Skip to main content

Electrochemical Detection of DNA Using Nanomaterials Based Sensors

  • Chapter
  • First Online:
Detection of Non-Amplified Genomic DNA

Part of the book series: Soft and Biological Matter ((SOBIMA))

  • 1120 Accesses

Abstract

The detection of non-amplified DNA sequences plays a crucial role in the rapid diagnosis of genetic-related diseases especially for early stage treatment. Among the various biosensors that have been used for DNA detection, electrochemical sensors show great promise because they present efficient signal transduction and are capable of precise DNA recognition at a relatively low cost in addition to the broad range of designs with interest to be applied in different kinds of samples. Advancements in micro- and nanotechnologies, specifically fabrication techniques and new nanomaterials, have enabled for the development of highly sensitive, highly specific electrochemical sensors making them attractive for the detection of small sequence variations. Furthermore, the integration of sensors with sample preparation and fluidic processes enables for rapid, multiplexed electrochemical DNA detection essential for point of care clinical diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zarbin, M.A., Montemagno, C., Leary, J.F., Ritch, R.: Nanomedicine in ophthalmology: the new frontier. Am. J. Ophthalmol. 150, 144–162 (2010)

    Article  Google Scholar 

  2. Wei, F., Lillehoj, P.B., Ho, C.: DNA diagnostics: nanotechnology-enhanced electrochemical detection of nucleic acids. Pediatr. Res. 67, 458–468 (2010)

    Article  Google Scholar 

  3. Nie, S., Xing, Y., Kim, G.J., Simons, J.W.: Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 9, 257–288 (2007)

    Article  Google Scholar 

  4. Liepold, P., Wieder, H., Hillebrandt, H., Friebel, A., Hartwich, G.: DNA-arrays with electrical detection: a label-free low cost technology for routine use in life sciences and diagnostics. Bioelectrochemistry 67, 143–150 (2005)

    Article  Google Scholar 

  5. Lucarelli, F., Capponcelli, S., Marrazza, G., Sangiorgi, L., Mascini, M.: Split hybridisation probes for electrochemical typing of single-nucleotide polymorphisms. Analyst 134, 52–59 (2009)

    Article  ADS  Google Scholar 

  6. Pohlmann, C., Wang, Y.R., Humenik, M., Heidenreich, B., Gareis, M., Sprinzl, M.: Rapid, specific and sensitive electrochemical detection of foodborne bacteria. Biosens. Bioelectron. 24, 2766–2771 (2009)

    Article  Google Scholar 

  7. Wakai, J., Takagi, A., Nakayama, M., Miya, T., Miyahara, T., Iwanaga, T., Takenaka, S., Ikeda, Y., Amano, M.: A novel method of identifying genetic mutations using an electrochemical DNA array. Nucleic Acids Res. 32, e141 (2004)

    Article  Google Scholar 

  8. Zhang, J., Song, S.P., Zhang, L.Y., Wang, L.H., Wu, H.P., Pan, D., Fan, C.: Sequence specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J. Am. Chem. Soc. 128, 8575–8580 (2006)

    Article  Google Scholar 

  9. Lord, H., Kelley, S.O.: Nanomaterials for ultrasensitive electrochemical nucleic acids biosensing. J. Mater. Chem. 19, 3127–3134 (2009)

    Article  Google Scholar 

  10. Radwan, S.H., Azzazy, H.M.: Gold nanoparticles for molecular diagnostics. Expert Rev. Mol. Diagn. 9, 511–524 (2009)

    Article  Google Scholar 

  11. Wei, F., Liao, W., Xu, Z., Yang, Y., Wong, D.T., Ho, C.M.: Bio/abiotic interface constructed from nanoscale DNA dendrimer and conducting polymer for ultrasensitive biomolecular diagnosis. Small 5, 1784–1790 (2009)

    Article  ADS  Google Scholar 

  12. Pandey, P., Datta, M., Malhotra, B.D.: Prospects of nanomaterials in biosensors. Anal. Lett. 41, 159–209 (2008)

    Article  Google Scholar 

  13. Kerman, K., Morita, Y., Takamura, Y., Ozsoz, M., Tamiya, E.: Modification of Escherichia coli single-stranded DNA binding protein with gold nanoparticles for electrochemical detection of DNA hybridization. Anal. Chim. Acta 510, 169–174 (2004)

    Article  Google Scholar 

  14. Liao, W.C., Ho, J.A.: Attomole DNA electrochemical sensor for the detection of Escherichia coli O157. Anal. Chem. 81, 2470–2476 (2009)

    Article  Google Scholar 

  15. Ozsoz, M., Erdem, A., Kerman, K., Ozkan, D., Tugrul, B., Topcuoglu, N., Ekren, H., Taylan, M.: Electrochemical genosensor based on colloidal gold nanoparticles for the detection of Factor V Leiden mutation using disposable pencil graphite electrodes. Anal. Chem. 75, 2181–2187 (2003)

    Article  Google Scholar 

  16. Castañeda, M.T., Merkoçi, A., Pumera, M., Alegret, S.: Electrochemical genosensors for biomedical applications based on gold nanoparticles. Biosens. Bioelectron. 22, 1961–1967 (2007)

    Article  Google Scholar 

  17. Mao, X., Liu, G.D.: Nanomaterial based electrochemical DNA biosensors and bioassays. J. Biomed. Nanotechnol. 4, 419–431 (2008)

    Article  Google Scholar 

  18. Wang, F., Hu, S.S.: Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim. Acta 165, 1–22 (2009)

    Article  Google Scholar 

  19. Xu, K., Huang, J.R., Ye, Z.Z., Ying, Y.B., Li, Y.B.: Recent development of nanomaterials used in DNA biosensors. Sensors 9, 5534–5557 (2009)

    Article  Google Scholar 

  20. Pumera, M., Castañeda, M.T., Pividori, M.I., Merkoçi, A., Alegret, S., Eritja, R.: Magnetically trigged direct electrochemical detection of DNA hybridization using Au67 quantum Dot as electrical tracer. Langmuir 21, 9625–9629 (2005)

    Article  Google Scholar 

  21. Wang, J., Xu, D., Kawde, A., Polsky, R.: Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal. Chem. 73, 5576–5581 (2001)

    Article  Google Scholar 

  22. Wang, J., Polsky, R., Xu, D.: Silver-enhanced colloidal gold electrochemical stripping detection of DNA hybridization. Langmuir 17, 5739–5741 (2001)

    Article  Google Scholar 

  23. Wang, J., Xu, D., Polsky, R.: Magnetically-induced solid-state electrochemical detection of DNA hybridization. J. Am. Chem. Soc. 124, 4208–4209 (2002)

    Article  Google Scholar 

  24. Park, S., Taton, T.A., Mirkin, C.A.: Array-based electrical detection of DNA with nanoparticle probes. Science 295, 1503–1506 (2002)

    Article  ADS  Google Scholar 

  25. Wang, J., Liu, G., Merkoçi, A.: Electrochemical coding technology for simultaneous detection of multiple DNA targets. J. Am. Chem. Soc. 125, 3214–3215 (2003)

    Article  Google Scholar 

  26. Zhu, N., Zhang, A., Hea, P., Fang, Y.: Cadmium sulfide nanocluster-based electrochemical stripping detection of DNA hybridization. Analyst 128, 260–264 (2003)

    Article  ADS  Google Scholar 

  27. Wang, J., Liu, G., Polsky, R., Merkoçi, A.: Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags. Electrochem. Commun. 4, 722–726 (2002)

    Article  Google Scholar 

  28. Marin, S., Merkoçi, A.: Direct electrochemical stripping detection of cystic-fibrosis-related DNA linked through cadmium sulfide quantum dots. Nanotechnology 20(1–6), 055101 (2009)

    Article  ADS  Google Scholar 

  29. Fu, X.: Electrochemical measurement of DNA hybridization using nanosilver as label and horseradish peroxidase as enhancer. Bioprocess Biosyst. Eng. 31, 69–73 (2008)

    Article  Google Scholar 

  30. Cai, H., Xu, Y., Zhu, N., He, P., Fang, Y.: An electrochemical DNA hybridization detection assay based on a silver nanoparticle label. Analyst 127, 803–808 (2002)

    Article  ADS  Google Scholar 

  31. Wang, J., Liu, G., Merkoçi, A.: Particle-based detection of DNA hybridization using electrochemical stripping measurements of an iron tracer. Anal. Chim. Acta 482, 149–155 (2003)

    Article  Google Scholar 

  32. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  ADS  Google Scholar 

  33. Trojanowicz, M.: Analytical applications of carbon nanotubes: a review. Trac Trends Anal. Chem. 25, 480–489 (2006)

    Article  Google Scholar 

  34. Tang, T., Peng, T.Z., Shi, Q.C.: Sequence determination of DNA pieces using carbon nanotube modified gold electrodes. Acta Chim. Sin. 63, 2042–2046 (2005)

    Google Scholar 

  35. Abdullin, T.I., Nikitina, I.I., Ishmukhametova, D., Budnikov, G.K., Konovalova, O.A., Salakhov, M.K.: Carbon nanotube-modified electrodes for electrochemical DNA-sensors. J. Anal. Chem. 62, 599–603 (2007)

    Article  Google Scholar 

  36. Kerman, K., Morita, Y., Takamura, Y., Tamiya, E.: Escherichia coli single-strand binding protein-DNA interactions on carbon nanotube-modified electrodes from a label-free electrochemical hybridization sensor. Anal. Bioanal. Chem. 381, 1114–1121 (2005)

    Article  Google Scholar 

  37. Erdem, A., Papakonstantinou, P., Murphy, H.: Direct DNA hybridization at disposable graphite electrodes modified with carbon nanotubes. Anal. Chem. 78, 6656–6659 (2006)

    Article  Google Scholar 

  38. Katz, E., Willner, I.: Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. Chem. Phys. Chem. 5, 1084–1104 (2004)

    Article  Google Scholar 

  39. Zhang, R.Y., Wang, X.M., Chen, C.: Electrochemical biosensing platform using carbon nanotube activated glassy carbon electrode. Electroanalysis 19, 1623–1627 (2007)

    Article  Google Scholar 

  40. Bollo, S., Ferreyra, N.F., Rivas, G.A.: Electrooxidation of DNA at glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in chitosan. Electroanalysis 19, 833–840 (2007)

    Article  Google Scholar 

  41. Wang, J., Liu, G., Jan, M.R., Zhu, Q.: Electrochemical detection of DNA hybridization based on carbon-nanotubes loaded with CdS tags. Electrochem. Commun. 5, 1000–1004 (2003)

    Article  Google Scholar 

  42. Wang, J., Liu, G.D., Jan, M.R.: Ultrasensitive electrical biosensing of proteins and DNA: carbon nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 126, 3010–3011 (2004)

    Article  Google Scholar 

  43. Li, Y., Qi, H.L., Fang, F., Zhang, C.X.: Ultrasensitive electrogenerated chemiluminescence detection of DNA hybridization using carbon-nanotubes loaded with tris(2,2′-bipyridyl) ruthenium derivative tags. Talanta 72, 1704–1709 (2007)

    Article  Google Scholar 

  44. Wang, X., Ozkan, C.S.: Multisegment nanowire sensors for the detection of DNA molecules. Nano Lett. 8, 398–404 (2008)

    Article  ADS  Google Scholar 

  45. Lapierre-Devlin, M.A., Asher, C.L., Taft, B.J., Gasparac, R., Roberts, M.A., Kelley, S.O.: Amplified electrocatalysis at DNA-modified nanowires. Nano Lett. 5, 1051–1055 (2005)

    Article  ADS  Google Scholar 

  46. Zhu, N., Chang, Z., Heb, P., Fang, Y.: Electrochemically fabricated polyaniline nanowire-modified electrode for voltammetric detection of DNA hybridization. Electrochim. Acta 51, 3758–3762 (2006)

    Article  Google Scholar 

  47. Escosura-Muñiz, A., Maltez, M., Merkoçi, A.: Controlling the electrochemical deposition of silver onto gold nanoparticles: reducing interferences and increasing the sensitivity of magnetoimmuno assays. Biosens. Bioelectron. 24, 2475–2482 (2009)

    Article  Google Scholar 

  48. Escosura-Muñiz, A., Ambrosi, A., Merkoçi, A.: Electrochemical analysis with nanoparticle-based biosystems. Trac Trends Anal. Chem. 27, 568–584 (2008)

    Article  Google Scholar 

  49. Ambrosi, A., Castañeda, M.T., Killard, A.J., Smyth, M.R., Alegret, S., Merkoçi, A.: Double-codified gold nanolabels for enhanced immunoanalysis. Anal. Chem. 79, 5232–5240 (2007)

    Article  Google Scholar 

  50. Escosura-Muñiz, A., Parolo, C., Merkoçi, A.: Immunosensing using nanoparticles. Mater. Today 13, 17–27 (2010)

    Google Scholar 

  51. Merkoçi, A. (ed.): Biosensing Using Nanomaterials. Wiley-Interscience, Hoboken (2009)

    Google Scholar 

  52. Maltez, M., Escosura-Muñiz, A., Merkoçi, A.: Electrochemical quantification of gold nanoparticles based on their catalytic properties toward hydrogen formation: application in magnetoimmunoassays. Electrochem. Commun. 12, 1501–1504 (2010)

    Article  Google Scholar 

  53. Escosura-Muñiz, A., Merkoçi, A.: Label-free voltammetric immunosensor using a nanoporous membrane based platform. Electrochem. Commun. 12, 859–863 (2010)

    Article  Google Scholar 

  54. Escosura-Muñiz, A., Merkoçi, A.: A nanochannel/nanoparticle-based filtering and sensing platform for direct detection of a cancer biomarker in blood. Small 7, 675–682 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from MICINN (Madrid) for the projects MAT2008-03079 and MAT2011-25870.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arben Merkoçi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marín, S., Merkoçi, A. (2012). Electrochemical Detection of DNA Using Nanomaterials Based Sensors. In: Spoto, G., Corradini, R. (eds) Detection of Non-Amplified Genomic DNA. Soft and Biological Matter. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1226-3_7

Download citation

Publish with us

Policies and ethics