Computational Model for the Regulation of Extracellular ATP and Adenosine in Airway Epithelia

  • Guilherme J. M. Garcia
  • Maryse Picher
  • Peiying Zuo
  • Seiko F. Okada
  • Eduardo R. Lazarowski
  • Brian Button
  • Richard C. Boucher
  • Tim C. Elston
Part of the Subcellular Biochemistry book series (SCBI, volume 55)


Extracellular nucleotides are key components of the signaling network regulating airway clearance. They are released by the epithelium into the airway surface liquid (ASL) to stimulate cilia beating activity, mucus secretion and airway hydration. Understanding the factors affecting their availability for purinoceptor activation is an important step toward the development of new therapies for obstructive lung diseases. This chapter presents a mathematical model developed to gain predictive insights into the regulation of ASL nucleotide concentrations on human airway epithelia. The parameters were estimated from experimental data collected on polarized primary cultures of human nasal and bronchial epithelial cells. This model reproduces major experimental observations: (1) the independence of steady-state nucleotide concentrations on ASL height, (2) the impact of selective ectonucleotidase inhibitors on their steady-state ASL concentrations, (3) the changes in ASL composition caused by mechanical stress mimicking normal breathing, (4) and the differences in steady-state concentrations existing between nasal and bronchial epithelia. In addition, this model launched the study of nucleotide release into uncharted territories, which led to the discovery that airway epithelia release, not only ATP, but also ADP and AMP. This study shows that computational modeling, coupled to experimental validation, provides a powerful approach for the identification of key therapeutic targets for the improvement of airway clearance in obstructive respiratory diseases.


Extracellular nucleotide regulation Mathematical model Cystic fibrosis Airway surface liquid volume regulation Signaling pathway 


  1. 1.
    Zuo P, Picher M, Okada SF, Lazarowski ER, Button B, Boucher RC, Elston TC (2008) Mathematical model of nucleotide regulation on airway epithelia: implications for airway homeostasis. J Biol Chem 283:26805–26819PubMedCrossRefGoogle Scholar
  2. 2.
    Davis WC (2008) Regulation of mucin secretion from in vitro cellular models. In: Chadwick DJ, Goode JA (eds) Mucus hypersecretion in respiratory diseases. John Wiley & Sons, Chichester, UK, pp 113–125Google Scholar
  3. 3.
    Williams OW, Sharafkhaneh A, Kim V, Dickey BF, Evans CM (2006) Airway mucus: from production to secretion. Am J Respir Cell Mol Biol 34:527–536PubMedCrossRefGoogle Scholar
  4. 4.
    Donaldson SH, Boucher RC (1998) Therapeutic applications for nucleotides in lung disease. In: Turner JT, Wiesman GA, Fedan JS (eds) The P2 nucleotide receptors. Humana Press, Totowa, pp 413–424Google Scholar
  5. 5.
    Marcet B, Boeynaems JM (2006) Relationships between cystic fibrosis transmembrane conductance regulator, extracellular nucleotides and cystic fibrosis. Pharmacol Ther 112:719–732PubMedCrossRefGoogle Scholar
  6. 6.
    Boucher RC (2007) Cystic fibrosis: a disease of vulnerability to airway surface dehydration. Trends Mol Med 13:231–240PubMedCrossRefGoogle Scholar
  7. 7.
    Boucher RC (2007) Evidence for airway surface dehydration as the initiating event in CF airway disease. J Intern Med 261:5–16PubMedCrossRefGoogle Scholar
  8. 8.
    Kellerman D, Rossi Mospan A, Engels J, Schaberg A, Gorden J, Smiley L (2008) Denufosol: a review of studies with inhaled P2Y2 agonists that led to Phase 3. Pulm Pharmacol Ther 21:600–607PubMedCrossRefGoogle Scholar
  9. 9.
    Button B, Picher M, Boucher RC (2007) Differential effects of cyclic and constant stress on ATP release and mucociliary transport by human airway epithelia. J Physiol 580:577–592PubMedCrossRefGoogle Scholar
  10. 10.
    Okada SF, Nicholas RA, Kreda SM, Lazarowski ER, Boucher RC (2006) Physiological regulation of ATP release at the apical surface of human airway epithelia. J Biol Chem 281:22992–23002PubMedCrossRefGoogle Scholar
  11. 11.
    Picher M, Boucher RC (2000) Biochemical evidence for an ecto alkaline phosphodiesterase I in human airways. Am J Respir Cell Mol Biol 23:255–261PubMedGoogle Scholar
  12. 12.
    Picher M, Boucher RC (2003) Human airway ecto-adenylate kinase. A mechanism to propagate ATP signaling on airway surfaces. J Biol Chem 278:11256–11264PubMedCrossRefGoogle Scholar
  13. 13.
    Hirsh AJ, Stonebraker JR, van Heusden CA, Lazarowski ER, Boucher RC, Picher M (2007) Adenosine deaminase 1 and concentrative nucleoside transporters 2 and 3 regulate adenosine on the apical surface of human airway epithelia: implications for inflammatory lung diseases. Biochemistry 46:10373–10383PubMedCrossRefGoogle Scholar
  14. 14.
    Picher M, Burch LH, Hirsh AJ, Spychala J, Boucher RC (2003) Ecto 5'-nucleotidase and nonspecific alkaline phosphatase. Two AMP-hydrolyzing ectoenzymes with distinct roles in human airways. J Biol Chem 278:13468–13479PubMedCrossRefGoogle Scholar
  15. 15.
    Picher M, Boucher RC (2001) Metabolism of extracellular nucleotides in human airways by a multienzyme system. Drug Dev Res 52:66–75CrossRefGoogle Scholar
  16. 16.
    Picher M, Burch LH, Boucher RC (2004) Metabolism of P2 receptor agonists in human airways: implications for mucociliary clearance and cystic fibrosis. J Biol Chem 279:20234–20241PubMedCrossRefGoogle Scholar
  17. 17.
    Lazarowski ER, Tarran R, Grubb BR, van Heusden CA, Okada S, Boucher RC (2004) Nucleotide release provides a mechanism for airway surface liquid homeostasis. J Biol Chem 279:36855–36864PubMedCrossRefGoogle Scholar
  18. 18.
    Donaldson SH, Lazarowski ER, Picher M, Knowles MR, Stutts MJ, Boucher RC (2000) Basal nucleotide levels, release, and metabolism in normal and cystic fibrosis airways. Mol Med 6:969–982PubMedGoogle Scholar
  19. 19.
    Valero E, Varon R, Garcia-Carmona F (2006) A kinetic study of a ternary cycle between adenine nucleotides. FEBS J 273:3598–3613PubMedCrossRefGoogle Scholar
  20. 20.
    Lazarowski ER, Boucher RC, Harden TK (2000) Constitutive release of ATP and evidence for major contribution of ecto-nucleotide pyrophosphatase and nucleoside diphosphokinase to extracellular nucleotide concentrations. J Biol Chem 275:31061–31068PubMedCrossRefGoogle Scholar
  21. 21.
    Bzowska A, Kulikowska E, Shugar D (2000) Purine nucleoside phosphorylases: properties, functions, and clinical aspects. Pharmacol Ther 88:349–425PubMedCrossRefGoogle Scholar
  22. 22.
    Yamamoto T, Moriwaki Y, Fujimura Y, Takahashi S, Tsutsumi Z, Tsutsui T, Higashino K, Hada T (2000) Effect of TEI-6720, a xanthine oxidase inhibitor, on the nucleoside transport in the lung cancer cell line A549. Pharmacology 60:34–40PubMedCrossRefGoogle Scholar
  23. 23.
    Tarran R, Button B, Boucher RC (2006) Regulation of normal and cystic fibrosis airway surface liquid volume by phasic shear stress. Annu Rev Physiol 68:543–561PubMedCrossRefGoogle Scholar
  24. 24.
    Burch L, Picher M (2006) E-NTPDases in human airways: regulation and relevance for chronic lung diseases. Purinergic Signal 2:399–408PubMedCrossRefGoogle Scholar
  25. 25.
    Schwiebert EM, Zsembery A (2003) Extracellular ATP as a signaling molecule for epithelial cells. Biochim Biophys Acta 1615:7–32PubMedCrossRefGoogle Scholar
  26. 26.
    Bennett WD, Olivier KN, Zeman KL, Hohneker KW, Boucher RC, Knowles MR (1996) Effect of uridine 5′-triphosphate plus amiloride on mucociliary clearance in adult cystic fibrosis. Am J Respir Crit Care Med 153:1796–1801PubMedGoogle Scholar
  27. 27.
    Basoglu OK, Pelleg A, Essilfie-Quaye S, Brindicci C, Barnes PJ, Kharitonov SA (2005) Effects of aerosolized adenosine 5′-triphosphate vs adenosine 5′-monophosphate on dyspnea and airway caliber in healthy nonsmokers and patients with asthma. Chest 128:1905–1909PubMedCrossRefGoogle Scholar
  28. 28.
    Knight GE, Bodin P, De Groat WC, Burnstock G (2002) ATP is released from guinea pig ureter epithelium on distension. Am J Physiol 282:F281–288Google Scholar
  29. 29.
    Hirschberg CB, Robbins PW, Abeijon C (1998) Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem 67:49–69PubMedCrossRefGoogle Scholar
  30. 30.
    Bodin P, Burnstock G (2001) Evidence that release of adenosine triphosphate from endothelial cells during increased shear stress is vesicular. J Cardiovasc Pharmacol 38:900–908PubMedCrossRefGoogle Scholar
  31. 31.
    Kreda SM, Okada SF, van Heusden CA, O'Neal W, Gabriel S, Abdullah L, Davis CW, Boucher RC, Lazarowski ER (2007) Coordinated release of rime;nucleotides and mucin from human airway epithelial Calu-3 cells. J Physiol 584:245–259PubMedCrossRefGoogle Scholar
  32. 32.
    Kreda SM, Seminario-Vidal L, van Heusden CA, O'Neal W, Jones L, Boucher RC, Lazarowski ER (2010) Receptor-promoted exocytosis of airway epithelial mucin granules containing a spectrum of adenine nucleotides. J Physiol 588:2255–2267PubMedCrossRefGoogle Scholar
  33. 33.
    Battogtokh D, Asch DK, Case ME, Arnold J, Schuttler HB (2002) An ensemble method for identifying regulatory circuits with special reference to the qa gene cluster of Neurospora crassa. Proc Natl Acad Sci USA 99:16904–16909PubMedCrossRefGoogle Scholar
  34. 34.
    Jackson EK, Raghvendra DK (2004) The extracellular cyclic AMP-adenosine pathway in renal physiology. Annu Rev Physiol 66:571–599PubMedCrossRefGoogle Scholar
  35. 35.
    Paradiso AM, Mason SJ, Lazarowski ER, Boucher RC (1995) Membrane-restricted regulation of Ca2+ release and influx in polarized epithelia. Nature 377:643–646PubMedCrossRefGoogle Scholar
  36. 36.
    Feigl EO (2004) Berne’s adenosine hypothesis of coronary blood flow control. Am J Physiol 287:H1891–1894Google Scholar
  37. 37.
    Fleetwood G, Coade SB, Gordon JL, Pearson JD (1989) Kinetics of adenine nucleotide catabolism in coronary circulation of rats. Am J Physiol 256:H1565–1572PubMedGoogle Scholar
  38. 38.
    Deussen A (2000) Quantitative integration of different sites of adenosine metabolism in the heart. Ann Biomed Eng 28:877–883PubMedCrossRefGoogle Scholar
  39. 39.
    Kroll K, Deussen A, Sweet IR (1992) Comprehensive model of transport and metabolism of adenosine and S-adenosylhomocysteine in the guinea pig heart. Circ Res 71:590–604PubMedGoogle Scholar
  40. 40.
    Bassingthwaighte JB, Raymond GM, Ploger JD, Schwartz LM, Bukowski TR (2006) GENTEX, a general multiscale model for in vivo tissue exchanges and intraorgan metabolism. Philos Trans A Math Phys Eng Sci 364:1423–1442CrossRefGoogle Scholar
  41. 41.
    Gordon EL, Pearson JD, Slakey LL (1986) The hydrolysis of extracellular adenine nucleotides by cultured endothelial cells from pig aorta. Feed-forward inhibition of adenosine production at the cell surface. J Biol Chem 261:15496–15507PubMedGoogle Scholar
  42. 42.
    Tune JD, Richmond KN, Gorman MW, Olsson RA, Feigl EO (2000) Adenosine is not responsible for local metabolic control of coronary blood flow in dogs during exercise. Am J Physiol 278:H74–84Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Guilherme J. M. Garcia
    • 1
  • Maryse Picher
    • 2
  • Peiying Zuo
    • 1
  • Seiko F. Okada
    • 2
  • Eduardo R. Lazarowski
    • 2
  • Brian Button
    • 2
  • Richard C. Boucher
    • 2
  • Tim C. Elston
    • 1
  1. 1.Department of PharmacologyUniversity of North CarolinaChapel HillUSA
  2. 2.Cystic Fibrosis Pulmonary Research and Treatment CenterUniversity of North CarolinaChapel HillUSA

Personalised recommendations