Advertisement

Development of Mechanism, Machine Science and Technology in Taiwan

  • Hong-Sen Yan
  • Zhang Hua Fong
  • Ying Chien Tsai
  • Cheng Kuo Sung
  • Jao Hwa Kuang
  • Chung Biau Tsay
  • Shyi Jeng Tsai
  • Dar Zen Chen
  • Tyng Liu
  • Jyh Jone Lee
  • Shuo Hung Chang
Chapter
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 1)

Abstract

We give a brief historical perspective of IFToMM China-Taipei activities in mechanism and machine science and its involvement in the IFToMM World Congress. The systematic generation of all possible mechanisms for required topological characteristics with design requirement and constraints was proposed by H. S. Yang in 1980 by the so-called “Methodology for the Conceptual Design of Mechanisms”. The gearing machines, such as CNC hobbing, shaving, grinding, and hypoid gear generator have been developed in Taiwan with aid of IFToMM China-Taipei community. For classification of geared mechanisms, a methodology is developed using concept of kinematic fractionation. Finally the tendon drive mechanism and nanometer positioning mechanism are included.

Keywords

Tooth Profile Spherical Joint Kinematic Structure Hypoid Gear Gear Hobbing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Authors acknowledge the support of the National Science Council, Taiwan.

References

  1. 1.
    Yan, H.S.: Creative Design of Mechanical Devices. Springer, Singapore (1998). ISBN 981-3083-57-3Google Scholar
  2. 2.
    Yan, H.S.: Reconstruction Designs of Lost Ancient Chinese Machinery. Springer, Netherlands (2007). ISBN 978-4020-6459-3zbMATHCrossRefGoogle Scholar
  3. 3.
    Harary, F., Yan, H.S.: Logical foundations of kinematic chains: graphs, lines graphs, and hypergraphs. ASME Trans. J. Mech. Des. 112(1), 79–83 (1990)CrossRefGoogle Scholar
  4. 4.
    Yan, H.S., Hwang, Y.W.: The specialization of mechanisms. Mech. Mach. Theory 26(6), 541–551 (1991)CrossRefGoogle Scholar
  5. 5.
    Yan, H.S.: A methodology for creative mechanism design. Mech. Mach. Theory 27(3), 235–242 (1992)CrossRefGoogle Scholar
  6. 6.
    Chen, F.C., Yan, H.S.: A methodology for the configuration synthesis of machining centers with automatic tool changer. ASME Trans. J. Mech. Des. 121(3), 359–367 (1999)CrossRefGoogle Scholar
  7. 7.
    Yan, H.S., Kuo, C.H.: Topological representation and characteristics of variable kinematic joints. ASME Trans. J. Mech. Des. 128(2), 384–391 (2006)CrossRefGoogle Scholar
  8. 8.
    Yan, H.S., Kang, C.H.: Configuration synthesis of mechanisms with variable topologies. Mech. Mach. Theory 44, 896–911 (2009)zbMATHCrossRefGoogle Scholar
  9. 9.
    Yan, H.S., Chen, C.W.: A systematic approach for the structural synthesis of differential-type South Pointing Chariots. JSME Int. J. C 49(3), 1–10 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Yan, H.S., Hsiao, K.H.: Reconstruction design of the lost seismoscope of ancient China. Mech. Mach. Theory 42, 1601–1617 (2007)zbMATHCrossRefGoogle Scholar
  11. 11.
    Shih, Y.-P., Fong, Z.-H.: Mathematical model for a universal face hobbing gypoid gear generator. Trans. ASME J. Mech. Des. 129, 38–47 (2007)CrossRefGoogle Scholar
  12. 12.
    Chen, D.-Z., Shieh, W.-B., Yeh, Y.-C.: Kinematic characteristics and classification of geared mechanism by the concept of kinematic fractionation. ASME J. Mech. Des. 130, 082602 (2008)CrossRefGoogle Scholar
  13. 13.
    Tsai, L.W., Lee, J.J.: Kinematic analysis for tendon-driven manipulators using graph theory. ASME J. Mech. Transm. Automation Des. 111(1), 59–65 (1989)CrossRefGoogle Scholar
  14. 14.
    Lee, J.J., Lee, Y.H.: Dynamic analysis of tendon-driven robotic mechanisms. J. Robot. Syst. 20(5), 229–238 (2003)zbMATHCrossRefGoogle Scholar
  15. 15.
    Lee, Y.H., Lee, J.J.: Modeling of the dynamics of tendon-driven robotic mechanisms with flexible tendons. Mech. Mach. Theory 38(12), 1431–1447 (2003)zbMATHCrossRefGoogle Scholar
  16. 16.
    Chang, S.L., Lee, J.J., Yen, H.C.: Kinematic and compliance analysis for tendon-driven robotic mechanisms with flexible tendons. Mech. Mach. Theory 40–6, 728–739 (2005)CrossRefGoogle Scholar
  17. 17.
    Lee, J.J., Tsai, L.W.: Structural synthesis of tendon-driven manipulators having pseudo-­triangular structure matrix. Int. J. Rob. Res. 10(3), 255–262 (1990)CrossRefGoogle Scholar
  18. 18.
    Sheu, J.-B., Huang, J.-J., Lee, J.J.: Kinematic synthesis of tendon-driven robotic manipulators using singular value decomposition. Robotica 28(1), 1–10 (2010)CrossRefGoogle Scholar
  19. 19.
    Lin, Y.-L., Liu, T.: A unified approach for the kinematic and force analysis of tendon-driven platform mechanisms. J. Appl. Mech. 20(3), 211–217 (2004)Google Scholar
  20. 20.
    Wu, T.L., Chen, J.H., Chang, S.H.: A six-DOF prismatic-spherical-spherical parallel compliant nanopositioner. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(12), 2544–2551 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Hong-Sen Yan
    • 1
  • Zhang Hua Fong
    • 2
  • Ying Chien Tsai
    • 3
  • Cheng Kuo Sung
    • 4
  • Jao Hwa Kuang
    • 5
  • Chung Biau Tsay
    • 6
  • Shyi Jeng Tsai
    • 7
  • Dar Zen Chen
    • 8
  • Tyng Liu
    • 8
  • Jyh Jone Lee
    • 8
  • Shuo Hung Chang
    • 9
  1. 1.National Cheng Kung UniversityTainanTaiwan
  2. 2.National Chung Cheng UniversityChiayiTaiwan
  3. 3.Cheng Shiu UniversityKaohsiungTaiwan
  4. 4.National Tsing Hua UniversityHsinchuTaiwan
  5. 5.National Sun Yat-Sen UniversityKaohsiungTaiwan
  6. 6.Minghsin UniversityHsinchuTaiwan
  7. 7.National Central UniversityJhongliTaiwan
  8. 8.National Taiwan UniversityTaipeiTaiwan
  9. 9.Department of Mechanical EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations