Advertisement

Environmental and Human Health Issues of Silver Nanoparticles Applications

  • Renat R. Khaydarov
  • Rashid A. Khaydarov
  • Svetlana Evgrafova
  • Stefanie Wagner
  • Seung Y. Cho
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

The significant growth in applications of silver nanoparticles across ­various branches of industry as well as in consumer products has caused concerns that nanosilver may have a toxic effect on the environment and human health and may have implications for eco-terorism. This paper presents research on antimicrobial effects of silver nanoparticles. We studied the cytotoxicity of silver nanoparticles via an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium-bromid) assay that measures cell activity through the mitochondrial cleavage of a molecule that exhibits a change of colour that can be measured spectrophotometrically. NIH-3T3 (Swiss mouse embryo), HEP-G2 (human hepatocellular carcinoma), A-549 (human lung carcinoma), PC-12 (rat adrenal pheochromocytoma), and Colo-320 (human colon adenocarcinoma) cells were chosen in order to study different possible absorption paths of nanoparticles into the organism and various areas of particle accumulation in the body. The obtained MTT test results have shown that silver nanoparticles with concentrations of ∼1–10 ppm entering the body from air or liquid suspensions can present a potential risk to human health.

Keywords

Silver Nanoparticle Bacteria Fungi Nanosilver Cytotoxicity Consumer product Nanomaterial Environment Human health 

References

  1. 1.
    ACGIH (1991) Documentation of the threshold limit values and biological exposure indices, 6th edn. American Conference of Governmental Industrial Hygienists, CincinnatiGoogle Scholar
  2. 2.
    Allsopp M, Walters A, Santillo D (2007) Nanotechnologies and nanomaterials in electrical and electronic goods: a review of uses and health concerns, Greenpeace Research Laboratories Technical Note 09/2007Google Scholar
  3. 3.
    Braydich-Stolle L, Hussain S, Schlager J, Hofmann M-C (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88(2):412–419CrossRefGoogle Scholar
  4. 4.
    Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71CrossRefGoogle Scholar
  5. 5.
    Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12CrossRefGoogle Scholar
  6. 6.
    Chopra I (2007) The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern. J Antimicrob Chemother 59:587–590CrossRefGoogle Scholar
  7. 7.
    Donaldson K, Stone V, Clouter A, Renwick L, MacNee W (2001) Ultrafine particles. Occup Environ Med 3:211–216CrossRefGoogle Scholar
  8. 8.
    Estrin Y, Khaydarov RR, Khaydarov RA, Gapurova O, Cho S, Scheper T, Endres C (2008) CD-Proceedings of 2008 international conference on nanoscience and nanotechnology, 25–29 Feb 2008, Melbourne, Victoria, AustraliaGoogle Scholar
  9. 9.
    Grodzik M, Sawosz E (2006) The influence of silver nanoparticles on chicken embryo development and bursa of Fabricius morphology. J Anim Feed Sci 15(Suppl 1):111–114Google Scholar
  10. 10.
    Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983CrossRefGoogle Scholar
  11. 11.
    Khaydarov RA, Khaydarov RR, Olsen RL, Rogers SE (2004) Water disinfection using electrolytically generated silver, copper and gold ions. J Water Supply RT Aqua 53:567–572Google Scholar
  12. 12.
    Khaydarov RR, Khaydarov RA, Gapurova O, Estrin Y, Scheper T (2008) Electrochemical method of synthesis of silver nanoparticles. J Nanopart Res. doi: 10.1007/s11051-008-9513-x Google Scholar
  13. 13.
    Khaydarov RA, Khaydarov RR, Estrin Y, Evgrafova S, Cho S, Scheper T, Endres C (2009) Silver nanoparticles: environmental and human health impacts. In: Nanomaterials: risk and benefits. Springer, Dordrecht, pp 287–299CrossRefGoogle Scholar
  14. 14.
    Khaydarov RA, Khaydarov RR, Gapurova O, Estrin Y (2010) A novel method of continuous fabrication of aqueous dispersions of silver nanoparticles. Int J Nanoparticles 3:77–91CrossRefGoogle Scholar
  15. 15.
    Lee HJ, Jeong SH (2005) Bacteriostasis and skin innoxiousness of nanosize silver colloids on textile fabrics. Text Res J 75:551–556CrossRefGoogle Scholar
  16. 16.
    Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49CrossRefGoogle Scholar
  17. 17.
    Li P, Li J, Wu C, Wu Q, Li J (2005) Synergistic antibacterial effects of blactam antibiotic combined with silver nanoparticles. Nanotechnology 16:1912–1917CrossRefGoogle Scholar
  18. 18.
    Lok CN, Ho CM, Chen R et al (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12:527–534CrossRefGoogle Scholar
  19. 19.
    Morones JR, Elechiguerra JL, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRefGoogle Scholar
  20. 20.
    Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40(22):4128–4158CrossRefGoogle Scholar
  21. 21.
    Oberdörster G et al (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8CrossRefGoogle Scholar
  22. 22.
    Panyala NR, Peña-Méndez EM, Havel J (2008) Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed 6:117–129Google Scholar
  23. 23.
    Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18(1):89–108CrossRefGoogle Scholar
  24. 24.
    Smith IC, Carson BL (1977) Trace metals in the environment, vol 2—Silver. Ann Arbor Science, Ann ArborGoogle Scholar
  25. 25.
    Soete DD, Gijbels R, Hoste J (1972) Neutron activation analysis. Wiley Interscience, New YorkGoogle Scholar
  26. 26.
    Soto KF, Carrasco A, Powell TG et al (2005) Comparative in vitro cytotoxicity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopy. J Nanopart Res 7:145–169CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Renat R. Khaydarov
    • 1
  • Rashid A. Khaydarov
    • 1
  • Svetlana Evgrafova
    • 2
  • Stefanie Wagner
    • 3
  • Seung Y. Cho
    • 4
  1. 1.Institute of Nuclear PhysicsTashkentUzbekistan
  2. 2.V.N. Sukachev Institute of Forest SB RASKrasnoyarskRussia
  3. 3.Institute of Technical ChemistryGottfried-Wilhelm-Leibniz UniversityHannoverGermany
  4. 4.Department of Environmental EngineeringYonsei UniversityWonjuSouth Korea

Personalised recommendations