Recent Advances in Sequencing Technology

  • John F. Thompson
  • Fatih Ozsolak
  • Patrice M. Milos
Part of the Soft and Biological Matter book series (SOBIMA)


As we celebrate the tenth anniversary of the sequencing of the first human genome, we recognize the remarkable technological innovation that now provides the ability to resequence thousands of human genomes a year. While the current methods of choice utilize amplification-based methods and the corresponding challenges of sample preparation that accompany these methods, new technologies that do not require amplification have emerged. Single-molecule sequencing methods have the potential to dramatically shape the next 10 years of technological progress driven by the continuing interest of driving the cost of whole genome sequencing below the $1000 cost threshold. Yet while whole genome sequencing remains of interest, sequencing technologies also enable new approaches for genome exploration and experimentation including direct RNA sequencing, complete transcript sequencing and real time methods for both nucleic acid and enzyme kinetics.


Sequencing Technology polyA Tail Pacific Bioscience Incorporation Event SMRT Sequencing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Maxam, A.M., Gilbert, W.: A new method for sequencing DNA. Proc. Natl. Acad. Sci. U.S.A. 74, 560–564 (1977)ADSCrossRefGoogle Scholar
  2. 2.
    Sanger, F., Nicklen, S., Coulson, A.R.: DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. 74, 463–467 (1977)CrossRefGoogle Scholar
  3. 3.
    Prober, J.M., Trainor, G.L., Dam, R.I., Hobbs, F.W., Robertson, C.W., Zagursky, R.I., Cocuzza, A.J., Jensen, M.A., Baumeister, K.: A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science 238, 336–341 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    Blattner, F.R., et al.: Escherichia coli K-12. Science 277, 1453–1462 (1997)CrossRefGoogle Scholar
  5. 5.
    International Human Genome Sequencing Consortium, Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., et al.: Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Venter, C.J., Adams, M.D., Myers, E.W., et al.: The sequencing of the human genome. Science 291, 1304–1351 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    International Human Genome Sequencing Consortium: Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Margulies, M., Egholm, M., Altman, W.E., et al.: Genome sequencing in microfabricated high-density picolitre reactors. Science 437, 376–380 (2005)Google Scholar
  9. 9.
    Wheeler, A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., He, W., Chen, Y.-J., Makhijani, V., et al.: The complete genome of an individual by massively parallel DNA sequencing. Nature 452, 872–876 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Rothberg, J.M., Hinz, W., Rearick, T.M., et al.: An integrated semiconductor device enabling non-optical genome sequencing. Nature 475, 348–352 (2011)CrossRefGoogle Scholar
  11. 11.
    Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., et al.: de novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20, 265–272 (2010)CrossRefGoogle Scholar
  12. 12.
    Nagarajan, N., Pop, M.: Sequencing and genome assembly using next-generation technologies. Methods Mol. Biol. 673, 1–17 (2010)CrossRefGoogle Scholar
  13. 13.
    Morin, R., Bainbridge, M., Fejes, A., Hirst, M., Krzywinski, M., Pugh, T., McDonald, H., Varhol, R., Jones, S., Marra, M.: Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques 45, 81–94 (2008)CrossRefGoogle Scholar
  14. 14.
    Cloonan, N., Forrest, A.R., Kolle, G., Gardiner, B.B., Faulkner, G.J., Brown, M.K., et al.: Stem cell transcriptome profiling via massive-mRNA sequencing. Nat. Methods 5, 613–617 (2008)CrossRefGoogle Scholar
  15. 15.
    Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., Tuch, B.B., Siddiqui, A., Lao, K., Surani, M.A.: mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6(5), 377–82 (2009)CrossRefGoogle Scholar
  16. 16.
    Zhao, X.D., Han, X., Chew, J.L., Liu, J., Chiu, K.P., Choo, A., Orlov, Y.L., Sung, W.K., Shahab, A., Kuznetsov, V.A., Bourque, G., Oh, S., Ruan, Y., Ng, H.H., Wei, C.L.: Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1, 286–98 (2007)CrossRefGoogle Scholar
  17. 17.
    Adli, M., Zhu, J., Bernstein, B.E.: Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors. Nat. Methods 7, 615–8 (2010), Epub Jul 11 2010CrossRefGoogle Scholar
  18. 18.
    Kennedy, B.A., Deatherage, D.E., Gu, F., Tang, B., Chan, M.W., et al.: ChIP-seq defined genome-wide map of TGFβ/SMAD4 targets: implications with clinical outcome of ovarian cancer. PLoS One 6, e22806 (2011). E pub 2011 Jul 25 (2011)CrossRefGoogle Scholar
  19. 19.
    Sam, L.T., Lipson, D., Raz, T., Cao, X., Thompson, J.F., Milos, P.M., Robinson, D., Chinnaiyan, A.M., Kumar-Sinha, C., Maher, C.A.: A comparison of single molecule and amplification based sequencing of cancer transcriptomes. Plos One 6, e17305 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Funatsu, T., Harada, Y., Tokunaga, M., Saito, K., Yanagida, T.: Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    Aston, C., Mishra, B., Schwartz, D.C.: Optical mapping and its potential for large-scale sequencing projects. Trend. Biotech. 17, 297–302 (1999)CrossRefGoogle Scholar
  22. 22.
    Krivanek, O.L., Chisholm, M.F., Nicolosi, V., Pennycook, T.J., Corbin, G.J., et al.: Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571–574 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Braslavsky, I., Herbert, B., Kartalov, E., Quake, S.R.: Sequence information can be obtained from single DNA molecules. Proc. Natl. Acad. Sci. U.S.A. 100, 3960–4 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    Harris, T.D., Buzby, P.R., Babcock, H., Beer, E., Bowers, J., Braslavsky, I., et al.: Single-molecule DNA sequencing of a viral genome. Science 320, 106–109 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Thompson, J.F., Reifenberger, J.G., Giladi, E., Kerouac, K., Gill, J., et al.: Single-step capture and sequencing of natural DNA for detection of BRCA1 mutations. Genome Res.. doi: 10.1101/gr.122192.111. Published in Advance July 15, 2011
  26. 26.
    Giladi, E., Healy, J., Myers, G., Hart, C., Kapranov, P., Lipson, D., et al.: Error tolerant indexing and alignment of short reads with covering template families. J. Comput. Biol. 17, 1397–1411 (2010)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Levene, M.J., Korlach, J., Turner, S.W., et al.: Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–6 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    Pushkarev, D., Neff, N.F., Quake, S.R.: Single-molecule sequencing of an individual human genome. Nat. Biotechnol. 27, 847–852 (2009)CrossRefGoogle Scholar
  29. 29.
    Orlando, L., Ginolhac, A., Raghavan, M., Vilstrup, J., Rasmussen, M., Magnussen, K., Steinmann, K., Kapranov, P., Thompson, J.F., Zazula, G., Froese, D., Shapiro, B., Hofreiter, M., AL-Rasheid, K.A.S., Mundy, J., Gilbert, M.T.P., Willerslev, E.: True single-molecule DNA sequencing of a pleistocene horse bone. Genome Res. 21, 1705–1719 (2011)CrossRefGoogle Scholar
  30. 30.
    Chin, C.S., et al.: The origin of the Haitian cholera outbreak strain. N. Engl. J. Med. 364, 33–42 (2011)CrossRefGoogle Scholar
  31. 31.
    Kanamori-Katayama, M., Itoh, M., Kawaji, H., Lassmann, T., Katayama, S., Kojima, M., Bertin, N., Kaiho, A., Ninomiya, N., Daub, C.O., Carninci, P., Forrest, A.R., Hayashizaki, Y.: Unamplified cap analysis of gene expression on a single-molecule sequencer. Genome Res. 21, 1150–9 (2011)CrossRefGoogle Scholar
  32. 32.
    Kapranov, P., Ozsolak, F., Kim, S.W., Foissac, S., Lipson, D., Hart, C., Roels, S., Borel, C., Antonarakis, S.E., Monaghan, A.P., John, B., Milos, P.M.: Novel class of gene-termini- associated human RNAs suggests a novel RNA copying mechanism. Nature 466, 642–646 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Ozsolak, F., Platt, A., Jones, D., Reifenberger, J., Sass, L.E., McInerney, P., Thompson, J.F., Bowers, J., Jarosz, M., Milos, P.: Direct RNA sequencing. Nature 461, 814–818 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    Plessy, C., Bertin, N., Takahashi, H., Simone, R., Salimullah, M., et al.: Linking promoters to functional transcripts in small samples with nanoCAGE and CAGEscan. Nat. Methods 7, 528–534 (2010)CrossRefGoogle Scholar
  35. 35.
    Asmann, Y.W., Klee, E.W., Thompson, E.A., Perez, E.A., Middha, S., Oberg, A.L., Therneau, T.M., Smith, D.I., Poland, G.A., Wieben, E.D., Kocher, J.P.: 3′ tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer. BMC Genomics 10, 531 (2009)CrossRefGoogle Scholar
  36. 36.
    Wu, Z.J., Meyer, C.A., Choudhury, S., Shipitsin, M., Maruyama, R., et al.: Gene expression profiling of human breast tissue samples using SAGE-Seq. Genome Res. 20, 1730–1739 (2010)CrossRefGoogle Scholar
  37. 37.
    Fullwood, M.J., Wei, C.L., Liu, E.T., Ruan, Y.: Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res. 19, 521–532 (2009)CrossRefGoogle Scholar
  38. 38.
    Lipson, D., Raz, T., Kieu, A., Jones, D.R., Giladi, E., et al.: Quantification of the yeast transcriptome by single-molecule sequencing. Nat. Biotechnol. 27, 652–658 (2009)CrossRefGoogle Scholar
  39. 39.
    Ozsolak, F., Ting, D.T., Wittner, B.S., Brannigan, B.W., Paul, S., et al.: Amplification-free digital gene expression profiling from minute cell quantities. Nat. Methods 7, 619–621 (2010)CrossRefGoogle Scholar
  40. 40.
    Raz, T., Kapranov, P., Lipson, D., Letovsky, S., Milos, P.M., Thompson, J.F.: Protocol dependence of sequencing-based gene expression measurements. PLoS One 6, e19287 (2011)CrossRefGoogle Scholar
  41. 41.
    Oshlack, A., Wakefield, M.J.: Transcript length bias in RNA-seq data confounds systems biology. Biol. Direct 4, 14 (2009)CrossRefGoogle Scholar
  42. 42.
    Dohm, J.C., Lottaz, C., Borodina, T., Himmelbauer, H.: Substantial biases in ultra- short read data sets from high-throughput DNA sequencing. Nucleic Acids Res. 36, e105 (2008)CrossRefGoogle Scholar
  43. 43.
    Aird, D., Ross, M.G., Chen, W.S., Danielsson, M., Fennell, T., Russ, C., Jaffe, D.B., Nusbaum, C., Gnirke, A.: Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 12, R18 (2011)CrossRefGoogle Scholar
  44. 44.
    Mamanova, L., Andrews, R.M., James, K.D., Sheridan, E.M., Ellis, P.D., et al.: FRT-seq: amplification-free, strand-specific transcriptome sequencing. Nat. Methods 7, 130–132 (2010)CrossRefGoogle Scholar
  45. 45.
    Hansen, K.D., Brenner, S.E., Dudoit, S.: Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res. 38, e131 (2010)CrossRefGoogle Scholar
  46. 46.
    Oshlack, A., Robinson, M.D., Young, M.D.: From RNA-seq reads to differential expression results. Genome Biol. 11, 220 (2010)CrossRefGoogle Scholar
  47. 47.
    Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., et al.: Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    Kapranov, P., St Laurent, G., Raz, T., Ozsolak, F., Reynolds, C.P., Sorensen, P.H., Reaman, G., Milos, P., Arceci, R.J., Thompson, J.F., Triche, T.J.: The majority of total nuclear- encoded non-ribosomal RNA in a human cell is ‘dark matter’ unannotated RNA. BMC Biol. 8, 149 (2010)CrossRefGoogle Scholar
  49. 49.
    Mader, R.M., et al.: Reverse transcriptase template switching during reverse transcriptase-polymerase chain reaction: artificial generation of deletions in ribonucleotide reductase mRNA. J. Lab. Clin. Med. 137, 422–8 (2001)CrossRefGoogle Scholar
  50. 50.
    Cocquet, J., Chong, A., Zhang, G., Veitia, R.A.: Reverse transcriptase template switching and false alternative transcripts. Genomics 88, 127–31 (2006)CrossRefGoogle Scholar
  51. 51.
    Haddad, F., Qin, A.X., Giger, J.M., Guo, H., Baldwin, K.M.: Potential pitfalls in the accuracy of analysis of natural sense-antisense RNA pairs by reverse transcription-PCR. BMC Biotechnol. 7, 21 (2007)CrossRefGoogle Scholar
  52. 52.
    Ozsolak, F., Kapranov, P., Foissac, S., Kim, S.W., Fishilevich, E., Monaghan, A.P., John, B., Milos, P.M.: Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 143, 1018–29 (2010)CrossRefGoogle Scholar
  53. 53.
    Malmström, H., Svensson, E.M., Gilbert, M.T., Willerslev, E., Götherström, A., Holmlund, G.: More on contamination: the use of asymmetric molecular behavior to identify authentic ancient human DNA. Mol. Biol. Evol. 24, 998–1004 (2007)CrossRefGoogle Scholar
  54. 54.
    Ginolhac, A., Vilstrup, J., Stenderup, J., Raghavan, M., Rasmussen, M., Stiller, M., Shapiro, B., Zazula, G., Froese, D., Steinmann, K.E., Thompson, J.F., AL-Rasheid, K.A.S., Gilbert, T., Willerslev, E., Orlando, L.: Improving the performance of true-single molecule sequencing for ancient DNA. (2011) (Submitted)Google Scholar
  55. 55.
    Thompson, J., Lipson, D., Hart, C., Kapranov, P., Letovsky, S., Milos, P., Ozsolak, F., Raz, T., Reifenberger, J., Steinmann, K., Loreille, O., Coble, M.: Sequencing the unsequenceable: applying massively parallel, single-molecule sequencing to badly degraded DNAs. In: Abstracts of the 59th Annual Meeting of The American Society of Human Genetics, Honolulu, 20–20 Oct 2009.
  56. 56.
    Yee, A.J., Raz, T., Amzallag, A., Lipson, D., Giladi, E., Lopez, H., Borger, D.R., Mino-Kenudson, M., Thompson, J.F., Iafrate, A.J., Milos, P., Haber, D.A., Ramaswamy, S.: Single molecule RNA sequencing of formalin-fixed paraffin-embedded tissue derived from patients with lung cancer. J. Clin. Oncol. 29(15_suppl), 10550 (2011), Google Scholar
  57. 57.
    Branton, D., Deamer, D.W., Marziali, A., Bayley, H., Benner, S.A., et al.: The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–53 (2008)CrossRefGoogle Scholar
  58. 58.
    Deamer, D.: Nanopore analysis of nucleic acids bound to exonucleases and polymerases. Annu. Rev. Biophys. 39, 79–90 (2010)CrossRefGoogle Scholar
  59. 59.
    Timp, W., Mirsaidov, U.M., Wang, D., Comer, J., Aksimentiev, A., Timp, G.: Nanopore sequencing: electrical measurements of the code of life. IEEE Trans Nanotechnol. 9, 281–294 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    Kowalczyk, S.W., Blosser, T.R., Dekker, C.: Biomimetic nanopores: learning from and about nature. Trends Biotechnol. 29(12), 607–614 (2011)CrossRefGoogle Scholar
  61. 61.
    Venkatesan, B.M., Bashir, R.: Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 6, 615–24 (2011)ADSCrossRefGoogle Scholar
  62. 62.
    Healy, K.: Nanopore-based single-molecule DNA analysis. Nanomedicine 2, 459–481 (2007)CrossRefGoogle Scholar
  63. 63.
    Kasianowicz, J.J., Brandin, E., Branton, D., Deamer, D.W.: Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. U.S.A. 93, 13770–3 (1996)ADSCrossRefGoogle Scholar
  64. 64.
    Aksimentiev, A.: Deciphering ionic current signatures of DNA transport through a nanopore. Nanoscale 2, 468–483 (2010)ADSCrossRefGoogle Scholar
  65. 65.
    Kowalczyk, S.W., Grosberg, A.Y., Rabin, Y., Dekker, C.: Modeling the conductance and DNA blockade of solid-state nanopores. Nanotechnology 22, 315101 (2011)ADSCrossRefGoogle Scholar
  66. 66.
    Lagerqvist, J., Zwolak, M., Di Ventra, M.: Fast DNA sequencing via transverse electronic transport. Nano Lett. 6, 779–82 (2006)ADSCrossRefGoogle Scholar
  67. 67.
    Krems, M., Zwolak, M., Pershin, Y.V., Di Ventra, M.: Effect of noise on DNA sequencing via transverse electronic transport. Biophys. J. 97, 1990–6 (2009)ADSCrossRefGoogle Scholar
  68. 68.
    Chang, S., Huang, S., He, J., Liang, F., Zhang, P., Li, S., Chen, X., Sankey, O., Lindsay, S.: Electronic signatures of all four DNA nucleosides in a tunneling gap. Nano Lett. 10, 1070–5 (2010)ADSCrossRefGoogle Scholar
  69. 69.
    Tsutsui, M., Taniguchi, M., Yokota, K., Kawai, T.: Identifying single nucleotides by tunnelling current. Nat. Nanotechnol. 5, 286–90 (2010)ADSCrossRefGoogle Scholar
  70. 70.
    Ivanov, A.P., Instuli, E., McGilvery, C.M., Baldwin, G., McComb, D.W., Albrecht, T., Edel, J.B.: DNA tunneling detector embedded in a nanopore. Nano Lett. 11, 279–85 (2011)ADSCrossRefGoogle Scholar
  71. 71.
    Bayley, H., Cremer, P.S.: Stochastic sensors inspired by biology. Nature. 413, 226–30 (2001)Google Scholar
  72. 72.
    Butler, T.Z., Pavlenok, M., Derrington, I.M., Niederweis, M., Gundlach, J.H.: Single-molecule DNA detection with an engineered MspA protein nanopore. Proc. Natl. Acad. Sci. U.S.A. 105, 20647–52 (2008)ADSCrossRefGoogle Scholar
  73. 73.
    Wendell, D., Jing, P., Geng, J., Subramaniam, V., Lee, T.J., Montemagno, C., Guo, P.: Translocation of double-stranded DNA through membrane-adapted phi29 motor protein nanopores. Nat. Nanotechnol. 4, 765–772 (2009)ADSCrossRefGoogle Scholar
  74. 74.
    Maglia, G., Restrepo, M.R., Mikhailova, E., Bayley, H.: Enhanced translocation of single DNA molecules through alpha-hemolysin nanopores by manipulation of internal charge. Proc. Natl. Acad. Sci. U.S.A. 105, 19720–5 (2008)ADSCrossRefGoogle Scholar
  75. 75.
    Stoddart, D., Heron, A.J., Mikhailova, E., Maglia, G., Bayley, H.: Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl. Acad. Sci. U.S.A. 106, 7702–7 (2009)ADSCrossRefGoogle Scholar
  76. 76.
    Clarke, J., Wu, H.C., Jayasinghe, L., Patel, A., Reid, S., Bayley, H.: Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265–70 (2009)ADSCrossRefGoogle Scholar
  77. 77.
    Derrington, I.M., Butler, T.Z., Collins, M.D., Manrao, E., Pavlenok, M., Niederweis, M., Gundlach, J.H.: Nanopore DNA sequencing with MspA. Proc. Natl. Acad. Sci. U.S.A. 107, 16060–5 (2010)ADSCrossRefGoogle Scholar
  78. 78.
    Manrao, E.A., Derrington, I.M., Pavlenok, M., Niederweis, M., Gundlach, J.H.: Nucleotide discrimination with DNA immobilized in the MspA nanopore. PLoS One 6, e25723 (2011)ADSCrossRefGoogle Scholar
  79. 79.
    Kawano, R., Schibel, A.E., Cauley, C., White, H.S.: Controlling the translocation of single-stranded DNA through alpha-hemolysin ion channels using viscosity. Langmuir 25, 1233–7 (2009)CrossRefGoogle Scholar
  80. 80.
    de Zoysa, R.S., Jayawardhana, D.A., Zhao, Q., Wang, D., Armstrong, D.W., Guan, X.: Slowing DNA translocation through nanopores using a solution containing organic salts. J. Phys. Chem. B 113, 13332–6 (2009)CrossRefGoogle Scholar
  81. 81.
    Cockroft, S.L., Chu, J., Amorin, M., Ghadiri, M.R.: A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J. Am. Chem. Soc. 130, 818–20 (2008)CrossRefGoogle Scholar
  82. 82.
    Hornblower, B., Coombs, A., Whitaker, R.D., Kolomeisky, A., Picone, S.J., et al.: Single-molecule analysis of DNA-protein complexes using nanopores. Nat. Methods 4, 315–17 (2007)Google Scholar
  83. 83.
    McNally, B., Singer, A., Yu, Z., Sun, Y., Weng, Z., Meller, A.: Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. Nano Lett. 10, 2237–44 (2010)ADSCrossRefGoogle Scholar
  84. 84.
    Healy, K., Schiedt, B., Morrison, A.P.: Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine (Lond.) 2, 875–97 (2007)CrossRefGoogle Scholar
  85. 85.
    Storm, A.J., Storm, C., Chen, J., Zandbergen, H., Joanny, J.-F., Fast, D.C.: Fast DNA translocation through a solid-state nanopore. Nano Lett. 5, 1193–1197 (2005)ADSCrossRefGoogle Scholar
  86. 86.
    He, Y., Tsutsui, M., Fan, C., Taniguchi, M., Kawai, T.: Controlling DNA translocation through gate modulation of nanopore wall surface charges. ACS Nano 5, 5509–18 (2011)CrossRefGoogle Scholar
  87. 87.
    Wanunu, M., Morrison, W., Rabin, Y., Grosberg, A.Y., Meller, A.: Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat. Nanotechnol. 5, 160–5 (2009)ADSCrossRefGoogle Scholar
  88. 88.
    van den Hout, M., Krudde, V., Janssen, X.J., Dekker, N.H.: Distinguishable populations report on the interactions of single DNA molecules with solid-state nanopores. Biophys. J. 99, 3840–8 (2010)CrossRefGoogle Scholar
  89. 89.
    Luan, B., Aksimentiev, A.: Control and reversal of the electrophoretic force on DNA in a charged nanopore. J. Phys. Condens. Matter 22, 454123 (2010)ADSCrossRefGoogle Scholar
  90. 90.
    Smeets, R.M., Kowalczyk, S.W., Hall, A.R., Dekker, N.H., Dekker, C.: Translocation of RecA-coated double-stranded DNA through solid-state nanopores. Nano Lett. 9, 3089–96 (2009)ADSCrossRefGoogle Scholar
  91. 91.
    Lu, B., Albertorio, F., Hoogerheide, D.P., Golovchenko, J.A.: Origins and consequences of velocity fluctuations during DNA passage through a nanopore. Biophys. J. 101, 70–9 (2011)ADSCrossRefGoogle Scholar
  92. 92.
    Trepagnier, E.H., Radenovic, A., Sivak, D., Geissler, P., Liphardt, J.: Controlling DNA capture and propagation through artificial nanopores. Nano Lett. 7, 2824–30 (2007)ADSCrossRefGoogle Scholar
  93. 93.
    Peng, H., Ling, X.S.: Reverse DNA translocation through a solid-state nanopore by magnetic tweezers. Nanotechnology 20, 185101 (2009)ADSCrossRefGoogle Scholar
  94. 94.
    Iqbal, S.M., Akin, D., Bashir, R.: Solid-state nanopore channels with DNA selectivity. Nat. Nanotechnol. 2, 243–8 (2007)ADSCrossRefGoogle Scholar
  95. 95.
    Hall, A.R., Scott, A., Rotem, D., Mehta, K.K., Bayley, H., Dekker, C.: Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores. Nat. Nanotechnol. 5, 874–7 (2010)ADSCrossRefGoogle Scholar
  96. 96.
    Oliver, J., Bready, B., Goldstein, P., Preparata, F.: Biopolymer sequencing by hybridization of probes to form ternary complexes and variable range alignment. US patent application 20090099786 (2008)Google Scholar
  97. 97.
    Garaj, S., Hubbard, W., Reina, A., Kong, J., Branton, D., Golovchenko, J.A.: Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–3 (2010)ADSCrossRefGoogle Scholar
  98. 98.
    Merchant, C.A., Healy, K., Wanunu, M., Ray, V., Peterman, N., Bartel, J., Fischbein, M.D., Venta, K., Luo, Z., Johnson, A.T., Drndić, M.: DNA translocation through graphene nanopores. Nano Lett. 10, 2915–21 (2010)ADSCrossRefGoogle Scholar
  99. 99.
    Schneider, G.F., Kowalczyk, S.W., Calado, V.E., Pandraud, G., Zandbergen, H.W., Vandersypen, L.M., Dekker, C.: DNA translocation through graphene nanopores. Nano Lett. 10, 3163–7 (2010)ADSCrossRefGoogle Scholar
  100. 100.
    Sathe, C., Zou, X., Leburton, J.P., Schulten, K.: Computational investigation of DNA detection using graphene nanopores. ACS Nano. 11, 8842–51 (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • John F. Thompson
    • 1
  • Fatih Ozsolak
    • 2
  • Patrice M. Milos
    • 3
  1. 1.NABsys Inc.ProvidenceUSA
  2. 2.Helicos BioSciences CorporationCambridgeUSA
  3. 3.Pfizer Center for Therapeutic InnovationBostonUSA

Personalised recommendations