Skip to main content

Study of Physical, Mechanical, Flow, and Solute Transfer Properties of Clay Formations with Respect to the Design of Underground Storage Facilities for RW Disposal

  • Chapter
  • First Online:
  • 1342 Accesses

Part of the book series: Theory and Applications of Transport in Porous Media ((TATP,volume 25))

Abstract

Clay formations are widespread in the Northwestern part of Russian Federation. In St. Petersburg region southeast of the Gulf of Finland and Ladoga Lake, they occur close to the surface (Fig. 22.1). The sediments are represented by two formations, which formed in Vendian and Cambrian geological periods ( ∼ 650-500 Ma). The degree of the clayey sediment consolidation is rather high and therefore they can be also referred to the mudstone lithological type of rock (Arnould 2006). In the northwestern Russian Federation, Vendian and Cambrian clays have local names, Kothlin (associated with a geological suite) and Blue (associated with the characteristic color), respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aertsens M, Van Gompel M, De Cannire P (2008) Vertical distribution of H14CO3– transport parameters in Boom Clay in the Mol-1 borehole (Mol, Belgium). Phys Chem Earth 33:S61–S66

    Article  Google Scholar 

  • Arnould M (2006) Discontinuity networks in mudstones: a geological approach: implications for radioactive wastes isolation in deep geological formation in Belgium, France, and Switzerland. Bull Eng Geol Envir 65:413–422

    Article  Google Scholar 

  • Bock H, Blümling P, Konietzky H (2006) Study of the micro-mechanical behaviour of the Opalinus Clay: an example of co-operation across the ground engineering disciplines. Bull. Eng Geol Envir 65:195–207

    Article  Google Scholar 

  • Cormenzana JL, García-Gutiérrez M, Missana T (2008) Modeling large-scale laboratory HTO and strontium diffusion experiments in Mont Terri and Bure clay rocks. Phys Chem Earth 33:949–956

    Article  Google Scholar 

  • Crank J (1975) The mathematics of diffusion. 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • García-Gutiérrez M, Cormenzana JL, Missana T et al (2006) Large-scale laboratory diffusion experiments in clay rocks. Phys Chem Earth 31:523–530

    Article  Google Scholar 

  • García-Gutiérrez M, Cormenzana JL, Missana T (2008) Diffusion experiments in Callovo-Oxfordian clay from the Meuse/Haute-Marne URL, France. Experimental setup and data analyses. Phys Chem Earth 33: S125–S130

    Article  Google Scholar 

  • Giu G, Barbour L, Si BC (2009) Unified multilayer diffusion model and application to diffusion experiment in porous media by method of chambers. Environ Sci Technol 43:2412–2416

    Article  Google Scholar 

  • Huysmans M, Dassargues A (2006) Stochastic analysis of the effect of spatial variability of diffusion parameters on radionuclide transport in a low permeability clay layer. Hydrogeol J 14:1094–1106

    Article  Google Scholar 

  • Maes N, Aertsens M, Salah S et al (2009) Cs, Sr and Am retention on argillaceous host rocks: comparison of data from batch sorption tests and diffusion experiments. Updated version of the PID1.2.18 delivered to the FUNMIG project. External Report of the Belgian Nuclear Research Centre, SCK ∙ CEN-ER-98 09/NMa/P-108

    Google Scholar 

  • Moridis GJ (1999) Semianalytical solutions for parameter estimation in diffusion cell experiments. Water Resour Res 35:1729–1740

    Article  Google Scholar 

  • Ogata A, Banks RB (1961) A solution of the differential equation of longitudinal dispersion in porous media. U.S. Geological Survey Professional Paper 411-A

    Google Scholar 

  • Palut J-M, Montarnal Ph, Gautschi A et al (2003) Characterisation of HTO diffusion properties by an in-situ tracer experiment in Opalinus clay at Mont Terri. J Contam Hydrol 61:203–218

    Article  Google Scholar 

  • Rumynin VG, Pankina EB, Volckaert G et al (2009) Geotechnical, flow and transport properties of Kotlin (Vendian age) and Blue (Cambrian age) clays with respect to design of underground storage facilities for radioactive waste disposal in the north-west region of Russia. In: Proceedings of the IV international nuclear forum 2009. St. Petersburg, pp 195–210

    Google Scholar 

  • Samper J, Yang C, Naves A et al (2006) A fully 3-D anisotropic numerical model of the DI-B in situ diffusion experiment in the Opalinus clay formation. Phys Chem Earth 31:531–540

    Article  Google Scholar 

  • Samper J, Dewonck S, Zheng L et al (2008) Normalized sensitivities and parameter identifiability of in situ diffusion experiments on Callovo–Oxfordian clay at Bure site. Phys Chem Earth 33:1000–1008

    Article  Google Scholar 

  • Soe AKK, Osada M, Takahashi M, Sasaki T (2009) Characterization of drying-induced deformation behaviour of Opalinus Clay and tuff in no-stress regime. Environ Geol 58:1215–1225

    Article  Google Scholar 

  • Soler JM, Samper J Yllera A et al (2008) The DI-B in situ diffusion experiment at Mont Terri: Results and modeling. Phys Chem Earth 33:S196–S207

    Article  Google Scholar 

  • Van Loon LR, Soler JM, Jakob A et al (2003) Effect of confining pressure on the diffusion of HTO, 36Cl– and 125I– in a layered argillaceous rock (Opalinus Clay): diffusion perpendicular to the fabric. Appl Geochem 18:1653–1662

    Article  Google Scholar 

  • Van Loon LR, Baeyens B, Bradbury MH (2005) Diffusion and retention of sodium and strontium in Opalinus clay: comparison of sorption data from diffusion and batch sorption measurements, and geochemical calculations. Appl Geochem 20:2351–2363

    Article  Google Scholar 

  • Van Rees KCJ, Sudicky EA, Rae PSC et al (1991) Evaluation of laboratory techniques for measuring diffusion coefficients in sediments. Environ Sci Technol 25:1605–1611

    Article  Google Scholar 

  • Verstricht J, Blümling P, Merceron T (2003) Repository concepts for nuclear waste disposal in clay formations. In: Myrvoll F (ed.) Field measurements in geomechanics. Proceedings of the 6th international symposium, Oslo, 15–18 September 2003. Swets & Zeilinger, The Lisse, pp 387–392

    Google Scholar 

  • Wersin P, Soler JM, Van Loon L (2008) Diffusion of HTO, \(\mathrm{Br}-,\ \mathrm{I}-,\ \mathrm{Cs}+,\ \mathrm{85Sr2}+\) and 60Co2 + in a clay formation: Results and modelling from an in situ experiment in Opalinus Clay. Appl Geochem 23:678–691

    Article  Google Scholar 

  • Wileveau Y, Bernier F (2008) Similarities in the hydromechanical response of Callovo-Oxfordian clay and Boom Clay during gallery excavation. Phys Chem Earth 33: S343–S349

    Article  Google Scholar 

  • Yllera A, Hernández A, Mingarro M (2004) DI-B experiment: planning, design and performance of an in situ diffusion experiment in the Opalinus Clay formation. Appl Clay Sci 26:181–196

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav G. Rumynin .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rumynin, V.G. (2011). Study of Physical, Mechanical, Flow, and Solute Transfer Properties of Clay Formations with Respect to the Design of Underground Storage Facilities for RW Disposal. In: Subsurface Solute Transport Models and Case Histories. Theory and Applications of Transport in Porous Media, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1306-2_22

Download citation

Publish with us

Policies and ethics