Skip to main content

Magnetic Nanoparticles for Biomedicine

  • Chapter
  • First Online:
Intracellular Delivery

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 5))


Biocompatible materials exhibiting different types of response to external magnetic field have already found many important applications in various areas of biosciences, biotechnology, medicine, environmental technology etc. In most cases they can be described as composite materials, where the magnetic properties are caused by the presence of iron oxides nano- or microparticles. Such materials can be efficiently separated from difficult-to-handle samples and targeted to the desired place, applied as contrast agents for magnetic resonance imaging or used to generate heat during exposure to alternating magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  • Aguilar-Arteaga, K., Rodriguez, J.A., and Barrado, E. (2010). Magnetic solids in analytical chemistry: A review. Anal. Chim. Acta 674, 157–165.

    Article  PubMed  CAS  Google Scholar 

  • Arakaki, A., Nakazawa, H., Nemoto, M., Mori, T., and Matsunaga, T. (2008). Formation of magnetite by bacteria and its application. J. Royal Soc. Interface 5, 977–999.

    Article  CAS  Google Scholar 

  • Arruebo, M., Fernandez-Pacheco, R., Ibarra, M.R., and Santamaria, J. (2007). Magnetic nanoparticles for drug delivery. Nano Today 2, 22–32.

    Article  Google Scholar 

  • Berensmeier, S. (2006). Magnetic particles for the separation and purification of nucleic acids. Appl. Microbiol. Biotechnol. 73, 495–504.

    Article  PubMed  CAS  Google Scholar 

  • Berger, P., Adelman, N.B., Beckman, K.J., Campbell, D.J., Ellis, A.B., and Lisensky, G.C. (1999). Preparation and properties of an aqueous ferrofluid. J. Chem. Educ. 76, 943–948.

    Article  CAS  Google Scholar 

  • Cai, W., and Wan, J.Q. (2007). Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J. Colloid Interface Sci. 305, 366–370.

    Article  PubMed  CAS  Google Scholar 

  • Fonnum, G., Johansson, C., Molteberg, A., Morup, S., and Aksnes, E. (2005). Characterisation of Dynabeads (R) by magnetization measurements and Mossbauer spectroscopy. J. Magn. Magn. Mater. 293, 41–47.

    Article  CAS  Google Scholar 

  • Goya, G.F., Grazu, V., and Ibarra, M.R. (2008). Magnetic nanoparticles for cancer therapy. Curr. Nanosci. 4, 1–16.

    Article  CAS  Google Scholar 

  • Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L.V., and Muller, R.N. (2008). Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110.

    Article  PubMed  CAS  Google Scholar 

  • Lin, C.R., Chu, Y.M., and Wang, S.C. (2006). Magnetic properties of magnetite nanoparticles prepared by mechanochemical reaction. Mater. Lett. 60, 447–450.

    Article  CAS  Google Scholar 

  • Lockman, P.R., Mumper, R.J., Khan, M.A., and Allen, D.D. (2002). Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Devel. Ind. Pharm. 28, 1–13.

    Article  CAS  Google Scholar 

  • Molday, R.S., and Mackenzie, D. (1982). Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. J. Immunol. Methods 52, 353–367.

    Article  PubMed  CAS  Google Scholar 

  • Plank, C., Schillinger, U., Scherer, F., Bergemann, C., Remy, J.S., Krotz, F., Anton, M., Lausier, J., and Rosenecker, J. (2003). The magnetofection method: Using magnetic force to enhance gene delivery. Biol. Chem. 384, 737–747.

    Article  PubMed  CAS  Google Scholar 

  • Šafařík, I., and Šafaříková, M. (1999). Use of magnetic techniques for the isolation of cells. J. Chromatogr. B 722, 33–53.

    Article  Google Scholar 

  • Šafařík, I., and Šafaříková, M. (2004). Magnetic techniques for the isolation and purification of proteins and peptides. BioMagn Res Technol 2, Article No. 7.

    Google Scholar 

  • Safarik, I., and Safarikova, M. (2009a). Magnetic nano- and microparticles in biotechnology. Chem. Papers 63, 497–505.

    Article  CAS  Google Scholar 

  • Safarik, I., and Safarikova, M. (2009b). Magnetically responsive nonocomposite materials for bioapplications. Solid State Phenomena 151, 88–94.

    Article  CAS  Google Scholar 

  • Šafaříková, M., and Šafařík, I. (1999). Magnetic solid-phase extraction. J. Magn. Magn. Mater. 194, 108–112.

    Article  Google Scholar 

  • Salazar-Alvarez, G., Muhammed, M., and Zagorodni, A.A. (2006). Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem. Eng. Sci. 61, 4625–4633.

    Article  CAS  Google Scholar 

  • Scherer, F., Anton, M., Schillinger, U., Henkel, J., Bergemann, C., Kruger, A., Gansbacher, B., and Plank, C. (2002). Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther. 9, 102–109.

    Article  PubMed  CAS  Google Scholar 

  • Syková, E., and Jendelová, P. (2005). Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord. Ann. N. Y. Acad. Sci. 1049, 146–160.

    Article  PubMed  Google Scholar 

  • Vatta, L.L., Sanderson, R.D., and Koch, K.R. (2006). Magnetic nanoparticles: Properties and potential applications. Pure Appl. Chem. 78, 1793–1801.

    Article  CAS  Google Scholar 

  • Zheng, B.Z., Zhang, M.H., Xiao, D., Jin, Y., and Choi, M.M.F. (2010). Fast microwave synthesis of Fe3O4 and Fe3O4/Ag magnetic nanoparticles using Fe2+ as precursor. Inorg. Mater. 46, 1106–1111.

    Article  CAS  Google Scholar 

Download references


This research was supported by the Ministry of Education of the Czech Republic (projects OC 157 – Action COST 868 and OC 09052 – Action COST MP0701), by the Ministry of Industry and Trade of the Czech Republic (Project No. 2A-1TP1/094), and by the Research Aim of the Institute of Systems Biology and Ecology (AV0Z60870520).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ivo Šafařík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Šafařík, I., Horská, K., Šafaříková, M. (2011). Magnetic Nanoparticles for Biomedicine. In: Prokop, A. (eds) Intracellular Delivery. Fundamental Biomedical Technologies, vol 5. Springer, Dordrecht.

Download citation

Publish with us

Policies and ethics