Some Recent Advances in Mechanisms and Robotics in China–Beijing

  • Tian Huang
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 1)


Mechanisms and robotics are two long-lasting and most popular areas in the community of mechanical science and engineering in China. On the basis of a brief review of the historical evolution of the fields and communities, this article reports some recent advances in mechanisms and robotics in China–Beijing, covering a wide range of topics closely in connection with theoretical developments and practical applications in terms of lower mobility parallel mechanisms, micro-robots and compliant mechanisms, metamorphic mechanisms, humanoid robots, dexterous hands, surgery robots, underwater vehicles and special service robots. The future challenges and trends in the fields are also addressed.


Humanoid Robot Underwater Vehicle Compliant Mechanism Flexure Hinge Recurrence Quantification Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to express appreciation to the colleagues who provided the valuable information included in this article. Alphabetically, they are:

Prof. X.L. Ding, Beijing University of Aeronautics and Astronautics

Prof. F. Gao, Shanghai Jiaotong University

Prof. Q. Huang, Beijing Institute of Technology

Prof. Z. Huang, Yanshan University

Prof. Z.X. Li, Hong Kong University of Science and Technology

Prof. H. Liu, Harbin Institute of Technology

Dr. X.J. Liu, Tsinghua University

Prof. L.N. Sun, Harbin Institute of Technology

Prof. M. Tan, Institute of Automation, Chinese Academy of Science

Prof. J.S. Wang, Tsinghua University

Prof. T.M. Wang, Beijing University of Aeronautics and Astronautics

Prof. S.X. Wang, Tianjin University

Prof. T.L. Yang, Nanjing Jinling Petrochemical Corporation

Prof. X. M. Zhang, South China University of Science and Technology

Prof. X.Y. Zhu, Shanghai Jiaotong University.


  1. 1.
    Huang, Z., Li, Q.C.: Type synthesis of symmetrical lower-mobility parallel mechanisms using constraint-synthesis method. Int. J. Robot. Res. 22(1), 59–79 (2003)Google Scholar
  2. 2.
    Huang, Z., Liu, J.F., Zeng, D.X.: A general methodology for mobility analysis of mechanisms based on constraint screw theory. Sci. China E 52(5), 1337–1347 (2009)zbMATHCrossRefGoogle Scholar
  3. 3.
    Huang, Z., Zhao, Y.S., Zhao, T.S.: Advanced Spatial Mechanism. Higher Education Press, Beijing (2006)Google Scholar
  4. 4.
    Yang, T.L.: Topology Structure Design of Robot Mechanisms. China Machine Press, Beijing (2004)Google Scholar
  5. 5.
    Meng, J., Liu, G.F., Li, Z.X.: A geometric theory for analysis and synthesis of sub-6 DOF parallel manipulators. IEEE Trans. Robot. 23(4), 625–649 (2007)CrossRefGoogle Scholar
  6. 6.
    Yu, F.G., Gao, F., Shi, Q.S.: Type synthesis for forging manipulators based on GF set. Chin. J. Mech. Eng. 44(2), 230–237 (2008)CrossRefGoogle Scholar
  7. 7.
    Gao, F., Li, W.M., Zhao, X.C., et al.: New kinematic structures for 2-, 3-, 4-, and 5-DOF parallel manipulator designs. Mech. Mach. Theory 37(11), 1395–1411 (2003)CrossRefGoogle Scholar
  8. 8.
    Huang, T., Liu, H.T., Chetwynd, D.G.: Generalized Jacobian analysis of lower mobility manipulators. Mech. Mach. Theory 46(6), 831–844 (2010)Google Scholar
  9. 9.
    Gao, F., Liu, X.J., Chen, X.: The relationships between the shapes of the workspaces and the link lengths of 3-DOF symmetrical planar parallel manipulators. Mech. Mach. Theory 36(2), 205–220 (2001)zbMATHCrossRefGoogle Scholar
  10. 10.
    Liu, X.J., Wang, Q.M., Wang, J.S.: Kinematics, dynamics and dimensional synthesis of a novel 2-DoF translational manipulator. J. Intell. Robot Syst. 41, 205–224 (2004)CrossRefGoogle Scholar
  11. 11.
    Liu, X.J., Wang, J.S.: A new methodology for optimal kinematic design of parallel mechanisms. Mech. Mach. Theory 41(10), 1210–1224 (2007)CrossRefGoogle Scholar
  12. 12.
    Liu, X.J., Wang, L.P., Xie, F.G., et al.: Design of a three-axis articulated tool head with parallel kinematics achieving desired motion/force transmission characteristics. ASME J. Manuf. Sci. Eng. 132(2), 021009-1-8 (2010)Google Scholar
  13. 13.
    Wu, C., Liu, X.J., Wang, L.P., et al.: Optimal design of spherical 5R parallel manipulators considering the motion/force transmissibility. ASME J. Mech. Des. 132(3), 031002-1–031002-10 (2010)CrossRefGoogle Scholar
  14. 14.
    Guo, W.Z., He, K., Du, Y.R.: A new type of controllable mechanical press: Motion control and experiment validation. ASME J. Manuf. Sci. Eng. 127(4), 731–742 (2005)CrossRefGoogle Scholar
  15. 15.
    Huang, T., Li, M., Li, Z.X., Chetwynd, D.G.: Conceptual design and dimensional synthesis of a novel 2-DOF translational parallel robot for pick-and-place operations. ASME J. Mech. Des. 126(3), 449–455 (2004)CrossRefGoogle Scholar
  16. 16.
    Liu, H.T., Huang, T., Mei, J.P., Zhao, X.M., Chetwynd, D.G.: Kinematic design of a 5-DOF hybrid robot with large workspace/limb stroke ratio. ASME J. Mech. Des. 129(5), 530–538 (2007)CrossRefGoogle Scholar
  17. 17.
    Dong, W., Sun, L.N., Du, Z.J.: Design of a precision compliant parallel positioner driven by dual piezoelectric actuators. Sens. Actuator A Phys. 135(1), 250–256 (2007)CrossRefGoogle Scholar
  18. 18.
    Chen, T., Chen, L.G., Sun, L.N., et al.: Design and fabrication of a four-arm-structure MEMS gripper. IEEE Trans. Ind. Electron. 56(4), 996–1004 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wang, H., Zhang, X.M.: Input coupling analysis and optimal design of a 3-DOF compliant micro-positioning stage. Mech. Mach. Theory 42(4), 400–410 (2008)CrossRefGoogle Scholar
  20. 20.
    Zhang, X.M., Hou, W.F.: Dynamic analysis of the precision compliant mechanisms considering thermal effect. Precis. Eng. 34(3), 592–606 (2010)CrossRefGoogle Scholar
  21. 21.
    Ding, X.L., Yang, Y.: Investigation of reconfiguration theory based on an assembly-circles artefact. In: Proceedings of ASME/IEEE International Conference on Reconfigurable Mechanisms and Robots (ReMAR 2009), UK, pp. 448–455 (2009)Google Scholar
  22. 22.
    Wei, G., Ding, X.L., Dai, J.S.: Mobility and geometric analysis of the Hoberman switch-pitch ball and its variant. ASME J. Mech. Robot. 2(5), 031010 (2010)Google Scholar
  23. 23.
    Huang, Q., Yokoi, K., Kajita, S., et al.: Planning walking pattern for a Biped robot. IEEE Trans. Robot. Automation 17(3), 280–289 (2001)CrossRefGoogle Scholar
  24. 24.
    Huang, Q., Nakamura, Y.: Sensory reflex control for humanoid walking. IEEE Trans. Robot. 21(5), 977–984 (2005)CrossRefGoogle Scholar
  25. 25.
    Huang, Q., Yu, Z.G., Zhang, W.M., et al.: Design and similarity evaluation on humanoid motion based on human motion capture. Robotica 28(5), 737–745 (2010)CrossRefGoogle Scholar
  26. 26.
    Li, J.W., Liu, H., Cai, H.G.: On computing three finger force-closure grasps of 2-D and 3-D objects. IEEE Trans. Robot. Automation 19(1), 155–161 (2003)CrossRefGoogle Scholar
  27. 27.
    Liu, H., Meusel, P., Hirzinger, G., et al.: The modular multisensory DLR-HIT-Hand: hardware and software architecture. IEEE ASME Trans. Mechatron. 13(4), 461–469 (2008)CrossRefGoogle Scholar
  28. 28.
    Liu, H., Meusel, P., Seitz, N., et al.: The modular multisensory DLR-HIT-Hand. Mech. Mach. Theory 42(5), 612–625 (2007)zbMATHCrossRefGoogle Scholar
  29. 29.
    Liu, D., Zhang, D.P., Wang, T.M.: Overview of the vascular interventional robot. Int. J. Med. Robot. 4, 289–294 (2008)Google Scholar
  30. 30.
    Li, J.M., Wang, S.X., Wang, X.F., He, C.: Optimization of a novel mechanism for a minimally invasive surgery robot. Int. J. Med. Rob. Comput. Assisted Surg. 6(1), 83–90 (2009)Google Scholar
  31. 31.
    Li, W., Wang, T.M., et al.: Fuzzy logic vorticity control of oscillating foil UUV. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), USA, pp. 1019–1024 (2009)Google Scholar
  32. 32.
    Wang, T.M., Li, W., Liang, J.H., et al.: Vorticity control of biomimetic robotic fish using flapping lunate tail based on St number. J. Bionic Eng. Accepted (2010)Google Scholar
  33. 33.
    Wu, J.G., Chen, C.Y., Wang, S.X.: Hydrodynamic effects of a shroud design for a hybrid-driven underwater glider. Sea Technol. Accepted (2010)Google Scholar
  34. 34.
    Fu, S.Y., Liang, Z.Z., Hou, Z.G., et al.: Vision based navigation for power transmission line inspection robot. In: Proceedings of IEEE International Conference on Cognitive Informatics (ICCI 2008), USA, pp. 411–417 (2008)Google Scholar
  35. 35.
    Wang, L.D., Wang, H.G., Fang, L.J.: Obstacle-navigation control of power transmission lines inspection robot. In: Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO 2007), China, vol. 2, pp. 706–711 (2007)Google Scholar
  36. 36.
    Wu, G.P., Xiao, X.H., Xiao, H., et al.: Motion planning of non-collision obstacles overcoming for hinge-voltage power transmission line inspection robot. Springer, pp. 1195–1205 (2008)Google Scholar
  37. 37.
    Cai, L., Liang, Z.Z., Hou, Z.G., et al.: Fuzzy control of the inspection robot for obstacle-negotiation. In: Proceedings of IEEE Conference on Networking, Sensing, and Control (ICNSC 2008), China, pp. 117–122 (2008)Google Scholar
  38. 38.
    Liang, Z.Z., Li, E., Tan, M.: Design and control for a tribrachiation mobile robot for the inspection of power transmission lines. In: Proceedings of International Conference on Instrumentation, Control and Information Technology(SICE 2005), Japan, pp. 504–509 (2005)Google Scholar
  39. 39.
    Li, Y.G., Liu, H.T., Zhao, X.M., Huang, T., Chetwynd, D.G.: Design of a 3-DOF PKM module for large structural component machining. Mech. Mach. Theory 45(6), 941–954 (2010)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Mechatronical EngineeringTianjin UniversityTianjinP.R. China

Personalised recommendations