Phase Transitions of Hard Spheres Plus Depletants; Basics

  • Henk N. W. Lekkerkerker
  • Remco Tuinier
Part of the Lecture Notes in Physics book series (LNP, volume 833)


In this chapter we discuss the basics of the phase behaviour of hard spheres plus depletants. Phase transitions are the result of physical properties of a collection of particles depending on many-body interactions. In Chap. 2 we focused on two-body interactions. As we shall see, depletion effects are commonly not pair-wise additive. Therefore, the prediction of phase transitions of particles with depletion interaction is not straightforward. As a starting point a description is required for the thermodynamic properties of the pure colloidal dispersion. Here the colloid-atom analogy, recognized by Einstein and exploited by Perrin in his classical experiments, is very useful. Subsequently, we explain the basics of the free volume theory for the phase behaviour of colloids  +  depletants. In this chapter we treat only simplest type of depletant, the penetrable hard sphere.


Free Volume Phase Behaviour Hard Sphere Crystal Transition Free Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Einstein, Ann. Phys. 17, 549 (1905)CrossRefGoogle Scholar
  2. 2.
    J. Perrin, Ann. de Chem. et de Phys. 18, 5 (1909)Google Scholar
  3. 3.
    L. Onsager, Ann. N. Y. Acad. Sci. 51, 627 (1949)ADSCrossRefGoogle Scholar
  4. 4.
    M. Baus, L.F. Rull, J.P. Ryckaert (eds.), Observation and Simulation of Phase Transitions in Complex Fluids (Kluwer Academic Publishers, Dordrecht, 1995)Google Scholar
  5. 5.
    A.K. Arora, B.V.R. Tata (eds.), Phase Transitions in Charge Stabilized Colloids (VCH Publishers, New York, 1996)Google Scholar
  6. 6.
    J.G. Kirkwood, J. Chem. Phys. 7, 919 (1939)ADSCrossRefGoogle Scholar
  7. 7.
    W.W. Wood, J.D. Jacobson, J. Chem. Phys. 27, 1207 (1957)ADSCrossRefGoogle Scholar
  8. 8.
    B.J. Alder, T.E. Wainwright, J. Chem. Phys. 27, 1208 (1957)Google Scholar
  9. 9.
    P.N. Pusey, W. Van Megen, Nature 320, 340 (1986)Google Scholar
  10. 10.
    W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal Dispersions. (Cambridge Universtity Press, Cambridge, 1999)Google Scholar
  11. 11.
    W.G. Hoover, F.H. Ree, J. Chem. Phys. 49, 3609 (1968)ADSCrossRefGoogle Scholar
  12. 12.
    N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635 (1969)ADSCrossRefGoogle Scholar
  13. 13.
    A. Fortini, M. Dijkstra, R. Tuinier, J. Phys. Condens. Matter. 17, 7783–7803 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids. (Academic Press, San Diego, 1986)Google Scholar
  15. 15.
    D.A. McQuarrie, Statistical Mechanics. (University Science Books, Sausalito, 2000)zbMATHGoogle Scholar
  16. 16.
    A. Malijevský, J. Kolafa, Introduction to the thermodynamics of hard spheres and related systems, in Theory and Simulation of Hard-Sphere Fluids and Related Systems, Lecture Notes in Physics, vol. 753 (Springer, Berlin, 2008)Google Scholar
  17. 17.
    J.E. Lennard-Jones, A.F. Devonshire, Proc. Roy. Soc. 163, 53 (1937)ADSCrossRefGoogle Scholar
  18. 18.
    R.J. Buehler, R.H. Wentorf, J.O. Hirschfelder, C.F. Curtis, J. Chem. Phys. 19, 61 (1951)ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    B.J. Alder, W.G. Hoover, D.A. Young, J. Chem. Phys. 49, 3688 (1968)ADSCrossRefGoogle Scholar
  20. 20.
    D. Frenkel, A.J.C. Ladd, J. Chem. Phys. 81, 3188 (1984)ADSCrossRefGoogle Scholar
  21. 21.
    T. Alfrey, E.B. Bradford, J.F. Vanderhof, G. Oster, J. Opt. Soc. Amer. 44, 603 (1954)ADSCrossRefGoogle Scholar
  22. 22.
    E.W. Fischer, Kolloid Z 160, 120 (1958)Google Scholar
  23. 23.
    W. Luck, M. Klier, H. Weslau, Ber Buns. Phys. Chem. 67, 75 (1963)Google Scholar
  24. 24.
    C.G. de Kruif, P.W. Rouw, J.W. Jansen, A. Vrij, J. de Phys. 46, C3-295 (1985)Google Scholar
  25. 25.
    A.P. Gast, C.K. Hall, W.B. Russel, J. Colloid Interface Sci. 96, 251 (1983)CrossRefGoogle Scholar
  26. 26.
    B. Vincent, J. Edwards, S. Emmett, R. Croot, Colloids and Surf. 31, 267 (1988)Google Scholar
  27. 27.
    H.N.W. Lekkerkerker, W.C.K. Poon, P.N. Pusey, A. Stroobants, P.B. Warren, Europhys. Lett. 20, 559 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    G.J. Fleer, R. Tuinier, Adv. Colloid Interface Sci. 143, 1–47 (2008)CrossRefGoogle Scholar
  29. 29.
    G.J. Fleer, R. Tuinier, Phys. A 379, 52 (2007)Google Scholar
  30. 30.
    B. Widom, J. Chem. Phys. 39, 2808 (1963)ADSCrossRefGoogle Scholar
  31. 31.
    H. Reiss, H.L. Frisch, J.L. Lebowitz, J. Chem. Phys. 31, 369 (1959)ADSCrossRefMathSciNetGoogle Scholar
  32. 32.
    E.J. Meijer, Computer simulation of molecular solids and colloidal dispersions, PhD thesis, Utrecht University, Utrecht (1993)Google Scholar
  33. 33.
    M. Dijkstra, R. van Roij, R. Roth, A. Fortini, Phys. Rev. E 73, 041409 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    A. Moncho-Jorda, A.A. Louis, P.G. Bolhuis, R. Roth, J. Phys. Condens. Matter. 15, S3429 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Van ’t Hoff LaboratoryUtrecht UniversityUtrechtThe Netherlands
  2. 2.Colloids & Interfaces Group, Advanced Chemical Engineering SolutionsDSM ResearchGeleenThe Netherlands

Personalised recommendations