duarte CM (ed) The exploration of marine biodiversity: scientific and technological challenges. Fundación BBVA, Bilbao, pp 31–62Google Scholar
  15. Bucklin A et al. (2010) DNA barcoding of Arctic ocean holozooplankton for species identification and recognition. Deep Sea Res Pt II 57:40–48CrossRefGoogle Scholar
  16. Bucklin A, Steinke D, Blanco-Bercial L (2011) DNA barcoding of marine metazoa. Ann Rev Mar Sci 3:18.11–18.38CrossRefGoogle Scholar
  17. Buée M et al. (2009) 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456CrossRefGoogle Scholar
  18. Buhay JE (2009) “COI-Like” sequences are becoming problematic in molecular systematic and DNA barcoding studies. J Crustacean Biol 29:96–110CrossRefGoogle Scholar
  19. Carvalho GR (1998) Molecular ecology: origins and approach. In: Carvalho GR (ed) Advances in molecular ecology. IOS Press, AmsterdamGoogle Scholar
  20. Carvalho MR de et al. (2007) Taxonomic impediment or impediment to taxonomy? A commentary on systematics and the cybertaxonomic-automation paradigm. Evol Biol 34:140–143CrossRefGoogle Scholar
  21. Chapman AD (2009) Numbers of living species in Australia and the world. Report for the Australian biological resources study. Department of the Environment, Water, Heritage and Arts of the Australian Government, CanberraGoogle Scholar
  22. Chase MW et al. (2005) Land plants and DNA barcodes: short-term and long-term goals. Philos Trans R Soc B Biol Sci 360:1889–1895CrossRefGoogle Scholar
  23. Chown S, Sinclair B, Vuuren B van (2008) DNA barcoding and the documentation of alien species establishment on sub-Antarctic Marion Island. Polar Biol 31:651–655CrossRefGoogle Scholar
  24. Costa FO, Carvalho GR (2007a) The barcode of life initiative: reply to Dupré, Hollingsworth and Holm. Genomics Soc Policy 3:52–56Google Scholar
  25. Costa FO, Carvalho GR (2007b) The barcode of life initiative: synopsis and prospective societal impacts of DNA barcoding of fish. Genom Soc Policy 3:29–40Google Scholar
  26. Costa FO, Carvalho GR (2010) New insights into molecular evolution: prospects from the Barcode of Life Initiative (BOLI). Theory Biosci 129:149–157CrossRefGoogle Scholar
  27. Costa FO et al. (2007) Biological identifications through DNA barcodes: the case of the Crustacea. Can J Fish Aquat Sci 64:272–295CrossRefGoogle Scholar
  28. Dasmahapatra KK, Mallet J (2006) DNA barcodes: recent successes and future prospects. Heredity 97:254–255CrossRefGoogle Scholar
  29. Dayrat B (2005) Towards integrative taxonomy. Biol J Linn Soc 85:407–415CrossRefGoogle Scholar
  30. De Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886CrossRefGoogle Scholar
  31. Deagle BE, Kirkwood R, Jarman SN (2009) Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Mol Ecol 18:2022–2038CrossRefGoogle Scholar
  32. DeSalle R (2006) Species discovery versus species identification in DNA barcoding efforts: response to Rubinoff. Conserv Biol 20:1545–1547CrossRefGoogle Scholar
  33. Dunn R (2009) Every living thing: man’s obsessive quest to catalog life, from nanobacteria to new monkeys. HarperCollins, NYGoogle Scholar
  34. Dupré J (2007) Real but modest gains from genetic barcoding. Genomics Soc Policy 3:41–43Google Scholar
  35. Ebach MC, Carvalho MR de (2010) Anti-intellectualism in the DNA barcoding enterprise. Zoologia 27:165–178Google Scholar
  36. Ebach MC, Holdrege C (2005) DNA barcoding is no substitute for taxonomy. Nature 434:697CrossRefGoogle Scholar
  37. Ellis R, Waterton C, Wynne B (2010) Taxonomy, biodiversity and their publics in twenty-first-century DNA barcoding. Public Underst Sci 19:497–512CrossRefGoogle Scholar
  38. Evenhuis NL (2007) Helping solve the “other” taxonomic impediment: completing the eight steps to total enlightenment and taxonomic nirvana. Zootaxa 1407:3–12Google Scholar
  39. Fitter AH (2005) Darkness visible: reflections on underground ecology. J Ecol 93:231–243CrossRefGoogle Scholar
  40. Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11:839–850CrossRefGoogle Scholar
  41. Fonseca VG et al. (2010) Second-generation environmental sequencing unmasks marine metazoan biodiversity. Nat Commun 1:98CrossRefGoogle Scholar
  42. Froese R, Pauly D (2010) FishBase. World Wide Web electronic publication. http://www.fishbase.org. Accessed Nov 2010Google Scholar
  43. Gamper HA, Walker C, Schussler A (2009) Diversispora celata sp nov: molecular ecology and phylotaxonomy of an inconspicuous arbuscular mycorrhizal fungus. New Phytol 182:495–506CrossRefGoogle Scholar
  44. Gershoni M, Templeton AR, Mishmar D (2009) Mitochondrial bioenergetics as a major motive force of speciation. Bioessays 31:642–650CrossRefGoogle Scholar
  45. Godfray HCJ (2002) Challenges for taxonomy—the discipline will have to reinvent itself if it is to survive and flourish. Nature 417:17–19CrossRefGoogle Scholar
  46. Godfray HCJ (2006) To boldly sequence. Trends Ecol Evol 21:603–604CrossRefGoogle Scholar
  47. Godfray HCJ, Knapp S (2004) Taxonomy for the twenty-first century—introduction. Philos Trans R Soc Lond B Biol Sci 359:559–569CrossRefGoogle Scholar
  48. Goldstein PZ, DeSalle R (2010) Integrating DNA barcode data and taxonomic practice: determination, discovery, and description. Bioessays 33:135–147CrossRefGoogle Scholar
  49. Gomez A, Wright PJ, Lunt DH, Cancino JM, Carvalho GR, Hughes RN (2007) Mating trials validate the use of DNA barcoding to reveal cryptic speciation of a marine bryozoan taxon. Proc R Soc B Biol Sci 274:199–207CrossRefGoogle Scholar
  50. Gottelli N, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391CrossRefGoogle Scholar
  51. Gurevitch J, Padilla DK (2004) Are invasive species a major cause of extinctions? Trends Ecol Evol 19:470–474CrossRefGoogle Scholar
  52. Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci U S A 103:968–971CrossRefGoogle Scholar
  53. Hajibabaei M, Singer GAC, Hebert PDN, Hickey DA (2007) DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet 23:167–172CrossRefGoogle Scholar
  54. Hall N (2007) Advanced sequencing technologies and their wider impact in microbiology. J Exp Biol 210:1518–1525CrossRefGoogle Scholar
  55. Hanner R (2005) Data standards for BARCODE records in INSDC (BRIs). http://barcodingsiedu/PDF/DWG_data_standards-FinalpdfGoogle Scholar
  56. Harris DJ (2003) Can you bank on GenBank? Trends Ecol Evol 18:317–319CrossRefGoogle Scholar
  57. Hebert PDN, Gregory TR (2005) The promise of DNA barcoding for taxonomy. Syst Biol 54(5):852–859CrossRefGoogle Scholar
  58. Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003a) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol 270:313–321CrossRefGoogle Scholar
  59. Hebert PDN, Ratnasingham S, deWaard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B Biol 270:S96–S99CrossRefGoogle Scholar
  60. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004a) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci U S A 101:14812–14817CrossRefGoogle Scholar
  61. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004b) Identification of birds through DNA barcodes. PLoS Biol 2:1657–1663CrossRefGoogle Scholar
  62. Hey J (2006) On the failure of modern species concepts. Trends Ecol Evol 21:447–450CrossRefGoogle Scholar
  63. Hollingsworth PM (2007) DNA barcoding: potential users. Genomics Soc Policy 3:44–47Google Scholar
  64. Hollingsworth PM et al. (2009) A DNA barcode for land plants. Proc Natl Acad Sci U S A 106:12794–12797CrossRefGoogle Scholar
  65. Holm P (2007) The book of life goes online. Genom Soc Policy 3:48–51Google Scholar
  66. Janzen DH (2004) Now is the time. Philos Trans R Soc Lond B Biol Sci 359:731–732CrossRefGoogle Scholar
  67. Jaume D, Duarte CM (2006) General aspects concerning marine and terrestrial biodiversity. In: Duarte CM (ed) The exploration of marine biodiversity: scientific and technological challenges. Fundación BBVA, Bilbao, pp 17–30Google Scholar
  68. Johnson GD et al. (2009) Deep-sea mystery solved: astonishing larval transformations and extreme sexual dimorphism unite three fish families. Biol Lett 5:235–239CrossRefGoogle Scholar
  69. Knapp S, Polaszek A, Watson M (2007) Spreading the word. Nature 446:261–262CrossRefGoogle Scholar
  70. Koch AM, Croll D, Sanders IR (2006) Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growth. Ecol Lett 9:103–110CrossRefGoogle Scholar
  71. Kowalchuk GA, Bruijn FJd, Head IM, Akkermans AD, Elsas JD van (2004) Molecular microbial ecology manual, 2nd edn. Kluwer Academic, DordrechtGoogle Scholar
  72. Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One 2:e508CrossRefGoogle Scholar
  73. Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci U S A 102:8369–8374CrossRefGoogle Scholar
  74. Lahaye R et al. (2008) DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci U S A 105:2923–2928CrossRefGoogle Scholar
  75. Lane N (2009) On the origin of bar codes. Nature 462:272–274CrossRefGoogle Scholar
  76. Lin W, Zhou G, Cheng X, Xu R (2007) Fast economic development accelerates biological invasions in China. PLoS One 2:e1208CrossRefGoogle Scholar
  77. Lyal CHC, Weitzman AL (2004) Taxonomy: exploring the impediment. Science 305:1106CrossRefGoogle Scholar
  78. Markmann M, Tautz D (2005) Reverse taxonomy: an approach towards determining the diversity of meiobenthic organisms based on ribosomal RNA signature sequences. Philos Trans R Soc B Biol Sci 360:1917–1924CrossRefGoogle Scholar
  79. Maslin BR, Miller JT, Seigler DS (2003) Overview of the generic status of Acacia (Leguminosae: Mimosoideae). Aust Syst Bot 16:1–18CrossRefGoogle Scholar
  80. Metcalfe JL (1989) Biological water quality assessment of running waters based on macroinvertebrate communities: history and present status in Europe. Environ Pollut 60:101–139CrossRefGoogle Scholar
  81. Moritz C (2002) Building the biodiversity commons. D-Lib Magazine 8. http://wwwdliborg/dlib/june02/moritz/06moritzhtmlGoogle Scholar
  82. Moritz C, Cicero C (2004) DNA barcoding: promise and pitfalls. PLoS Biol 2:1529–1531CrossRefGoogle Scholar
  83. Mullis KB, Erlich HA, Arnheim N, Horn GT, Saiki RK, Scharf SJ (1987) Process for amplifying, detecting, and/or-cloning nucleic acid sequences. US 4683195 United StatesThu Feb 07 16:07:56 EST 2008 Patent and Trademark Office, Box 9, Washington, DC 20232.NOV; NOV-87-074136; EDB-87-172157 EnglishGoogle Scholar
  84. Newmaster SG, Ragupathy S (2009) Testing plant barcoding in a sister species complex of pantropical Acacia (Mimosoideae, Fabaceae). Mol Ecol Resour 9:172–180Google Scholar
  85. Newmaster SG, Fazekas AJ, Ragupathy S (2006) DNA barcoding in land plants: evaluation of rbcL in a multigene tiered approach. Can J Bot Rev Can Bot 84:335–341Google Scholar
  86. Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M (2009) Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437CrossRefGoogle Scholar
  87. Öpik M et al. (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241CrossRefGoogle Scholar
  88. Packer L, Grixti JC, Roughley RE, Hanner R (2009) The status of taxonomy in Canada and the impact of DNA barcoding. Can J Zool 87:1097–1110CrossRefGoogle Scholar
  89. Padial JM, De La Riva I (2007) Integrative taxonomists should use and produce DNA barcodes. Zootaxa 1586:67–68Google Scholar
  90. Padial JM, De La Riva I (2010) A response to recent proposals for integrative taxonomy. Biol J Linn Soc 101:747–756CrossRefGoogle Scholar
  91. Padial JM, Miralles A, De la Riva I, Vences M (2010) The integrative future of taxonomy. Front Zool 7:16CrossRefGoogle Scholar
  92. Patterson DJ, Cooper J, Kirk PM, Pyle RL, Remse DP (2010) Names are key to the big new biology. Trends Ecol Evol 25:689–691CrossRefGoogle Scholar
  93. Pawlowska TE, Taylor JW (2004) Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 427:733–737CrossRefGoogle Scholar
  94. Pfenninger M, Schwenk K (2007) Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol Biol 7:121CrossRefGoogle Scholar
  95. Pleijel F et al. (2008) Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Mol Phylogenet Evol 48:369–371CrossRefGoogle Scholar
  96. Polaszek A et al. (2005) A universal register for animal names. Nature 437:477CrossRefGoogle Scholar
  97. Raven PH (2004) Taxonomy: where are we now? Philos Trans R Soc Lond B Biol Sci 359:729–730CrossRefGoogle Scholar
  98. Rodman JE, Cody JH (2003) The taxonomic impediment overcome: NSF’s partnerships for enhancing expertise in taxonomy (PEET) as a model. Syst Biol 52:428–435Google Scholar
  99. Rubinoff D (2006) DNA barcoding evolves into the familiar. Conserv Biol 20:1548–1549CrossRefGoogle Scholar
  100. Saez AG, Lozano E (2005) Body doubles. Nature 433:111CrossRefGoogle Scholar
  101. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467CrossRefGoogle Scholar
  102. Savolainen V, Cowan RS, Vogler AP, Roderick GK, Lane R (2005) Towards writing the encyclopaedia of life: an introduction to DNA barcoding. Philos Trans R Soc B 360:1805–1811CrossRefGoogle Scholar
  103. Schander C, Willassen E (2005) What can biological barcoding do for marine biology? Mar Biol Res 1:79–83CrossRefGoogle Scholar
  104. Scheffer S, Lewis ML, Joshi RC (2006) DNA barcoding applied to invasive leafminers (Diptera: Agromyzidae) in the Philippines. Ann Entomol Soc Am 99:204–210CrossRefGoogle Scholar
  105. Schindel DE (2010) Biology without borders. Nature 467:779–781CrossRefGoogle Scholar
  106. Schindel DE, Miller SE (2005) DNA barcoding a useful tool for taxonomists. Nature 435:17CrossRefGoogle Scholar
  107. Schlick-Steiner BC, Steiner FM, Seifert B, Stauffer C, Christian E, Crozier RH (2010) Integrative taxonomy: a multisource approach to exploring biodiversity. Annu Rev Entomol 55:421–438CrossRefGoogle Scholar
  108. Seifert KA (2009) Progress towards DNA barcoding of fungi. Mol Ecol Resour 9:83–89CrossRefGoogle Scholar
  109. Seifert KA et al. (2007) Prospects for fungus identification using C01 DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci U S A 104:3901–3906CrossRefGoogle Scholar
  110. Sieverding E, Oehl F (2006) Revision of Entrophospora, and description of Kuklospora and Intraspora, two new genera in the arbuscular mycorrhizal Glomeromycetes. J Appl Bot Food Qual Angew Bot 80:69–81Google Scholar
  111. Simberloff D, Rejmánek M (2011) Encyclopedia of biological invasions. University of California Press, Los AngelesGoogle Scholar
  112. Smith VS (2005) DNA barcoding: perspectives from a “Partnerships for Enhancing Expertise in Taxonomy” (PEET) debate. Syst Biol 54:841–844CrossRefGoogle Scholar
  113. Smith SE, Read DJ (2008) Mycorrhizal symbioses. Academic Press, LondonGoogle Scholar
  114. Smith MA, Woodley NE, Janzen DH, Hallwachs W, Hebert PDN (2006) DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proc Natl Acad Sci U S A 103(10):3657–3662CrossRefGoogle Scholar
  115. Smith MA et al. (2008) Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology and collections. Proc Natl Acad Sci U S A 105:12359–12364CrossRefGoogle Scholar
  116. Smith MA, Fernandez-Triana J, Roughley R, Hebert PDN (2009) DNA barcode accumulation curves for understudied taxa and areas. Mol Ecol Resour 9:208–216CrossRefGoogle Scholar
  117. Soininen E et al. (2009) Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures. Front Zool 6:16CrossRefGoogle Scholar
  118. Stockinger H, Kruger M, Schussler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–474CrossRefGoogle Scholar
  119. Tautz D, Arctander P, Minelli A, Thomas RH, Vogler AP (2003) A plea for DNA taxonomy. Trends Ecol Evol 18:70–74CrossRefGoogle Scholar
  120. Teletchea F (2010) After 7 years and 1000 citations: comparative assessment of the DNA barcoding and the DNA taxonomy proposals for taxonomists and non-taxonomists. Mitochondr DNA 21:206–226CrossRefGoogle Scholar
  121. Valentini A et al. (2009a) New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach. Mol Ecol Resour 9:51–60CrossRefGoogle Scholar
  122. Valentini A, Pompanon F, Taberlet P (2009b) DNA barcoding for ecologists. Trends Ecol Evol 24:110–117CrossRefGoogle Scholar
  123. Voelkerding KV, Dames SA, Durtschi JD (2009) Next-generation sequencing: from basic research to diagnostics. Clin Chem 55:641–658CrossRefGoogle Scholar
  124. Walters C, Hanner R (2006) Platforms for DNA banking. In: De Vicente MC, Andersson MS (eds) DNA Banks—providing novel options for Gene Banks? Topical reviews in agricultural biodiversity. International Plant Genetic Resources Institute, Rome, pp 22–35Google Scholar
  125. Ward RD, Hanner R, Hebert PDN (2009) The Campaign to DNA barcode all fishes, FISH-BOL. J Fish Biol 74:329–356Google Scholar
  126. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc B 360:1847–1857CrossRefGoogle Scholar
  127. Wheeler QD (2004) Taxonomic triage and the poverty of phylogeny. Philos Trans R Soc Lond B Biol Sci 359:571–583CrossRefGoogle Scholar
  128. Wheeler QD (2008) The new taxonomy. Systematics association special volumes. CRC Press, Boca RatonGoogle Scholar
  129. Wheeler QD, Raven PH, Wilson EO (2004) Taxonomy: impediment or expedient? Science 303:285CrossRefGoogle Scholar
  130. Will KW, Mishler BD, Wheeler QD (2005) The perils of DNA barcoding and the need for integrative taxonomy. Syst Biol 54:844–851CrossRefGoogle Scholar
  131. Wilson EO (1992) The diversity of life. Questions of science. Belknap Press of Harvard University Press, CambridgeGoogle Scholar
  132. Wilson EO (2003) The encyclopedia of life. Trends Ecol Evol 18:77–80CrossRefGoogle Scholar
  133. Wilson EO (2004) Taxonomy as a fundamental discipline. Philos Trans R Soc Lond B Biol Sci 359:739CrossRefGoogle Scholar
  134. Winker K (2005) Sibling species were first recognized by William Derham (1718). Auk 122:706–707CrossRefGoogle Scholar
  135. Witt JDS, Threloff DL, Hebert PDN (2006) DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Mol Ecol 15:3073–3082CrossRefGoogle Scholar
  136. Yassin A, Capy P, Madi-Ravazzi L, Ogereau D, David JR (2008) DNA barcode discovers two cryptic species and two geographical radiations in the invasive drosophilid Zaprionus indianus. Mol Ecol Resour 8:491–501CrossRefGoogle Scholar
  137. Zemlak TS, Ward RD, Connell AD, Holmes BH, Hebert PDN (2009) DNA barcoding reveals overlooked marine fishes. Mol Ecol Resour 9:237–242CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Departamento de BiologiaUniversidade do Minho, CBMA – Centro de Biologia Molecular e AmbientalBragaPortugal
  2. 2.Department of BiologyAlgoma UniversitySault Ste. MarieCanada

Personalised recommendations