Skip to main content

Membrane Crossover by Cell-Penetrating Peptides: Kinetics and Mechanisms – From Model to Cell Membrane Perturbation by Permeant Peptides

  • Chapter
  • First Online:
Intracellular Delivery

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 5))

Abstract

Membrane-active peptides are a large family endowed with a wide pattern of biological activities (antimicrobial, viral fusion and infection, cell-penetrating or protein-transduction domain), which share the property of interacting with membranes and being internalized in eukaryotic cells. Apart from pinocytosis internalization pathways, these peptides have the capacity to re-organize lipid membranes and to lead to membrane fusion, disruption or pore formation. In this chapter, we focus on these membrane perturbation processes evoked by cell-penetrating peptides that have been widely studied with membrane models and in cultured cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMP:

Antimicrobial Peptide

Antp:

antennapedia, homeoprotein

CHO:

chinese hamster ovary cells

CPP:

Cell-Penetrating Peptide

CS:

Chondroitin Sulphate

DOPC:

dioleoylphosphatidylcholine

DOPG:

dioleoylphosphatidylglycerol

DPPC:

dipalmitoyl phosphatidylcholine

DSC:

Differential Scanning Calorimetry

ESR:

Electron Spin Resonance spectroscopy

GUV:

Giant Unilamellar Vesicle

HS:

Heparan Sulphate

HSPG:

Heparan Sulphate ProteoGlycans

ITC:

Isothermal Titration Calorimetry

LUV:

Large Unilamellar Vesicle

MAP:

Membrane Active Peptide

NBD:

Nitrobenzo-2-oxa-1,3-diazole

NMR:

Nuclear Magnetic Resonance Spectroscopy

PEP-1:

hepatite C virus related peptide, SGSWLRDVWDWICTVLTDFK-TWLQSKLDYKD-NH2

P/L ratio:

peptide over lipid ratio

Transportan:

galanin/mastoparan chimeric peptide, GWTLNSAGYLLGKINLK-ALAALAKKIL-NH2

Tat:

Trans Activator of Transcription protein

Tat(46–58):

Tat derived peptide, GRKKRRQRRRPQ-NH2

References

  • Afonin S, Frey A, Bayerl S, Fischer D, Wadhwani P, Weinkauf S, Ulrich AS (2006) The cell-penetrating peptide TAT(48–60) induces a non-lamellar phase in DMPC membranes. Chemphyschem 7:2134–2142.

    PubMed  CAS  Google Scholar 

  • Alves ID, Goasdoué N, Correia I, Aubry S, Galanth C, Sagan, S, Lavielle S, Chassaing G (2008) Membrane interaction and perturbation mechanisms induced by two cationic cell penetrating peptides with distinct charge distribution. Biochim Biophys Acta. 1780:948–59.

    PubMed  CAS  Google Scholar 

  • Alves ID, Correia I, Jiao CY, Sachon E, Sagan S, Lavielle S, Tollin G, Chassaing G. (2009) The interaction of cell-penetrating peptides with lipid model systems and subsequent lipid reorganization: thermodynamic and structural characterization. J Pept Sci 15:200–209.

    PubMed  CAS  Google Scholar 

  • Alves ID, Jiao CY, Aubry S, Aussedat B, Burlina F, Chassaing G, Sagan S (2010) Cell biology meets biophysics to unveil the different mechanisms of penetratin internalization in cells. Biochim Biophys Acta. 2010 Feb 10. [Epub ahead of print]

    Google Scholar 

  • Amand HL, Fant K, Nordén B, Esbjörner EK (2008) Stimulated endocytosis in penetratin uptake: effect of arginine and lysine. Biochem Biophys Res Commun. 2008 Jul 11;371(4):621–5. Epub 2008 May 13

    PubMed  Google Scholar 

  • Aussedat B, Dupont E, Sagan S, Joliot A, Lavielle S, Chassaing G, Burlina F (2008) Modifications in the chemical structure of Trojan carriers: impact on cargo delivery, Chem. Commun. 12:1398–1400.

    Google Scholar 

  • Berlose JP, Convert O, Derossi D, Brunissen A, Chassaing G (1996) Conformational and associative behaviours of the third helix of antennapedia homeodomain in membrane-mimetic environments. Eur J Biochem 242:372–386.

    PubMed  CAS  Google Scholar 

  • Binder H, Lindblom G (2003) Charge-dependent translocation of the Trojan peptide penetratin across lipid membranes. Biophys J 85:982–995.

    PubMed  CAS  Google Scholar 

  • Brunet I, Di Nardo AA, Sonnier L, Beurdeley M, Prochiantz A (2007) The topological role of homeoproteins in the developing central nervous system. Trends Neurosci 6:260–267.

    Google Scholar 

  • Caesar CE, Esbjörner EK, Lincoln P, Nordén B (2006) Membrane interactions of cell-penetrating peptides probed by tryptophan fluorescence and dichroism techniques: correlations of structure to cellular uptake. Biochemistry 45:7682–7692.

    PubMed  CAS  Google Scholar 

  • Cahill K (2010) Molecular electroporation and the transduction of oligoarginines. Phys Biol 7:1–14

    Google Scholar 

  • Cheung JC, Kim Chiaw P, Deber CM, Bear CE (2009) A novel method for monitoring the cytosolic delivery of peptide cargo. J Control Release. 2009 Jul 1;137(1):2–7.

    PubMed  CAS  Google Scholar 

  • Christiaens B, Symoens S, Verheyden S, Engelborghs Y, Joliot A, Prochiantz A, Vandekerckhove J, Rosseneu M, Vanloo B (2002) Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes. Eur J Biochem 269:2918–2926.

    PubMed  CAS  Google Scholar 

  • Christiaens B, Grooten J, Reusens M, Joliot A, Goethals M, Vandekerckhove J, Prochiantz A, Rosseneu M (2004) Membrane interaction and cellular internalization of penetratin peptides. Eur. J. Biochem 271, 1187–1197.

    PubMed  CAS  Google Scholar 

  • Clayton AH, Atcliffe BW, Howlett GJ, Sawyer WH (2006) Conformation and orientation of penetratin in phospholipid membranes. J Pept Sci 12:233–238.

    PubMed  CAS  Google Scholar 

  • Curnow P, Mellor H, Stephens DJ, Lorch M, Booth PJ (2005) Translocation of the cell-­penetrating Tat peptide across artificial bilayers and into living cells. Biochem Soc Symp 72:199–209.

    PubMed  CAS  Google Scholar 

  • Dathe M, Schumann M, Wieprecht T, Winkler A, Beyermann M, Krause E, Matsuzaki K, Murase O, Bienert M (1996) Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry 35:12612–12622.

    PubMed  CAS  Google Scholar 

  • Delaroche D, Aussedat B, Aubry S, Chassaing G, Burlina F, Clodic G, Bolbach G, Lavielle S, Sagan S (2007) Tracking a new cell-penetrating (W/R) nonapeptide, through an enzyme-stable mass spectrometry reporter tag. Anal Chem 79:1932–1938.

    PubMed  CAS  Google Scholar 

  • Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–50.

    PubMed  CAS  Google Scholar 

  • Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A (1996) Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem 271 (1996) 18188–18193.

    PubMed  CAS  Google Scholar 

  • Deshayes S, Plenat T, Aldrian-Herrada G, Divita G, Le Grimellec C, Heitz F (2004) Primary amphipathic cell-penetrating peptides: structural requirements and interactions with model membranes. Biochemistry 43:7698–7706.

    PubMed  CAS  Google Scholar 

  • Deshayes S, Decaffmeyer M, Brasseur R, Thomas A (2008) Structural polymorphism of two CPP: an important parameter of activity. Biochim Biophys Acta 1778:1197–1205.

    Google Scholar 

  • Dietz GP, Bähr M (2004) Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci. 2:85–131.

    Google Scholar 

  • Drin G, Cottin S, Blanc E, Rees AR, Temsamani J. (2003) Studies on the internalization mechanism of cationic cell-penetrating peptides. J Biol Chem 278:31192–31201.

    PubMed  CAS  Google Scholar 

  • Duchardt F, Ruttekolk IR, Verdurmen WP, Lortat-Jacob H, Bürck J, Hufnagel H, Fischer R, van den Heuvel M, Löwik DW, Vuister GW, Ulrich A, de Waard M, Brock R (2009) A cell-penetrating peptide derived from human lactoferrin with conformation-dependent uptake efficiency. J Biol Chem 284:36099–36108.

    PubMed  CAS  Google Scholar 

  • El-Andaloussi S, Jarver P, Johansson HJ, Langel U (2007) Cargo-dependent cytotoxicity and delivery efficacy of cell-penetrating peptides: a comparative study, Biochem J 407: 285–292.

    PubMed  CAS  Google Scholar 

  • Eiríksdóttir E, Mäger I, Lehto T, El Andaloussi S, Langel U. (2010a) Cellular internalization kinetics of (luciferin-)cell-penetrating peptide conjugates. Bioconjug Chem. 21:1662–1672.

    PubMed  Google Scholar 

  • Eiríksdóttir E, Konate K, Langel U, Divita G, Deshayes S (2010b) Secondary structure of cell-penetrating peptides controls membrane interaction and insertion. Biochim Biophys Acta. 1798:1119–1128.

    PubMed  Google Scholar 

  • El-Andaloussi S, Johansson HJ, Holm T, Langel U (2004) A novel cell-penetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids. Mol Ther 15:1820–1826.

    Google Scholar 

  • Epand RF, Schmitt MA, Gellman SH, Epand RM (2006) Role of membrane lipids in the mechanism of bacterial species selective toxicity by two alpha/beta-antimicrobial peptides. Biochim Biophys Acta. 1758:1343–50.

    PubMed  CAS  Google Scholar 

  • Epand RM, Epand RF (2009) Lipid domains in bacterial membranes and the action of antimicrobial agents, Biochim Biophys Acta 1788:289–294.

    PubMed  CAS  Google Scholar 

  • Fischer R, Waizenegger T, Kohler K, Brock R (2002) A quantitative validation of fluorophore-labelled cell-permeable peptide conjugates: fluorophore and cargo dependence of import. Biochim Biophys Acta 1564, 365–374.

    PubMed  CAS  Google Scholar 

  • Fuchs SM, Raines RT (2004) Pathway for polyarginine entry into mammalian cells. Biochemistry 43:2438–2444.

    PubMed  CAS  Google Scholar 

  • Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery, J. Biol. Chem 276:5836–5840.

    PubMed  CAS  Google Scholar 

  • Ghibaudi E, Boscolo B, Inserra G, Laurenti E, Traversa S, Barbero L, Ferrari RP (2005) The interaction of the cell-penetrating peptide penetratin with heparin, heparansulfates and phospholipid vesicles investigated by ESR spectroscopy. J Pept Sci. 11:401–409.

    PubMed  CAS  Google Scholar 

  • Goncalves E, Kitas E, Seelig J (2005) Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide. Biochemistry 44:2692–2702.

    PubMed  CAS  Google Scholar 

  • Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI (1988) Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim Biophys Acta 940:275–87.

    PubMed  CAS  Google Scholar 

  • Hallbrink M, Floren A, Elmquist A, Pooga M, Bartfai T, Langel U (2001) Cargo delivery kinetics of cell-penetrating peptides, Biochim. Biophys. Acta 1515:101–109.

    PubMed  CAS  Google Scholar 

  • Hansen M, Kilk K, Langel U (2008) Predicting cell-penetrating peptides. Adv Drug Deliv Rev 60(4–5):572–579.

    PubMed  CAS  Google Scholar 

  • Henriques ST, Costa J, Castanho MA (2005) Translocation of beta-galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles and human HeLa cells is driven by membrane electrostatic potential. Biochemistry 44:10189–10198.

    PubMed  Google Scholar 

  • Henriques ST, Castanho MA, Pattenden LK, Aguilar MI (2010) Fast membrane association is a crucial factor in the peptide pep-1 translocation mechanism: a kinetic study followed by surface plasmon resonance. Biopolymers 94:314–322.

    PubMed  CAS  Google Scholar 

  • Herce HD, Garcia AE (2007) Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes. Proc Natl Acad Sci USA. 104:20805–10.

    PubMed  CAS  Google Scholar 

  • Herce HD, Garcia AE, Litt J, Kane RS, Martin P, Enrique N, Rebolledo A, Milesi V (2009) Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell penetrating peptides. Biophys J 97:1917–1925.

    PubMed  CAS  Google Scholar 

  • Hitz T, Iten R, Gardiner J, Namoto K, Walde P, Seebach D (2006) Interaction of alpha-and beta-oligoarginine-acids and amides with anionic lipid vesicles: a mechanistic and thermodynamic study. Biochemistry 45:5817–5829.

    PubMed  CAS  Google Scholar 

  • Ivanov AI (2008) Pharmacological inhibition of endocytic pathways: is it specific enough to be useful? Methods Mol Biol 440:15–33.

    PubMed  CAS  Google Scholar 

  • Jiao CY, Delaroche D, Burlina F, Alves ID, Chassaing G, Sagan S (2009) Translocation and endocytosis for cell-penetrating peptide internalization. J Biol Chem 284:33957–33965.

    PubMed  CAS  Google Scholar 

  • Joanne P, Galanth C, Goasdoué N, Nicolas P, Sagan S, Lavielle S, Chassaing G, El Amri C, Alves ID (2009) Lipid reorganization induced by membrane-active peptides probed using differential scanning calorimetry. Biochim Biophys Acta 1788:1772–81.

    PubMed  CAS  Google Scholar 

  • Joliot A, Triller A, Volovitch M, Pernelle C, Prochiantz A (1991) alpha-2,8-Polysialic acid is the neuronal surface receptor of antennapedia homeobox peptide. New Biol 3:1121–1134.

    PubMed  CAS  Google Scholar 

  • Joliot A, Prochiantz A (2008) Homeoproteins as natural Penetratin cargoes with signaling properties. Adv Drug Deliv Rev 60: 608–613.

    PubMed  CAS  Google Scholar 

  • Jones SW, Christison R, Bundell K, Voyce CJ, Brockbank SM, Newham P, Lindsay MA (2005) Characterisation of cell-penetrating peptide-mediated peptide delivery. Br J Pharmacol, 145, 1093–1102.

    PubMed  CAS  Google Scholar 

  • Jones LR, Goun EA, Shinde R, Rothbard JB, Contag CH, Wender PA (2006) Releasable luciferin-transporter conjugates: tools for the real-time analysis of cellular uptake and release. J Am Chem Soc 128:6526–6527.

    PubMed  CAS  Google Scholar 

  • Jones AT (2007) J Cell Mol Med 11:670–684. Macropinocytosis: searching for an endocytic identity and role in the uptake of cell penetrating peptides.

    PubMed  CAS  Google Scholar 

  • Kichler A, Mason AJ, Bechinger B (2006) Cationic amphipathic histidine rich peptides for gene delivery. Biochim Biophys Acta 1758:301–307.

    PubMed  CAS  Google Scholar 

  • Lamaziere A, Burlina F, Wolf C, Chassaing G, Trugnan G and Ayala-Sanmartin J (2007) Non-metabolic membrane tubulation and permeability induced by bioactive peptides. PLoS ONE 2:e201.

    PubMed  Google Scholar 

  • Lee HL, Dubikovskaya EA, Hwang H, Semyonov AN, Wang H, Jones LR, Twieg RJ, Moerner WE, Wender PA. (2008) Single-molecule motions of oligoarginine transporter conjugates on the plasma membrane of Chinese hamster ovary cells. J Am Chem Soc. 130:9364–9370.

    PubMed  CAS  Google Scholar 

  • Le Roux I, Joliot AH, Bloch-Gallego E, Prochiantz A, Volovitch M (1993) Neurotrophic activity of the Antennapedia homeodomain depends on its specific DNA-binding properties. Proc Natl Acad Sci U S A. 90:9120–9124.

    PubMed  Google Scholar 

  • Letoha T, Gaál S, Somlai C, Czajlik A, Perczel A, Penke B (2003) Membrane translocation of penetratin and its derivatives in different cell lines. J Mol Recognit 16:272–279.

    PubMed  CAS  Google Scholar 

  • Lindberg M, Biverståhl H, Gräslund A, Mäler L (2003) Structure and positioning comparison of two variants of penetratin in two different membrane mimicking systems by NMR. Eur J Biochem 270:3055–3063.

    PubMed  CAS  Google Scholar 

  • Lindgren M, Hallbrink M, Prochiantz A, Langel U (2000) Cell-penetrating peptides. Trends Pharmcol Sci 21:99–103.

    CAS  Google Scholar 

  • Magzoub M, Kilk K, Eriksson LE, Langel U, Graslund A (2001) Interaction and structure induction of cell-penetrating peptides in the presence of phospholipid vesicles. Biochim Biophys Acta 1512:77–89.

    PubMed  CAS  Google Scholar 

  • Magzoub M, Eriksson LE, Graslund A (2002) Conformational states of the cell-penetrating peptide penetratin when interacting with phospholipid vesicles: effects of surface charge and peptide concentration. Biochim. Biophys. Acta1563, 53–63.

    PubMed  CAS  Google Scholar 

  • Maiolo JR, Ferrer M, Ottinger EA (2005) Effects of cargo molecules on the cellular uptake of arginine-rich cell-penetrating peptides, Biochim Biophys Acta 1712: 161–172.

    PubMed  CAS  Google Scholar 

  • Manning GS, Bresler EH, Wendt RP (1969) Irreversible Thermodynamics and Flow across Membranes. Science 166:1438.

    PubMed  CAS  Google Scholar 

  • Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB (2000) Polyarginine enters cells more efficiently than other polycationic homopolymers, J. Pept. Res. 56:318–325.

    PubMed  CAS  Google Scholar 

  • Morris MC, Depollier J, Mery J, Heitz F, Divita G (2001) A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol. 19:1173–1176.

    PubMed  CAS  Google Scholar 

  • Morris MC, Deshayes S, Heitz F, Divita G (2008) Cell-penetrating peptides: from molecular mechanisms to therapeutics. Biol Cell 100:201–217.

    PubMed  CAS  Google Scholar 

  • Mueller J, Kretzschmar I, Volkmer R, Boisguerin P (2008) Bioconjug Chem 19:2363–2374. Comparison of cellular uptake using 22 CPPs in 4 different cell lines.

    PubMed  CAS  Google Scholar 

  • Nakase I, Niwa M, Takeuchi T, Sonomura K, Kawabata N, Koike Y, Takehashi M, Tanaka S, Ueda K, Simpson JC, Jones AT, Sugiura Y, Futaki S (2004) Cellular uptake of arginine-rich peptides: Roles for macropinocytosis and actin rearrangement. Mol Ther 10:1011–1022.

    PubMed  CAS  Google Scholar 

  • Nakase I, Tadokoro A, Kawabata N, Takeuchi T, Katoh H, Hiramoto K, Negishi M, Nomizu M, Sugiura Y, Futaki S (2007) Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis Biochemistry 46:492–501.

    PubMed  CAS  Google Scholar 

  • Nakase I, Takeuchi T, Tanaka G, Futaki S (2008) Methodological and cellular aspects that govern the internalization mechanisms of arginine-rich cell-penetrating peptides. Adv Drug Deliv Rev 60:598–607.

    PubMed  CAS  Google Scholar 

  • Nishihara M, Perret F, Takeuchi T, Futaki S, Lazar AN, Coleman AW, Sakai N, Matile S (2005) Arginine magic with new counterions up the sleeve. Org Biomol Chem. 3:1659–1669.

    PubMed  CAS  Google Scholar 

  • Palm-Apergi C, Lorents A, Padari K, Pooga M, Hällbrink M (2009) The membrane repair response masks membrane disturbances caused by cell-penetrating peptide uptake. FASEB J. 23:214–223.

    PubMed  CAS  Google Scholar 

  • Polyansky A A, Volynsky PE, Arseniev AS, Efremov RG (2009) Adaptation of a membrane-active peptide to heterogeneous environment. I. Structural plasticity of the peptide. J Phys Chem B 113:1107–1119.

    PubMed  CAS  Google Scholar 

  • Pooga M, Hallbrink M, Zorko M, Langel U (1998) Cell penetration by transportan. FASEB J 12:67–77.

    Google Scholar 

  • Prochiantz A (2008) Protein and peptide transduction, twenty years later a happy birthday. Adv Drug Deliv Rev. 2008 Mar 1;60(4–5):448–51.

    PubMed  CAS  Google Scholar 

  • Prochiantz A, Joliot A. (2003) Can transcription factors function as cell-cell signalling molecules? Nat Rev Mol Cell Biol 10:814–819.

    Google Scholar 

  • Pujals S, Fernández-Carneado J, López-Iglesias C, Kogan MJ, Giralt E (2006) Mechanistic aspects of CPP-mediated intracellular drug delivery: relevance of CPP self-assembly. Biochim Biophys Acta. 1758:264–279.

    PubMed  CAS  Google Scholar 

  • Ram N, Aroui S, Jaumain E, Bichraoui H, Mabrouk K, Ronjat M, Lortat-Jacob H, De Waard M (2008) Direct peptide interaction with surface glycosaminoglycans contributes to the cell penetration of maurocalcine. J Biol Chem 283:24274–24284.

    PubMed  CAS  Google Scholar 

  • Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) Cell-penetrating Peptides – A reevaluation of the mechanism of uptake. J Biol Chem 278:585–590.

    PubMed  CAS  Google Scholar 

  • Rothbard JB, Jessop TC, Lewis RS, Murray BA, Wender PA (2004) Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. J Am Chem Soc 126:9506–9507.

    PubMed  CAS  Google Scholar 

  • Rothbard JB, Jessop TC, Wender PA (2005) Adaptive translocation: the role of hydrogen bonding and membrane potential in the uptake of guanidinium-rich transporters into cells. Adv Drug Deliv Rev 57:495– 504.

    PubMed  CAS  Google Scholar 

  • Roux M, Neumann JM, Bloom M, Devaux PF (1988) 2 H and 31P NMR study of pentalysine interaction with headgroup deuterated phosphatidylcholine and phosphatidylserine. Eur Biophys J 16:267–273.

    PubMed  CAS  Google Scholar 

  • Roux M, Neumann JM, Hodges RS, Devaux PF, Bloom M (1989) Conformational changes of phospholipid headgroups induced by a cationic integral membrane peptide as seen by deuterium magnetic resonance. Biochemistry 28:2313–2321.

    PubMed  CAS  Google Scholar 

  • Sakai N, Matile S (2003) Anion-mediated transfer of polyarginine across liquid and bilayer membranes. J Am Chem Soc 125:14348–14356.

    PubMed  CAS  Google Scholar 

  • Salamon Z, Lindblom G, Tollin G (2003) Plasmon-waveguide resonance and impedance spectroscopy studies of the interaction between penetratin and supported lipid bilayer membranes. Biophys J 84:1796–1807.

    PubMed  CAS  Google Scholar 

  • Sawant R, Torchilin V (2010) Intracellular transduction using cell-penetrating peptides. Mol Biosyst 6:628–640.

    PubMed  CAS  Google Scholar 

  • Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta. 1462:55–70.

    PubMed  CAS  Google Scholar 

  • Siegel DP (1993) Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. Biophysical Journal 65:2124–2140.

    PubMed  CAS  Google Scholar 

  • Su Y, Mani R, Doherty T, Waring AJ, Hong M (2008) Reversible sheet-turn conformational change of a cell-penetrating peptide in lipid bilayers studied by solid-state NMR J Mol Biol 381:1133–1144.

    PubMed  CAS  Google Scholar 

  • Takeuchi T, Kosuge M, Tadokoro A, Sugiura Y, Nishi M, Kawata M, Sakai N, Matile S, Futaki S (2006) Direct and rapid cytosolic delivery using cell-penetrating peptides mediated by pyrenebutyrate ACS Chem Biol. 1:299–303.

    PubMed  CAS  Google Scholar 

  • Tassetto M, Maizel A, Osorio J, Joliot A (2005) Plant and animal homeodomains use convergent mechanisms for intercellular transfer, EMBO Rep 6:885–890.

    PubMed  CAS  Google Scholar 

  • Ter-Avetisyan G, Tünnemann G, Nowak D, Nitschke M, Herrmann A, Drab M, Cardoso MC (2009) Cell entry of arginine-rich peptides is independent of endocytosis. J Biol Chem 284:3370–3378.

    Google Scholar 

  • Terrone D, Sang SL, Roudaia L, Silvius JR (2003) Penetratin and related cell-penetrating cationic peptides can translocate across lipid bilayers in the presence of a transbilayer potential. Biochemistry 42:13787–13799.

    PubMed  CAS  Google Scholar 

  • Thoren PE, Persson D, Karlsson M, Norden B (2000) The antennapedia peptide penetratin translocates across lipid bilayers — the first direct observation. FEBS Lett 482:265–268.

    PubMed  CAS  Google Scholar 

  • Thoren PE, Persson D, Lincoln P, Norden B (2005) Membrane destabilizing properties of cell-penetrating peptides. Biophys. Chem. 114:169–179.

    PubMed  CAS  Google Scholar 

  • Tiriveedhi V, Butko P (2007) A fluorescence spectroscopy study on the interactions of the TAT-PTD peptide with model lipid membranes. Biochemistry 46: 3888–3895.

    PubMed  CAS  Google Scholar 

  • Verdurmen WPR, Thanos M, Ruttekolk IR, Gulbins E, Brock R (2010) Cationic cell-penetrating peptides induce ceramide formation via acid sphingomyelinase: Implications for uptake. J Control Release 147:171–179.

    PubMed  CAS  Google Scholar 

  • Vives E, Brodin P, Lebleu BA (1997) truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017.

    PubMed  CAS  Google Scholar 

  • Wadia JS, Stan RV, Dowdy SF (2004) Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 10:310–315.

    PubMed  CAS  Google Scholar 

  • Walter C, Ott I, Gust R, Neundorf I (2009) Specific Labeling With Potent Radiolabels Alters the Uptake of Cell-Penetrating Peptides. Biopolymers 92:445–451.

    Google Scholar 

  • Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB (2001) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: Peptoid molecular transporters. Proc Nat Acad Sci 97:13003–13008.

    Google Scholar 

  • Wender PA, Galliher WC, Goun EA, Jones LR, Pillow TH (2008) The design of guanidinium-rich transporters and their internalization mechanisms. Adv Drug Deliv Rev 60:452–72.

    PubMed  CAS  Google Scholar 

  • Weeks BS, Lieberman DM, Johnson B, Roque E, Green M, Loewenstein P, Oldfield EH, Kleinman HK (1995) Neurotoxicity of the human-immunodeficiency-virus type-1 TAT transactivator to PC12 cells requires the Tat amino-acid-49-58 basic domain. J Neurosci Res 42:34–40.

    PubMed  CAS  Google Scholar 

  • Wieprecht T, Beyermann M, Seelig J (2002) Thermodynamics of the coil alpha-helix transition of amphipathic peptides in a membrane environment: the role of vesicle curvature. Biophys Chem 96:191–201.

    PubMed  CAS  Google Scholar 

  • Ye J, Fox SA, Cudic M, Rezler EM, Lauer JL, Fields GB, Terentis AC (2010) Determination of penetratin secondary structure in live cells with Raman microscopy. J Am Chem Soc 132:980–988.

    PubMed  CAS  Google Scholar 

  • Yesylevskyy S, Marrink SJ, Mark AE (2009) Alternative mechanisms for the interaction of the cell-penetrating peptides penetratin and the TAT peptide with lipid bilayers. Biophys J. 97:40–9.

    PubMed  CAS  Google Scholar 

  • Ziegler A, Seelig J (2004) Interaction of the protein transduction domain of HIV-1 TAT with heparan sulfate: binding mechanism and thermodynamic parameters. Biophys J. 86:254–63.

    PubMed  CAS  Google Scholar 

  • Zimm BH, Le Bret M (1983) Counter-ion condensation and system dimensionality. J Biomol Struct Dyn 1:461–471.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandrine Sagan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Alves, I.D., Rodriguez, N., Cribier, S., Sagan, S. (2011). Membrane Crossover by Cell-Penetrating Peptides: Kinetics and Mechanisms – From Model to Cell Membrane Perturbation by Permeant Peptides. In: Prokop, A. (eds) Intracellular Delivery. Fundamental Biomedical Technologies, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1248-5_7

Download citation

Publish with us

Policies and ethics