Ion Beams for Materials Engineering—An Overview

  • D. K. Avasthi
  • G. K. Mehta
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 145)


Nuclear accelerators have provided revolutionary advances in several disciplines. Starting with the reputation of atom smashers which demonstrated that atoms are not indivisible they provided facilities to explore nuclear properties. The exploration went from macroworld into femto and beyond with fantastic developments in nuclear accelerator technology. Then came a period where the word nuclear became a serious suspect, and the nomenclature changed from nuclear to particle accelerator. The accelerators continue to accelerate the technology in multi-dimensions. Until sixties, these accelerators were dedicated to research in nuclear and particle physics. Research using beams from particle accelerators has told us almost everything we know about the basic building blocks of matter, and about nature’s fundamental forces. Efforts are now on to recreate conditions that have not occurred since shortly after the Big Bang. Accelerators unravel nature’s deepest mysteries. They are central to the effort to unravel the mysteries of dark matter and dark energy.


Collision Cascade Elastic Recoil Detection Analysis Nuclear Energy Loss Ripple Wavelength Differential Energy Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Cook, Nature Materials, 5 (2006) 77.ADSGoogle Scholar
  2. 2.
    M.K. Patel, D.K. Avasthi, P.K. Kulriya, S. Kailas, J.C. Pivin, A.K. Tyagi and V. Vijayakumar, Nucl. Instr. and Meth.,, B 268 (2010) 42.ADSGoogle Scholar
  3. 3.
    3. M.K. Patel, V. Vijayakumar, D.K. Avasthi, S. Kailas, J.C. Pivin, V. Grover, B.P. Mandal and A.K. Tyagi, Nucl. Instr. and Meth., B 266 (2008) 2898.ADSGoogle Scholar
  4. 4.
    A. Sarkar, P. Mukherjee and P. Barat, Journal of Nuclear Materials, 372 (2008) 285.ADSGoogle Scholar
  5. 5.
    W.K. Chu, J.W. Mayer and M.-A. Nicolet, “Backscattering Spectrometry”. Academic Press, New York (1978).Google Scholar
  6. 6.
    L.C. Feldman, J.W. Meyer and S.T. Picraux, “Materials Analysis by Ion Channeling”. Academic Press, New York (1982).Google Scholar
  7. 7.
    A.K. Jain, V.N. Kulkarni, K.B. Nambiar, D.K. Sood, S.C.L. Sharma and P. Mazzoldi, Radiation Effects and Defects in Solids, 63 (1982) 175.Google Scholar
  8. 8.
    J. L’Ecuyer, C. Brassard, C. Cardinal and B. Terraeault, Nucl. Instr. and Meth., 149 (1978) 271.Google Scholar
  9. 9.
    T. Som, S. Dhar, N. Banerji, K. Ramakrishnan and V.N. Kulkarni, Bull. Mater. Sci., 19 (1996) 73.Google Scholar
  10. 10.
    D.K. Avasthi and W. Assmann, Current Science, 80 (2001) 1532.Google Scholar
  11. 11.
    D.K. Avasthi, D. Kabiraj, A. Bhagwat, G.K. Mehta, V.D. Vankar and S.B. Ogale, Nucl. Instr. and Meth., B 93 (1994) 480.ADSGoogle Scholar
  12. 12.
    D.K. Avasthi, S. Hui, E.T. Subramaniyam and B.R. Mehta, Vacuum, 47 (1996) 1061.Google Scholar
  13. 13.
    V.N. Kulkarni, V.K. Jain and A.K. Shukla, Machining Science and Technology, 9 (2005) 289.Google Scholar
  14. 14.
    D.K. Avasthi, W. Assmann, H. Huber, H.D. Mieskes and H. Nolte, Nucl. Instr. and Meth., B 142 (1998) 117.ADSGoogle Scholar
  15. 15.
    T.B. Johansson, R. Akselsson and S.A.E. Johansson, Nucl. Instr. and Meth., 84 (1970) 141.ADSGoogle Scholar
  16. 16.
    K.M. Varier, G.K. Mehta and S. Sen, Phys. News, 11 (1980) 1.Google Scholar
  17. 17.
    K.M. Varier, G.K. Mehta and S. Sen, Nucl. Instr. and Meth., 181 (1981) 217.ADSGoogle Scholar
  18. 18.
    S. Sen, K.M. Varier, G.K. Mehta, M.S. Rao, P. Sen and N. Panigrahi, Nucl. Instr. and Meth.,181 (1981) 517.ADSGoogle Scholar
  19. 19.
    P. Sen, N. Panigrahi, M.S. Rao, K.M. Varier, S. Sen and G.K. Mehta, Journal of Forensic Sciences, JFSCA, 27 (1982) 330.Google Scholar
  20. 20.
    K.M. Varier, A.K. Nayak and G.K. Mehta, IEEE Trans. on Nucl. Science, NS30 (1983) 1316.ADSGoogle Scholar
  21. 21.
    A.K. Nayak, K.M. Varier and G.K. Mehta, Indian Mining and Engineering Journal (1983) 5.Google Scholar
  22. 22.
    H.C. Barshilia, Somna Sah, B.R. Mehta, V.D. Vankar, D.K. Avasthi, Jaipal and G.K. Mehta, Thin Solid Film, 258 (1995) 123.ADSGoogle Scholar
  23. 23.
    N. Dilawar, S. Sah, B.R. Mehta, V.D. Vankar, D.K. Avasthi and G.K. Mehta, Vacuum, 47 (1996) 1269.Google Scholar
  24. 24.
    Amit Kumar, D.K. Avasthi, A. Tripathi, D. Kabiraj, F. Singh and J.C. Pivin, J. Appl. Phys., 101 (2007) 014308.ADSGoogle Scholar
  25. 25.
    Amit Kumar, D.K. Avasthi, A. Tripathi, L.D. Filip, J.D. Carey and J.C. Pivin, J. Appl. Phys., 102 (2007) 044305.ADSGoogle Scholar
  26. 26.
    D.K. Avasthi, Hyperfine Interactions, 160 (2005) 95.ADSGoogle Scholar
  27. 27.
    Y.K. Mishra, D.K. Avasthi, P.K. Kulriya, F. Singh, D. Kabiraj, A. Tripathi, J.C. Pivin, I.S. Bayer and A. Biswa, Appl. Phys. Lett., 90 (2007) 073110.ADSGoogle Scholar
  28. 28.
    Y.K. Mishra, F. Singh, D.K. Avasthi, J.C. Pivin, D. Malinovska and E. Pippel, Appl. Phys. Lett., 91 (2007) 063103.ADSGoogle Scholar
  29. 29.
    D.K. Avasthi, Y.K. Mishra, F. Singh and J.P. Stoquert, Nucl. Instr. and Meth., B268 (2010) 3027.ADSGoogle Scholar
  30. 30.
    S.G. Kaplan, M. Chen, H.D. Drew, M. Rajeswari, R. Liu, T. Venkatesan, D. Kanjilal, L. Senapati and G.K. Mehta, Physica, C32 (1994) 174.ADSGoogle Scholar
  31. 31.
    S.E. Lofland, S.M. Bhagat, M. Rajeshwari, T. Venkatesan, D. Kanjilal, L. Senapati and G.K. Mehta, Phys. Rev., B 51 (1995) 8489.ADSGoogle Scholar
  32. 32.
    32. A.K. Pradhan, S.B. Roy, P. Chaddah, D. Kanjilal, C. Chen and B.M. Wanklyn, Phys. Rev., B 53 (1996) 2269.ADSGoogle Scholar
  33. 33.
    E. Akcoltekin, T. Peters, R. Meyer, A. Duvenbeck, M. Klusmann, I. Monnet, H. Lebius and M. Schleberger, Nature Nanotechnology, 2 (2007) 290.ADSGoogle Scholar
  34. 34.
    Basavaraj Angadi, Y.S. Jung, Won-Kook Choi, Ravi Kumar, K. Jeong, S.W. Shin, J.H. Lee, J.H. Song, M. Wasi Khan and J.P. Srivastava, Appl. Phys. Lett., 88 (2006) 142502.ADSGoogle Scholar
  35. 35.
    H. Bernas, J-Ph. Attane, K.-H. Heinig, D. Halley, D. Ravelosona, A. Marty, P. Auric, C. Chappert and Y. Samson, Phys. Rev. Lett., 91 (2003) 77203.ADSGoogle Scholar
  36. 36.
    J. Fassbender, A. Mücklich, K. Potzger and W. Möller, Nucl. Instr. and Meth., B 248 (2006) 343.ADSGoogle Scholar
  37. 37.
    F.Z. Cui and Z.S. Luo, Surface and Coating Technology, 112 (1999) 278.Google Scholar
  38. 38.
    B. Pignataro, E. Conte, A. Scandurra and G. Marletta, Biomaterials, 18 (1997) 1461.Google Scholar
  39. 39.
    Engineering Foundation Conference, 253 (2003) 1124.Google Scholar
  40. 40.
    H. Koizumi, T. Ichikawa, Mitsumasa Taguchi, Yasuhiko Kobayashi and Hideki Namba, Nucl. Instr. and Meth., B 206 (2003) 1124.ADSGoogle Scholar
  41. 41.
    M.T. Pham, W. Matz, H. Reuther, E. Richter, G. Steiner and S. Oswald, Surface and Coating Technology, 128–129 (2000) 313.Google Scholar
  42. 42.
    H.A. Atwater and A. Pollman, Nature Materials, 9 (2010) 205.ADSGoogle Scholar
  43. 43.
    R.J. Hemley, G.W. Crablree and M.V. Buchanan, Physics Today (Nov 2009) 32.Google Scholar
  44. 44.
    J.S. Williams, R.G. Elliman, W.L. Brown and T.E. Seidel, Phys. Rev. Lett., 55 (1985) 1482.ADSGoogle Scholar
  45. 45.
    P.K. Sahoo, T. Som, D. Kanjilal and V.N. Kulkarni, Nucl. Instr. and Meth., B 240 (2005) 239.ADSGoogle Scholar
  46. 46.
    P. Sigmund, Phys. Rev., 184 (1969) 383.ADSGoogle Scholar
  47. 47.
    R. Behrisch and Wolfgang Eckstein (Eds), Sputtering by Particle Bombardment, Springer 1991.Google Scholar
  48. 48.
    T. Neidhart, F. Pichler, F. Aumayr, H.P. Winter, M. Schmid and P. Varga, Phys. Rev. Lett., 74 (1995) 5280.ADSGoogle Scholar
  49. 49.
    J. Kulik, G.D. Lempert, E. Grossman, D. Marton, J.W. Rabalais and Y. Lifsitz, Phys. Rev., B 52 (1995) 15812.ADSGoogle Scholar
  50. 50.
    O.M. Kuttel, P. Groening, R.G. Agostino and L. Schlapbach, J. Vacuum Sci. Techn. A: Vacuum, Surface and Films, 13 (1995) 2848.ADSGoogle Scholar
  51. 51.
    W. Ensinger, M. Barth, H. Martin, A. Schröer, B. Enders, R. Emmerich and G.K. Wolf, Rev. Sci. Instr., 63 (1992) 2393.ADSGoogle Scholar
  52. 52.
    F. Alvarez, N.M. Victoria, P. Hammer, F.L. Freire, Jr and M.C. dos Santos, Appl. Phys. Lett., 73 (1998) 1065.ADSGoogle Scholar
  53. 53.
    V.M. Jiménez, J.P. Espinós, A. Caballero, L. Contreras, A. Fernández, A. Justo and A.R. González-Elipe, Thin Solid Film, 353 (1999) 113.ADSGoogle Scholar
  54. 54.
    S.K. Tripathi, N. Shukla and V.N. Kulkarni, Nanotechnology, 20 (2009) 075304.ADSGoogle Scholar
  55. 55.
    D.K. Avasthi, Y.K. Mishra, D. Kabiraj, N.P. Lalla and J.C. Pivin, Nanotechnology, 18 (2007) 125604.ADSGoogle Scholar
  56. 56.
    Y.K. Mishra, S. Mohapatra, D.K. Avasthi, D. Kabiraj, N.P. Lalla, J.C. Pivin, H. Sharma, R. Kar and N. Singh, Nanotechnology, 18 (2007) 345606.Google Scholar
  57. 57.
    Kapil U. Joshi, D. Kabiraj, A.M. Narsale, D.K. Avasthi, T.N. Warang and D.C. Kothari, Surface and Coating Technology, 203 (2009) 2497.Google Scholar
  58. 58.
    K. Zhao, R.S. Averback and David G. Cahill, Appl. Phys. Lett., 89 (2009) 053103.ADSGoogle Scholar
  59. 59.
    S. Amirthapandian, F. Schuchart and W. Bolse, Rev. Sci. Instr., 81 (2010) 033702.ADSGoogle Scholar
  60. 60.
    Q. Cai, Brad Ledden, Eric Krueger, Jene A. Golovchenko and Jiali Li, J. Appl. Phys., 100 (2006) 24914.Google Scholar
  61. 61.
    Jiali Li, Derek Stein, Ciaran McMullan, Daniel Branton, Michael J. Aziz and Jene A. Golovchenko, Nature, 412 (2001) 166.ADSGoogle Scholar
  62. 62.
    T. Som, S. Bhargava, M. Malhotra, H.D. Bisht, V.N. Kulkarni and S. Kumar, Appl. Phys. Lett., 72 (1998) 3014.ADSGoogle Scholar
  63. 63.
    M. Bruel, Nucl. Instr. and Meth., B 108 (1996) 313.ADSGoogle Scholar
  64. 64.
    X.Q. Feng and Y. Huang, Int. J. Solid Struct., 41: 16–17 (2004) 4299.Google Scholar
  65. 65.
    M. Nastasi and J.W. Mayer, Materials Science and Engineering, R12 (1994) 1.Google Scholar
  66. 66.
    S.K. Srivastava, D.K. Avasthi, W. Assmann, Z.G. Wang, H. Kucal, E. Jacquet, H.D. Carstanien and M. Toulemonde, Phys. Rev., B 71 (2005) 193405.ADSGoogle Scholar
  67. 67.
    Sarvesh Kumar, P.K. Sahoo, R.S. Chauhan, D. Kabiraj, Umesh Tiwari, D. Varma and D.K. Avasthi, Nucl. Instr. and Meth., B 212 (2003) 238.ADSGoogle Scholar
  68. 68.
    G.K. Mehta, Nucl. Instr. and Meth., A 382 (1996) 335.ADSGoogle Scholar
  69. 69.
    Amitabh Jain, S. Loganathan, Jaipal, D. Kanjilal and G.K Mehta, Vacuum, 46 (1995) 369.Google Scholar
  70. 70.
    A. Gupta, A. Paul and D.K. Avasthi, J. Phys Cond. Matt., 10 (1998) 9669.ADSGoogle Scholar
  71. 71.
    S.T. Chavan, P.S. Bhave, Bhoraskar and D. Kanjilal, J. Appl. Phys., 78 (1995) 2328.ADSGoogle Scholar
  72. 72.
    P.S. Bhave and V.N. Bhoraskar, Nucl. Instr. and Meth., B 127 (1997) 383.ADSGoogle Scholar
  73. 73.
    N. Dilawar, R. Kapil, V.D. Vankar, D.K. Avasthi, D. Kabiraj and G.K. Mehta, Thin Solid Films, 305 (1997) 88.ADSGoogle Scholar
  74. 74.
    S. Klaumuenzer, Ming-dong Hou and G. Schumacher, Phys. Rev. Lett., 57 (1986) 850.ADSGoogle Scholar
  75. 75.
    H. Dammak, A. Dunlop, D. Lesueur, A. Brunnelle, S. Della-Negra and Y. Le Beyec, Phys. Rev. Lett., 74 (1995) 1135.ADSGoogle Scholar
  76. 76.
    J. Nakata, Phys. Rev., B 60 (1999) 2747.ADSGoogle Scholar
  77. 77.
    A. Biswas, R. Gupta, N. Kumar, D.K. Avasthi, J.P. Singh, S. Lotha, D. Fink, S.N. Paul and S.K. Bose, Appl. Phys. Lett., 78 (2001) 4136.ADSGoogle Scholar
  78. 78.
    A. Kumar, D.K. Avasthi, J.C. Pivin and P.M. Koinrkaor, Appl. Phys. Lett., 92 (2008) 221904.ADSGoogle Scholar
  79. 79.
    A. Benyagoub, Eur. Phys. J., B 34 (2003) 395.ADSGoogle Scholar
  80. 80.
    A. Benyagoub, Nucl. Instr. and Meth., B 245 (2006) 225.ADSGoogle Scholar
  81. 81.
    H. Rath, P. Dash, T. Som, P.V. Satyam, U.P. Singh, P.K. Kulriya, D. Kanjilal, D.K. Avasthi and N.C. Mishra, J. Appl. Phys., 105 (2009) 074311.ADSGoogle Scholar
  82. 82.
    U.A. Glasmacher, Maik Lang, Hans Keppler, F. Langenhorst, R. Neumann, D. Schardt, C. Trautmann and G.A. Wagner, Phys. Rev. Lett., 96 (2006) 195701.ADSGoogle Scholar
  83. 83.
    U. Tiwari, N. Sen, A.K. Bandopandhyay, D. Kanjilal and P. Sen, Europhys. Lett., 25 (1994) 705.ADSGoogle Scholar
  84. 84.
    R.E. Johnson and Bo U.R. Sundqvist, Physics Today (1992) 28.Google Scholar
  85. 85.
    P.K. Kuiri, B. Joseph, H.P. Lenka, G. Sahu, J. Ghatak, D. Kanjilal and D.P. Mahapatra, Phys. Rev. Lett., 100 (2008) 245501.ADSGoogle Scholar
  86. 86.
    A. Gupta and D.K. Avasthi, Phys. Rev., B 64 (2001) 155407.ADSGoogle Scholar
  87. 87.
    M. Toulemonde, W. Assmann, C. Trautmann and F. Gruner, Phys. Rev. Lett., 88 (2002) 057602.ADSGoogle Scholar
  88. 88.
    S. Roorda, T. van Dillen, A. Polman, C. Graf, A. van Blaaderen and B.J. Kooi, Adv. Mater., 16 (2004) 235.Google Scholar
  89. 89.
    I. Zizak, N. Darowski, S. Klaumunzer, G. Schumacher, J.W. Gerlach and W. Assmann, Phys. Rev. Lett., 101 (2008) 065503.ADSGoogle Scholar
  90. 90.
    Abha Misra, P.K. Tyagi, Padmnabh Rai, Dipti Ranjan Mhahopatra, Jay Ghatak, P.V. Satyam, D.K. Avathi and D.S. Misra, Phys. Rev., B 76 (2007) 14108.ADSGoogle Scholar
  91. 91.
    S. Ghosh, A. Tripathi, V. Ganeshan and D.K. Avasthi, J. Nanosci. & Nanotech., 8 (2008) 2505.Google Scholar
  92. 92.
    S. Kala, B.R. Mehta, S.A. Khan and D.K. Avasthi, Appl. Phys. Lett., 90 (2007) 153121.ADSGoogle Scholar
  93. 93.
    Amit Kumar, D.K. Avasthi, J.C. Pivin, A. Tripathi and F. Singh, Phys. Rev., B 74 (2006) 153409.ADSGoogle Scholar
  94. 94.
    P.K. Kulriya, B.R. Mehta, D.K. Avasthi, D.C. Agarwal, P. Thakur, N.B. Brookes, A.K. Chawla and R. Chandra, Appl. Phys. Lett., 96 (2010) 53103.ADSGoogle Scholar
  95. 95.
    D.C. Agarwal, R.S. Chauhan, D.K. Avasthi, S.A. Khan, D. Kabiraj and I. Sulania, J. Appl. Phys., 104 (2008) 024304.ADSGoogle Scholar
  96. 96.
    M. Lang, J. Lian, J. Zhang, F. Zhang, W.J. Weber, C. Trautmann and R.C. Ewing, Phys. Rev., B 79 (2009) 224105.ADSGoogle Scholar
  97. 97.
    A. Lushchik, Ch. Lushchik, K. Schwartz, E.V. Chenko, R. Papaleo, M. Sorokin, A.E. Volkov, R. Newmann and C. Trautmann, Phys. Rev., B 76 (2007) 54114.ADSGoogle Scholar
  98. 98.
    A. Mara, Z. Siwy, C. Trautmann, J. Wan and F. Kamme, Nano Lett., 4 (2004) 497.ADSGoogle Scholar
  99. 99.
    Kiran Jeet, V.K. Jindal, L.M. Bharadwaj, D.K. Avasthi and K. Dharamvir, J. Appl. Phys., 108 (2010) 34302.Google Scholar
  100. 100.
    N. Bajwa, A. Ingale, D.K. Avasthi, R. Kumar, A. Tripathi, K. Dharamvir and V.K. Jindal, J. Appl. Phys., 94 (2003) 326.ADSGoogle Scholar
  101. 101.
    R.C. Budhani, M. Suenaga and S.H. Liou, Phys. Rev. Lett., 69 ( 1992) 3816.ADSGoogle Scholar
  102. 102.
    C. Chappert, H. Bernas, J. Ferré, V. Kottler, J.-P. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet and H. Launois, Science, 280 (1998) 1919.ADSGoogle Scholar
  103. 103.
    T.M. Tona, H. Watanabe, S. Takahashi, Y. Fujita, T. Abe, S. Jian, N. Nakamura, N. Yoshiyasu, C. Yamada, M. Sakurai and S. Ohtani, Journal of Physics, Conference Series, 58 (2007) 331.ADSGoogle Scholar
  104. 104.
    P. Li, X.G. Han, J.P. Xin, X.P. Zhu and M.K. Lei, Nucl. Inst. and Meth., B 266 (2008) 3945.ADSGoogle Scholar
  105. 105.
    T.J. Renk, P. P. Provencio, S.V. Prasad, A.S. Shlapakovski, A.V. Petrov, K. Yatsui, Jiang Weihua and H. Suematsu, Proc. IEEE, 92 (7) (2004) 1057.Google Scholar
  106. 106.
    S.K. Ghose, G. Kuri, Amal K. Das, B. Rout, D.P. Mahapatra and B.N. Dev, Nucl. Instr. and Meth., B 156 (1999) 125.ADSGoogle Scholar
  107. 107.
    T. Tada, T. Kanayama, K. Koga, P. Weibel, S.J. Carroll, K. Seeger and R.E. Palmer, J. Phys. D: Appl. Phys., 31 (1998) L21.ADSGoogle Scholar
  108. 108.
    I. Yamada and J. Matsuo, J. Mat. Soc. Symp. Proc., 427 (1996) 265.Google Scholar
  109. 109.
    K. Meiwes and O. Broer, Metal Clusters at Surfaces. Springer, Berlin (2000) 145.Google Scholar
  110. 110.
    J. Peltola, K. Nordlund and J. Keinonen, Nucl. Instr. and Meth., B 217 (2004) 25.ADSGoogle Scholar
  111. 111.
    Y. Yamaguchi and J. Gspann, Phys. Rev., B 66 (2002) 155408.ADSGoogle Scholar
  112. 112.
    T. Osipowicz, J.A. van Kan, T.C. Sum, J.L. Sanchez and F. Watt, Nucl. Instr. and Meth., B 161–163 (2000) 83.Google Scholar
  113. 113.
    F. Watt, M.B.H. Breese, A.A. Bettiol and J.A. van Kan, Materials Today, 10 (2007) 20 and the references therein.Google Scholar
  114. 114.
    A. Bertucci, R.D.J. Pocock, G.R. Pehrson and D.J. Brenner, J. Radiat. Res., 50 (2009) 49.Google Scholar
  115. 115.
    M. Folkard, K.M. Prise, A.G. Michette and B. Vojnovic, Nucl. Instr. and Meth., A 580 (2007) 446.ADSGoogle Scholar
  116. 116.
    G. Randers-Pehrson, C.R. Geard, G. Johnson, C.D. Elliston and D.J. Brenner, Rad. Research, 156 (2001) 210.Google Scholar
  117. 117.
    P. Reichart, G. Datzmann, A. Hauptner, R. Hertenberger, C. Wild and G. Dollinger, Science, 306 (2004) 1537.ADSGoogle Scholar
  118. 118.
    M. Ultaut, Handbook of Charged Particle Optics, CRC Press, Boca Raton, Fl. (1997) 429.Google Scholar
  119. 119.
    Sudeep Bhattacharjee, A. Vartak and Victor Mukherjee, Appli. Phys. Lett., 92 (2008) 191503.ADSGoogle Scholar
  120. 120.
    Sudeep Bhattacharjee and Tathagata Chowdhury, App. Phys. Lett., 95 (2009) 061501.ADSGoogle Scholar
  121. 121.
    U. Dotsch and A.D. Wieck, Nucl. Instr. and Meth., B 139 (1998) 12.ADSGoogle Scholar
  122. 122.
    Gang Xiong, D.A. Allwood, M.D. Cook and R.P. Cowburn, Appl. Phys. Lett., 79 (2001) 3461.ADSGoogle Scholar
  123. 123.
    J. Orloff, M. Utlaut and L. Swanson, High Resolution Focused Ion Beams: FIB, and its Applications. Springer Press. ISBN 0–306–47350 (2003).Google Scholar
  124. 124.
    Neeraj Shukla, Sarvesh K. Tripathi, Mihir Sarkar, Nitul S. Rajput and V.N. Kulkarni, Nucl. Instr. and Meth., B 267 (2009) 1376.ADSGoogle Scholar
  125. 125.
    Y.Z. Huang, S.G. Wang, C. Wang, Z.B. Xie, D.J.H. Cockayne and R.C.C. Ward, Appl. Phys. Lett., 88 (2006) 103104.ADSGoogle Scholar
  126. 126.
    R.M. Bradley and J.M.E. Harper, J. Vac. Sci. Technol., A6 (1988) 2390.ADSGoogle Scholar
  127. 127.
    R. Cuerno, H.A. Makse, S. Tomassone, S.T. Harrington and H.E. Stanley, Phys. Rev. Lett., 75 (1995) 4464.ADSGoogle Scholar
  128. 128.
    B. Kahng, H. Jeong and A.-L. Barabási, Appl. Phys. Lett., 78 (2001) 805.ADSGoogle Scholar
  129. 129.
    A. Datta, Y-R Wu and Y.L. Wang, Phys. Rev., B 63 (2001) 125407.ADSGoogle Scholar
  130. 130.
    T.K. Chini, M.K. Sanyal and S.R. Bhattacharya, Phys. Rev., B 66 (2002) 153404.ADSGoogle Scholar
  131. 131.
    Y.S. Katharria, S. Kumar, P.S. Lakshmy, D. Kanjilal and A.T. Sharma, J. Appl. Phys., 102 (2007) 44301.Google Scholar
  132. 132.
    P. Mishra and D. Ghose, J. Appl. Phys., 105 (2009) 014304.ADSGoogle Scholar
  133. 133.
    R.M. Bradley and E. Cirlin, Appl. Phys. Lett., 68 (1996) 3722.ADSGoogle Scholar
  134. 134.
    J. Lian, L. Wang, X. Sun, Q. Yu and Rodney C. Ewing, Nano Lett., 6 (2006) 1047.ADSGoogle Scholar
  135. 135.
    W. Bolse, Nucl. Instr. and Meth., B 244 (2006) 8.ADSGoogle Scholar
  136. 136.
    M. Batzil, F. Bardou and K.J. Snowdon, Phys. Rev., B 63 (2001) 233408.ADSGoogle Scholar
  137. 137.
    P. Kulriya, A. Tripathi, D. Kabiraj, S.A. Khan and D.K. Avasthi, Nucl. Instr. and Meth., B 244 (2006) 95.ADSGoogle Scholar
  138. 138.
    I. Sulania, A. Tripathi, D. Kabiraj, M. Lequeux and D.K. Avasthi, Advanc. Mat. Lett., 1 (2010) 118.Google Scholar
  139. 139.
    I. Sulania, A. Tripathi, D. Kabiraj, S. Varma and D.K. Avasthi, J. Nanosci. and Nanotech., 8 (2007) 1.Google Scholar
  140. 140.
    M. Buljan, I.B. Radovic, M. Karlusic, U.V. Desnica, G. Drazic, N. Radic, P. Dubcek, K. Salamon, S. Bernstorff and V. Holy, Appl. Phys. Lett., 95 (2009) 063104.ADSGoogle Scholar
  141. 141.
    Vidya Ramaswamy, Tony E. Haynes, C. Woody White, Warren J. Moberly Chan, S. Roorda and Michael J. Aziz, Nano Lett., 5 (2) (2005) 373.ADSGoogle Scholar
  142. 142.
    J.L. Hanssen, J.J. McClelland, E.A. Dakin and M. Jacka, Phys. Rev., A 74 (2006) 063416.ADSGoogle Scholar
  143. 143.
    B.J. Claessens, M.P. Reijnders, G. Taban, O.J. Luiten and E.J.D. Vredenbregt, Phys. Plasmas, 14 (2007) 093101.ADSGoogle Scholar
  144. 144.
    Y. Lee, Q. Ji, K.N. Leung and N. Zahir, Rev. Sci. Inst., 71 (2000) 722.ADSGoogle Scholar
  145. 145.
    L. Scipioni, D. Stewart, D. Ferranti and A. Saxonis, J. Vac. Sci. Technol., B 18 (2000) 3194.Google Scholar
  146. 146.
    X. Jiang, Q. Ji, A. Chang and K.N. Leung, Rev. Sci. Instr., 74 (2003) 2288.ADSGoogle Scholar
  147. 147.
    L. Ji, Q. Ji, K.-N. Leung and R.A. Gough, Appl. Phys. Lett., 89 (2006) 164103.ADSGoogle Scholar
  148. 148.
    N.S. Smith, W.P. Skoczylas, S.M. Kellogg, D.E. Kinion, P.P. Tesch, O. Sutherland, A. Aanesland and R.W. Boswell, J. Vac. Sci. Technol., B 24 (6) (2006) 2902.Google Scholar
  149. 149.
    Jose V. Mathew, A. Chowdhury and S. Bhattacharjee, Rev. Sci. Inst., 79 (2008) 063504.ADSGoogle Scholar
  150. 150.
    Jose V. Mathew, Indranuj Dey and S. Bhattacharjee, Appl. Phys. Lett., 91 (2007) 041503.ADSGoogle Scholar
  151. 151.
    Abhishek Chowdhury and Sudeep Bhattacharjee, J. Appl. Phys., 107 (2010) 093307.ADSGoogle Scholar
  152. 152.
    Elmar Platzgummer, Hans Loeschner and Gerhard Gross, J. Vac. Sci. Technol., B 26 (6) (2008) 2059.Google Scholar

Copyright information

© Capital Publishing Company 2011

Authors and Affiliations

  • D. K. Avasthi
    • 1
  • G. K. Mehta
    • 1
  1. 1.Inter University Accelerator CentreNew DelhiIndia

Personalised recommendations