Skip to main content

Piezoelectric Sensing for Sensitive Detection of DNA

  • Chapter
  • First Online:
Detection of Non-Amplified Genomic DNA

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

Piezoelectric sensing has been widely applied for affinity sensing, and recently sensitive DNA detection has been reported in different matrices for different analytes (i.e. target sequences). In this chapter, the detection principle and the approaches used in DNA-based sensing with focus on detection of microsatellite DNA, present in high number of copy as well as target sequence detection of genes present in one or few copy number per haploid genome will be presented and discussed. Particular attention will be devoted to the pre-analytical steps which may influence the sensor response to the target analyte such as genomic DNA fragmentation and denaturation. Comparison between immobilization chemistries is also presented. In particular, finding in microsatellite detection with both biotinylated and thiolated probes is reported and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Curie, J., Curie, P.: An oscillating quartz crystal mass detector. Rendu 91, 294–297 (1880)

    Google Scholar 

  2. Krempl, P., Schleinzer, G., Wallnöfer, W.: Gallium phosphate, GaPO4: a new piezoelectric crystal material for high-temperature sensorics. Sens. Actuat. A 61, 361–363 (1997)

    Article  Google Scholar 

  3. Vasilescu, A., Ballantyne, S.M., Cheran, L.E., Thompson, M.: Surface properties and electromagnetic excitation of a piezoelectric gallium phosphate biosensor. Analyst 130, 213–220 (2005)

    Article  ADS  Google Scholar 

  4. Janshoff, A., Steinem, C.: Quartz crystal microbalance for bioanalytical applications. Sensor Update 9, 313–354 (2001)

    Article  Google Scholar 

  5. Bruckenstein, S., Shay, M.: Experimental aspects of the use of quartz crystal microbalance solution. Electrochim. Acta 30, 1295–1300 (1985)

    Article  Google Scholar 

  6. O’Sullivan, C.K., Guilbault, G.G.: Commercial quartz crystal microbalances – theory and applications. Biosens. Bioelectron. 14, 663–670 (1999)

    Article  Google Scholar 

  7. Sauerbrey, G.: The use of quartz oscillators for weighing thin layers and for microweighing. Z. Physik 155, 206–222 (1959)

    Article  ADS  Google Scholar 

  8. Hiller, A.C., Ward, M.D.: Scanning electrochemical mass sensitivity mapping of the quartz crystal. Anal. Chem. 64, 2539–2554 (1992)

    Article  Google Scholar 

  9. Kanazawa, K.K., Gordon, J.G.: Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 57, 1770–1771 (1985)

    Article  Google Scholar 

  10. Chang, S., Muramatsu, H., Nakamura, C., Miyake, J.: The principle and applications of piezoelectric crystal sensors. Mater. Sci. Eng. C 12, 111–123 (2000)

    Article  Google Scholar 

  11. Minunni, M., Mascini, M., Guilbault, G.G., Hock, B.: The quartz crystal microbalance as biosensor. A status report on its future. Anal. Lett. 28, 749–764 (1995)

    Article  Google Scholar 

  12. Kim, N., Park, I.-S., Kim, D.-K.: Characteristics of a label-free piezoelectric immunosensor detecting Pseudomonas aeruginosa. Sens. Actuat. B 100, 432–438 (2004)

    Article  Google Scholar 

  13. Mannelli, I., Minunni, M., Tombelli, S., Mascini, M.: Quartz Crystal Microbalance (QCM) affinity biosensor for Genetically Modified Organisms (GMOs) detection. Biosens. Bioelectron. 18, 129–140 (2003)

    Article  Google Scholar 

  14. Tombelli, S., Mascini, M., Sacco, C., Turner, A.P.F.: A DNA piezoelectric biosensor assay coupled with a polymerase chain reaction for bacterial toxicity determination in environmental samples. Anal. Chim. Acta 418, 1–9 (2000)

    Article  Google Scholar 

  15. Sklàdal, P., dos Santos Riccardi, C., Yamanaka, H., Inàcio da Costa, P.: Piezoelectric biosensor for real time monitoring of hybridization and detection of hepatitis C virus. J Virol Methods 117, 145–151 (2004)

    Article  Google Scholar 

  16. Dell’Atti, D., Tombelli, S., Minunni, M., Mascini, M.: Detection of clinically relevant point mutations by a novel piezoelectric biosensor. Biosens. Bioelectron. 21, 1876–1879 (2006)

    Article  Google Scholar 

  17. Kukanskis, K., Elkind, J., Melendez, J., Murphy, T., Miller, G., Garner, H.: Detection of DNA hybridization using the TISPR-1 surface plasmon resonance biosensor. Anal. Biochem. 274, 7–17 (1999)

    Article  Google Scholar 

  18. Allara, D.L., Nuzzo, R.G.: Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 105, 4481–4483 (1983)

    Article  Google Scholar 

  19. Tombelli, S., Mascini, M., Turner, A.P.F.: Improved procedures for immobilisation of oligonucleotides on gold-coated piezoelectric quartz crystals. Biosens. Bioelectron. 17, 929–936 (2002)

    Article  Google Scholar 

  20. Tombelli, S., Minunni, M., Mascini, M.: Piezoelectric biosensors: strategies for coupling nucleic acid to piezoelectric devices. Methods 37, 48–56 (2005)

    Article  Google Scholar 

  21. Powdrill, T.F.: Publication number: WO03057858 (A2), European patent: C12Q1/68B10A; Y01N6/00, Application number: WO2003US00069 20030102 (2003)

    Google Scholar 

  22. Ermini, M.L., Scarano, S., Bini, R., Banchelli, M., Berti, D., Mascini, M., Minunni, M.: A rational approach in probe design for nucleic acid-based biosensing. Biosens. Biolectron. 26, 4785–4790 (2011)

    Article  Google Scholar 

  23. Sambrook, J., Fritsch, E.F., Maniatis, T.: Molecular Cloning: A Laboratory Manual. Laboratory Press, New York (1989)

    Google Scholar 

  24. Almadidy, A., Watterson, J., Piunno, P.A.E., Raha, S., Foulds, I.V., Horgen, P.A., Castle, A., Krull, U.: Direct selective detection of genomic DNA from coliform using a fiber optic biosensor. Anal. Chim. Acta 461, 37–47 (2002)

    Article  Google Scholar 

  25. D’Agata, R., Corradini, R., Ferretti, C., Zanoli, L., Gatti, M., Marchelli, R., Spoto, G.: Ultrasensitive detection of non-amplified genomic DNA by nanoparticle-enhanced surface plasmon resonance imaging. Biosens. Bioelectron. 25, 2095–2100 (2010)

    Article  Google Scholar 

  26. Lewin, B.: Genes VI. Oxford University Press, Oxford (1997)

    Google Scholar 

  27. Minunni, M., Mannelli, I., Spiriti, M.M., Tombelli, S., Mascini, M.: A biosensor for the detection of highly repeated sequences in non-amplified genomic DNA. Anal. Chim. Acta 526, 19–25 (2004)

    Article  Google Scholar 

  28. Mariotti, E., Minunni, M., Mascini, M.: Surface Plasmon Resonance (SPR) biosensor for Genetically Modified Organism (GMOs) detection. Anal. Chim. Acta 453, 165–172 (2002)

    Article  Google Scholar 

  29. Minunni, M., Mascini, M., Mascini, M., Cozzani, I.: Screening methodologies for genetically modified organisms (GMOs). Anal. Lett. 215(33), 3093–3126 (2000)

    Article  Google Scholar 

  30. Bianchi, N., Rutigliano, C., Tomassetti, M., Feriotto, G., Zorzato, F., Gambari, R.: Biosensor technology and surface plasmon resonance for real time detection of HVI1 genomic sequence amplified by polymerase chain reaction. Clin. Diagn. Virol. 8, 199–208 (1997)

    Article  Google Scholar 

  31. Feriotto, G., Borgatti, M., Mischiati, C., Bianchi, N., Gambari, R.: Biosensor technology and surface plasmon resonance for real-time detection of genetically modified Roundup Ready soybean gene sequences. J. Agric. Food Chem. 50, 955–962 (2002)

    Article  Google Scholar 

  32. Giakoumaki, E., Minunni, M., Tombelli, S., Tothill, I.E., Mascini, M., Bogani, P., Buiatti, M.: Combination of amplification and post-amplification strategies to improve optical DNA sensing. Biosens. Bioelectron. 19, 337–344 (2003)

    Article  Google Scholar 

  33. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D.: Molecular Biology of the Cell. Garland Publishing Inc., New York (1994)

    Google Scholar 

  34. Bhattacharyya, A.J., Feingold, M.: Single molecule study of reaction between DNA and formamide. Talanta 55, 943–949 (2001)

    Article  Google Scholar 

  35. Minunni, M., Tombelli, S., Fonti, J., Spiriti, M.M., Mascini, M., Bogani, P., Buiatti, M.: Detection of genomic DNA by PCR-free piezoelectric sensing. J. Am. Chem. Soc. 127, 7966–7967 (2005)

    Article  Google Scholar 

  36. Wang, R., Minunni, M., Tombelli, S., Mascini, M.: A new approach for the detection of specific DNA sequences in amplified nucleic acids by surface plasmon resonance biosensor. Biosens. Bioelectron. 20, 598–605 (2004)

    Article  Google Scholar 

  37. Minunni, M., Tombelli, S., Mascini, M.: Biosensor approach for DNA sequences detection in non-amplified genomic DNA. Anal. Lett. 40(7), 1360–1367 (2007)

    Article  Google Scholar 

  38. Pech, M., Streeck, R.E., Zachau, H.G.: Patchwork structure of a bovine satellite DNA. Cell 18, 883–893 (1979)

    Article  Google Scholar 

  39. Hunt, D.J., Parkes, H.C., Lumley, I.D.: Identification of the species of origin of raw and cooked meat products using oligonucleotide probes. Food Chem. 60, 437–442 (1997)

    Article  Google Scholar 

  40. Kim, H., Shelef, L.A.: Characterization and identification of raw beef, pork, chicken and turkey meats by electrophoretic patterns of their sarcoplasmic proteins. J. Food Sci. 51, 731–741 (1986)

    Article  Google Scholar 

  41. Skarpeid, H.J., Kvaal, K., Hildrum, K.I.: Identification of animal species in ground meat mixtures by multivariate analysis of isoelectric focusing protein profiles. Electrophoresis 19, 3103–3109 (1998)

    Article  Google Scholar 

  42. Toorop, R.M., Murch, S.J., Ball, R.O.: Methodology and development of prediction equations for the determination of pork substitution in veal. Food Res. Int. 30, 629–636 (1997)

    Article  Google Scholar 

  43. Ashoor, S.H., Monte, W.C., Stiles, P.G.: Liquid-chromatographic identification of meats. J. Ass. Off. Anal. Chem. 71, 397–403 (1998)

    Google Scholar 

  44. Hsien, Y.H., Sheu, S.C., Bridgman, R.C.: Development of a monoclonal antibody specific to cooked mammalian meats. J Food Prot 61, 476–481 (1998)

    Google Scholar 

  45. Lenstra, J.A., Buntjer, J.B., Janssen, F.W.: On the origin of meat – DNA techniques for species identification in meat products. Vet. Sci. Tomorrow 2, 1–15 (2001)

    Google Scholar 

  46. Calvo, J.H., Rodellar, C., Zaragoza, P., Osta, R.: Beef- and bovine-derived material identification in processed and unprocessed food and feed by PCR amplification. J. Agric. Food Chem. 50, 5262–5264 (2002)

    Article  Google Scholar 

  47. Partis, L., Croan, D., Guo, Z., Clark, R., Coldham, T., Murby, J.: Evaluation of a DNA fingerprinting method for determining the species origin of meats. Meat Sci. 54, 369–376 (2000)

    Article  Google Scholar 

  48. Baur, V.C., Teifel-Greding, J., Liebhardt, E.: Identification of heat-processed meat by DNA analysis. Arch. Lebensmittel Hyg. 38, 149–176 (1987)

    Google Scholar 

  49. Chikuny, K., Ozutsumi, K., Koishikawa, T., Kato, S.: Species identification of cooked meats by DNA hybridization assay. Meat Sci. 27, 119–128 (1990)

    Article  Google Scholar 

  50. Ebbehøj, K.F., Thomsen, P.D.: Species differentiation of heated meat-products by DNA hybridization. Meat Sci. 30, 221–234 (1991)

    Article  Google Scholar 

  51. Winterø, A.K., Thomsen, P.D., Davies, W.: A comparison of DNA-hybridization, immunodiffusion, countercurrent immunoelectrophoresis and isoelectric-focusing for detecting the admixture of pork to beef. Meat Sci. 27, 75–85 (1990)

    Article  Google Scholar 

  52. Verkaar, E.L.C., Nijman, I.J., Boutaga, K., Lenstra, J.A.: Differentiation of cattle species in beef by PCR-RFLP of mitochondrial and satellite DNA. Meat Sci. 60, 365–369 (2002)

    Article  Google Scholar 

  53. Meyer, R., Candrian, U., Lüthy, J.: Detection of pork in heated meat products by the polymerase chain-reaction. J. AOAC Int. 77, 617–622 (1995)

    Google Scholar 

  54. Meyer, R., Höfelein, C., Lüthy, J., Candrian, U.: Polymerase chain reaction-restriction fragment length polymorphism analysis: a simple method for species identification in food. J. AOAC Int. 78, 1542–1551 (1995)

    Google Scholar 

  55. Meyer, R.: Nachweis gentechnologisch veränderter Pflanzen mittels der Polymerase Kettenreaktion (PCR) am Beispiel der FLAVRSAVRTM-Tomate, Z. Lebensm, Unters. Forsch. 201, 583–586 (1995)

    Google Scholar 

  56. Meyer, R., Candrian, U.: PCR-based DNA analysis for the identification and characterization of food components. Lebensm. Wiss. Technol. 29, 1–9 (1996)

    Article  Google Scholar 

  57. Murray, B.W., McClymont, R.A., Strobeck, C.: Forensic identification of ungulate species using restriction digests of PCR-amplified mitochondrial DNA. J. Forensic Sci. 40, 943–951 (1995)

    Google Scholar 

  58. Saez, R., Sanz, Y., Toldrá, F.: PCR-based fingerprinting techniques for rapid detection of animal species in meat. Meat Sci. 66, 659–665 (2004)

    Article  Google Scholar 

  59. Jonker, K., Tilburg, J., Hagele, G., De Boer, E.: Species identification in meat products using real-time PCR. Food Addi. Contam. 25, 527–533 (2008)

    Article  Google Scholar 

  60. Mannelli, I.: PhD thesis, University of Florence (2006)

    Google Scholar 

  61. EU Labelling And Traceability Regulation, Regulation (Ec) No 1830/2003 of The European Parliament and of the Council, 22 September (2003)

    Google Scholar 

  62. Kaewphinit, T., Santiwatanakul, S., Promptmas, C., Chansiri, K.: Detection of mycobacterium tuberculosis in clinical specimens. Sens. Transd. J. 113, 115–126 (2010)

    Google Scholar 

  63. Yao, C., Zhu, T., Tang, J., Wu, R., Chen, Q., Chen, M., Zhang, B., Huang, J., Fu, W.: Hybridization assay of hepatitis B virus by QCM peptide nucleic acid biosensor. Biosens. Bioelectron. 23, 879–885 (2008)

    Article  Google Scholar 

  64. Stobiecka, M., Cieśla, J.M., Janowska, B., Tudek, B., Radecka, H.: Piezoelectric sensor for determination of genetically modified soybean roundup ready in samples not amplified by PCR. Sensors 7, 1462–1479 (2007)

    Article  Google Scholar 

  65. Karamollaoglu, I., Öktem, H.A., Mutlu, M.: QCM-based DNA biosensor for detection of genetically modified organisms (GMOs). Biochem. Eng. J. 44, 142–150 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Minunni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Minunni, M. (2012). Piezoelectric Sensing for Sensitive Detection of DNA. In: Spoto, G., Corradini, R. (eds) Detection of Non-Amplified Genomic DNA. Soft and Biological Matter. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1226-3_8

Download citation

Publish with us

Policies and ethics