Skip to main content

Emergence of the Science and Technology of Electroactivated Aqueous Solutions: Applications for Environmental and Food Safety

  • Conference paper
  • First Online:
Environmental Security and Ecoterrorism

Abstract

Although the first attempts to apply electrolyzed aqueous solutions for water disinfection were performed in Russia in the late nineteenth century, the deficiencies in construction of electrolyzers and stability of electrodes did not allow for their broad practical use. The developments in technology and design led to applications of electrolyzed aqueous solutions in the former USSR starting from the 1960s. At present, this technology is being developed in numerous countries around the world. It is reflected in an increased number of publications in peer-reviewed journals and other information sources. Moreover, a number of companies were established to pursue commercialization of the technology. The possibility of their use as power disinfectants of potable water and swimming pools, bactericidal agents for disinfection and sterilization of living tissues, materials, medical and food processing equipment, etc. have been demonstrated in various trials. However, the broader application of the technology is hindered by the lack of profound theoretical and experimental studies of production of electroactivated aqueous solutions and the mechanisms of their activity. In particular, the interrelation between technological and constructional characteristics of the apparatus and functional properties of produced solutions is most poorly understood. We offer an array of figures-of-merit allowing a fair comparison between the electrolyzers of different design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anonymous (1999) Electrochemical activation in medicine, agriculture, and industry. Procee­dings of the 2nd international symposium, Moscow

    Google Scholar 

  2. Anonymous (1998) Cleaning and disinfection of equipment for gastrointestinal endoscopy. Report of a working party of the British Society of Gastroenterology Endoscopy Committee. Gut 42:585–593

    Article  Google Scholar 

  3. Anonymous (2010) Puricore. Pure science. Pure life. http://www.puricore.com/. Accessed 2 June 2010

  4. Aoki H, Nakamori M, Aoto N et al (1994) Wafer treatment using electrolysis-ionized water. Jp J Appl Phys 10:5686–5689

    Article  Google Scholar 

  5. Bahir V (1996) Electrochemical activation: a strategy for creation of environmentally benign technologies. Activated Water Moscow 1:1–7

    Google Scholar 

  6. Balakhnin IA, Davydov ON, Kurovskaya LY (1994) The influence of Katolyt on the quantity of carp’s ectoparasites. Gidrobiologicheskii Zh 30:83–86

    Google Scholar 

  7. Basha CA, Bhadrinarayana NS, Anantharaman N et al (2008) Heavy metal removal from copper smelting effluent using electrochemical cylindrical flow reactor. J Hazard Mater 152:71–78

    Article  Google Scholar 

  8. Bazaz’ian AG, Kozlovskaia LA, Zakharova TB et al (1998) Prophylactic disinfection of railway stations and cars by using electrolytic sodium hypochlorite. Gig Sanit 3:37–39

    Google Scholar 

  9. Bird R, Stewart V, Lightfoot E (1974) Yavlenia perenosa. Khimiya, Moscow

    Google Scholar 

  10. Cherkinskii SN, Laskina VP, Petranovskaia MR et al (1980) Hygienic evaluation of the method of water disinfection by direct electrolysis. Gig Sanit 11:72–73

    Google Scholar 

  11. Chizmadjev YuA, Markin VS, Tarasevich MR et al (1971) Macrokinetics of processes in porous media. Nauka, Moscow

    Google Scholar 

  12. Cooke P (1999) Treatment of biofilm on marine seismographic equipment. Radical Waters (PTY) Ltd Patent WO/1999/IB99/01697(WO/024432A1)

    Google Scholar 

  13. Davydov ON, Kurovskaya LY, Balakhnin IA (1997) Influence of catholyte on the activity of enzymes from carp eggs and embryos. Dopovidi Nat Akad Nauk Ukrayiny 4:164–168

    Google Scholar 

  14. Gutknecht J, Hartmann F, Kirmair N et al (1981) Anodic oxidation as a water disinfecting process in food plants and breweries. GIT Fachz Lab 25:472–481

    CAS  Google Scholar 

  15. Hata G, Uemura M, Weine FS et al (1996) Removal of smear layer in the root canal using oxidative potential water. J Endod 22:643–645

    Article  CAS  Google Scholar 

  16. Hayashi H (2009) Why drink alkaline ionized water? http://www.ionizers.org/water.html. Accessed 31 May 2010

  17. Hayashi H (1995) Water, the chemistry of life. Part IV. Explore! 6:28–31

    Google Scholar 

  18. Hayashi H, Kumon K, Nl Y et al (1997) Successful treatment of mediastinitis after cardiovascular surgery using electrolyzed strong acid aqueous solution. Artif Organs 21:39–42

    Article  CAS  Google Scholar 

  19. Hinze GT (1999) Bactericidal treatment of sausage casings. Radical Waters (PTY) Ltd. Patent WO/1999/IB99/01695(WO/024265A1) 1–14

    Google Scholar 

  20. Hitomi S, Baba S, Yano H et al (1998) Antimicrobial effects of electrolytic products of sodium chloride – comparative evaluation with sodium hypochlorite solution and efficacy in handwashing. Kansenshogaku Zasshi 72:1176–1181

    CAS  Google Scholar 

  21. Horiba N, Hiratsuka K, Onoe T et al (1999) Bactericidal effect of electrolyzed neutral water on bacteria isolated from infected root canals. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 87:83–87

    Article  CAS  Google Scholar 

  22. Hotta K (2000) Electrolytic functional water and healthy life. Nippon Nogeikagaku Kaishi J Jpn Soc Biosci Biotechnol Agrochemistry 74:795–798

    CAS  Google Scholar 

  23. Inoue Y, Endo S, Kondo K et al (1997) Trial of electrolyzed strong acid aqueous solution lavage in the treatment of peritonitis and intraperitoneal abscess. Artif Organs 21:28–31

    Article  CAS  Google Scholar 

  24. Ioirish AN, Artem’ev ET, Mazanko AF et al (1990) ELMA-1 electrochemical apparatus for making sodium hypochlorite solutions: use in medical institutions. Biomed Eng 24:85–87

    Article  Google Scholar 

  25. Ito K, Nishida T, Murai S (1996) Inhibitory effects of acid water prepared by an electrolysis apparatus on early plaque formation on specimens of dentine. J Clin Periodontol 23:471–476

    Article  CAS  Google Scholar 

  26. Iwasawa A, Nakamura Y (1996) Bactericidal effect of acidic electrolyzed water–comparison of chemical acidic sodium hydrochloride (NaOCl) solution. Kansenshogaku Zasshi 70:915–922

    CAS  Google Scholar 

  27. Izumi H (1999) Electrolyzed water as a disinfectant for fresh-cut vegetables. J Food Prot 64:536–539

    CAS  Google Scholar 

  28. Kim C, Hung YC, Brackett RE (2000) Roles of oxidation-reduction potential in electrolyzed oxidizing and chemically modified water for the inactivation of food-related pathogens. J Food Prot 63:19–24

    CAS  Google Scholar 

  29. Kirpichnikov PA, Bakhir VM, Hamer PU et al (1986) On the nature of electrochemical activation of media. Dokl Acad Nauk USSR Russ 286:663–667

    CAS  Google Scholar 

  30. Kloss AI (1988) Electron-radical dissociation and mechanism of water activation. Dokl Acad Nauk USSR Russ 303:1403–1406

    CAS  Google Scholar 

  31. Kreysa G (1985) Performance criteria and nomenclature in electrochemical engineering. J Appl Electrochem 15:175–179

    Article  CAS  Google Scholar 

  32. Kreysa G (1981) Normalized space velocity – a new figure of merit for waste water electrolysis cells. Electrochim Acta 26:1693–1694

    Article  CAS  Google Scholar 

  33. Kumon K (1997) What is functional water? Artif Organs 21:2–4

    Article  CAS  Google Scholar 

  34. Lelianov AD, Grachev AM, Sergienko VI et al (1991) The use of an electrolytic solution of sodium hypochlorite in acute suppurative diseases of the soft tissues. Klin Khir 12:16–19

    Google Scholar 

  35. Lysyi AE, Anchishkina LM, Suslova VN et al (1993) Effectiveness of an electrolysis unit for decontamination of biologically purified sewage waters. Gig Sanit 2:19–20

    Google Scholar 

  36. Middleton AM, Chadwick MV, Sanderson JL et al (2000) Comparison of a solution of super-oxidized water (Sterilox) with glutaraldehyde for the disinfection of bronchoscopes, contaminated in vitro with Mycobacterium tuberculosis and Mycobacterium avium-intracellulare in sputum. J Hosp Infect 45:278–282

    Article  CAS  Google Scholar 

  37. Miroshnikov AI (1998) Inhibition of growth of E. coli cells by anolites of sodium and potassium chloride after processing solutions in a diaphragmatic electrolyzer. Biofizika 43:1032–1036

    CAS  Google Scholar 

  38. Miyamoto M, Inoue K, Hoki M et al (1998) Effect of “acidic oxidative potential water” on microbial contamination harvesting porcine pancreas for islet xenotransplantation. Transplant Proc 30:3431–3432

    Article  CAS  Google Scholar 

  39. Morita C, Sano K, Morimatsu S et al (2000) Disinfection potential of electrolyzed solutions containing sodium chloride at low concentrations. J Virol Meth 85:163–174

    Article  CAS  Google Scholar 

  40. Nakae H, Inaba H (2000) Effectiveness of electrolyzed oxidized water irrigation in a burn-wound infection model. J Trauma 49:511–514

    Article  CAS  Google Scholar 

  41. Nelson D (2000) Newer technologies for endoscope disinfection: electrolyzed acid water and disposable-component endoscope systems. Gastrointest Endosc Clin N Am 10:319–328

    CAS  Google Scholar 

  42. Nikulin VA (1977) Use of an electrolyzed sodium chloride solution for disinfection in therapeutic and prophylactic institutions. Sov Med 12:105–108

    Google Scholar 

  43. Nishida T (1997) The effect of oxidizing water on metallic restorations in the mouth: in vitro reduction behavior of oxidizing water. J Nihon Univ Sch Dent 39:38–48

    CAS  Google Scholar 

  44. Ogino H, Ueda Y, Sugita T et al (2000) Treatment for abdominal aortic graft infection: irrigation with electrolyzed strong aqueous acid, in-situ grafting, and omentoplasty. Thorac Cardiovasc Surg 48:43–44

    Article  CAS  Google Scholar 

  45. Petrosian EA (1993) Sodium hypochlorite in the treatment of suppurative peritonitis. Vestn Khir Im II Grek 150:18–21

    CAS  Google Scholar 

  46. Petrushanko IYu, Lobyshev VI (2001) Nonequilibrium state of electrochemically activated water and its bilogical activity. Biofizika 46:389–401

    CAS  Google Scholar 

  47. Prilutskii VI and Bakhir VM (1997) Electrochemically activated water: anomalous characteristics, mechanisms of biological action. Nauka, Moscow

    Google Scholar 

  48. Prilutskii VI, Bakhir VM, Popov AI (1996) The disinfection of water, water-supply systems, tanks and pools by using an electrochemically activated solution of a neutral anolyte. Vopr Kurortol Fizioter Lech Fiz Kult 4:31–32

    Google Scholar 

  49. Raghu S, Basha CA (2007) Electrochemical treatment of procion black 5B using cylindrical flow reactor – A pilot plant study. J Hazard Mat B139:381–390

    Article  Google Scholar 

  50. Ross TK, Wragg AA (1965) Electrochemical mass transfer studies in annuli. Electrochim Acta 10:1093–1106

    Article  CAS  Google Scholar 

  51. Sasai-Takedatsu M, Kojima T, Yamamoto A et al (1997) Reduction of Staphylococcus aureus in atopic skin lesions with acid electrolytic water-a new therapeutic strategy for atopic dermatitis. Allergy 52:1012–1016

    Article  CAS  Google Scholar 

  52. Sato T, Tanaka T, Ohya H (1989) Bactericidal effect of an electrodialysis system on E. coli cells. Bioelectrochem Bioenerg 21:47–54

    Article  CAS  Google Scholar 

  53. Schwab H, Strauch D, Muller W (1975) Hygienic differentiation of technical processes in handling liquid drug. 2. Examination of the Electro-M process using laboratory standards. Berl Münch Tierärztl Wochenschr 88:148–151

    CAS  Google Scholar 

  54. Sekiya S, Ohmori K, Harii K (1997) Treatment of infectious skin defects or ulcers with electrolyzed strong acid aqueous solution. Artif Organs 21:32–38

    Article  CAS  Google Scholar 

  55. Selkon JB, Babb JR, Morris R (1999) Evaluation of the antimicrobial activity of a new super-oxidized water, Sterilox, for the disinfection of endoscopes. J Hosp Infect 41:59–70

    Article  CAS  Google Scholar 

  56. Sergunina LA (1968) An effective method of electrolysis for decontamination of drinking water. Gig Sanit 33:16–21

    CAS  Google Scholar 

  57. Shiba A, Ozeki M, Takizawa H (1996) Is it possible for electrolyzed acid water to be applied to the dental region? J Showa Univ Dent Soc 16:457–464

    Google Scholar 

  58. Shimizu Y, Furusawa T, Mizunuma K et al (1994) Disinfectant action of electrolyzed oxidizing water to dental instruments and finger. J Dent Med 40:905–911

    Google Scholar 

  59. Shimmura S, Matsumoto K, Yaguchi H et al (2000) Acidic electrolysed water in the disinfection of the ocular surface. Exp Eye Res 70:1–6

    Article  CAS  Google Scholar 

  60. Shirahata S, Kabayama S, Nakano M (1997) Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage. Biochem Biophys Res Commun 234:269–274

    Article  CAS  Google Scholar 

  61. Shura-Bura BL, Gritsenko VK (1968) Substantiation of the rationale of the use of electrolyzed sea water for disinfection. Voen Med Zh 7:47–51

    CAS  Google Scholar 

  62. Stoner GE, Cahen GL, Sachyani M, Gileady E (1982) The mechanism of low frequency a.c. electrochemical disinfection. Bioelectrochem Bioenerg 9:229–243

    Article  CAS  Google Scholar 

  63. Tanaka H, Hirakata Y, Kaku M et al (1996) Antimicrobial activity of superoxidized water. J Hosp Infect 34:43–49

    Article  CAS  Google Scholar 

  64. Tanaka N, Fujisawa T, Daimon T et al (1999) The cleaning and disinfecting of hemodialysis equipment using electrolyzed strong acid aqueous solution. Artif Organs 23:303–309

    Article  CAS  Google Scholar 

  65. Tanaka N, Fujisawa T, Daimon T et al (1999) The effect of electrolyzed strong acid aqueous solution on hemodialysis equipment. Artif Organs 23:1055–1062

    Article  CAS  Google Scholar 

  66. Tsuji S, Kawano S, Oshita M et al (1999) Endoscope disinfection using acidic electrolytic water. Endoscopy 31:528–535

    Article  CAS  Google Scholar 

  67. Usviatsov BI, Kirillichev AI, Voronina LG (1997) The suppressive action of a magnetic-laser ray and of an electrolytic solution of sodium hypochlorite on the factors of causative agent persistence. Zh Mikrobiol Epidemiol Immunobiol 4:102–105

    Google Scholar 

  68. Venkitanarayanan KS, Ezeike GO, Hung YC et al (1999) Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on plastic kitchen cutting boards by electrolyzed oxidizing water. J Food Prot 62:857–860

    CAS  Google Scholar 

  69. Walsh FS (2001) Electrochemical technology for environmental treatment and clean energy conversion. Pure Appl Chem 73:1819–1837

    Article  CAS  Google Scholar 

  70. Walsh FS, Reade G (1994) Design and performance of electrochemical reactors for efficient synthesis and environmental treatment. Part 1. Electrode geometry and figures of merit. Analyst 119:791–796

    Article  CAS  Google Scholar 

  71. Watanabe T, Kishikawa Y, Shirai W (1997) Influence of alkaline ionized water on rat erythrocyte hexokinase activity and myocardium. J Toxicol Sci 22:141–152

    CAS  Google Scholar 

  72. Wilk IJ, Altmann RS, Berg JD (1987) Antimicrobial activity of electrolyzed saline solutions. Sci Total Environ 63:191–197

    Article  CAS  Google Scholar 

  73. Yang Z, Li Y, Slavik MF (1999) Antibacterial efficacy of electrochemically activated solution for poultry spraying and chilling. J Food Sci 64:469–472

    Article  CAS  Google Scholar 

  74. Zahn M (1979) Electromagnetic field theory: a problem solving approach. John Wiley & Sons, New York

    Google Scholar 

  75. Zinkevich V, Beech IB, Tapper R et al (2000) The effect of super-oxidized water on Escherichia coli. J Hosp Infect 46:153–156

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena N. Gnatko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Gnatko, E.N., Kravets, V.I., Leschenko, E.V., Omelchenko, A. (2011). Emergence of the Science and Technology of Electroactivated Aqueous Solutions: Applications for Environmental and Food Safety. In: Alpas, H., Berkowicz, S., Ermakova, I. (eds) Environmental Security and Ecoterrorism. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1235-5_8

Download citation

Publish with us

Policies and ethics