Demonstration of an all-diode pumped soft x-ray laser and other advances in table-top soft x-ray lasers

  • Jorge J. Rocca
  • B. Reagan
  • F. Furch
  • Y. Wang
  • D. Alessi
  • D. H. Martz
  • M. Berrill
  • V. N. Shlyaptsev
  • B. M. Luther
  • A. H. Curtis
Part of the Springer Proceedings in Physics book series (SPPHY, volume 136)

Abstract

We report the first demonstration of an all-diode-pumped soft xray laser system. Lasing was achieved in the λ?= 18.9 nm line of Ni-like Mo ions pumping with a diode-pumped cryo-cooled Yb:YAG chirped-pulse-amplification laser system that generates 1 J pulses of 8.5 ps duration. Driver lasers pump by diodes opens the possibility to develop a new generation more compact soft x-ray lasers operating at significantly increased repetition rates for applications.

In a separate development we have demonstrated a gain-saturated table-top λ=10.9 nm laser operating at 1 Hz repetition rate with an average power of 1 µW in the \( {\rm 4\;d{^1}\;S_{0}\longrightarrow4\;p^{1}\;P_{1}}\) transition of nickel-like Te and observed lasing at 8.8 nm in nickellike La in plasmas exited by a Ti:sapphire laser. Utilizing the same pump laser we obtained laser pulse energies of up to 10 µJ and an average power of 20 µW in the 13.9 nm line of Ni-like Ag.

In a third set of experiments we characterized the beam properties of an injection-seeded soft x-ray laser based on the amplification of high harmonic pulses in a solid-target plasma soft x-ray laser amplifier. Injection-seeding is shown to dramatically improve the far-field laser beam profile and reduce the beam divergence. Measurements and 2-dimensional simulations for a 13.9 nm nickel-like Ag amplifier show that the amplified beam divergence depends strongly on the seed divergence, and can therefore be tailored by selecting it.

Keywords

Pump Laser Sapphire Laser High Average Power Regenerative Amplifier Chirp Pulse Amplification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Alessi, D.H. Martz, Y. Wang, M. Berrill, B.M. Luther, and J.J. Rocca, Opt. Lett. 35, 414 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    D. Martz, D. Alessi, B.M. Luther, Y. Wang, D. Kemp, M. Berrill, and J.J. Rocca, Opt. Lett. 35, 1632 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    F. Furch, B. Reagan, B. Luther, A. Curtis, S. Meehan and J.J. Rocca, Opt. Lett. 34, 3352 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    R. Keenan, J. Dunn, P. K. Patel, D. F. Price, R. F. Smith, and V. N. Shlyaptsev, Phys. Rev. Lett. 94, 103901 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    B. M. Luther, Y. Wang, M. A. Larotonda, D. Alessi, M. Berrill, M. C. Marconi, J. J. Rocca, and V. N. Shlyaptsev, Opt. Lett. 30, 165-167 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    G. Vaschenko et al., Opt. Lett. 31, 1214 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    F. Brizuela, S. Carbajo, A. Sakdinawat, D. Alessi, D.H. Martz, Y. Wang, B. Luther, K.A. Goldberg, 1. Mochi, D. T. Attwood, B. La Fontaine, J.J. Rocca, and C.S. Menoni, Opt. Express, 18, 14467 (2010).Google Scholar
  8. 8.
    H. Daido, S. Ninomiya, T. Imani, R. Kodama, M. Takagi, Y. Kato, K. Murai, J. Zhang, Y. You, and Y. Gu, Opt. Lett. 21, 958-960 (1996).ADSCrossRefGoogle Scholar
  9. 9.
    Y. Wang, M.A. Larotonda, B.M. Luther, D. Alessi, M. Berrill, V.N. Shlyaptsev, Phys. Rev. A 72, 053807 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    H. T. Kim, 1. W. Choi, N. Hafz, J. H. Sung, T. J. Yu, K. H. Hong, T. M. Jeong, Y. C. Noh, D. K. Ko, K. A. Janulewicz, J. Tümmler, P. V. Nickles, W. Sandner, and J. Lee, Phys. Rev. A 77, 023807 (2008).Google Scholar
  11. 11.
    J. Dunn, Y. Li, A. L. Osterheld, J. Nilsen, J. R. Hunter, and V. N. Shlyaptsev, Phys. Rev. Lett. 84, 4834 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    T. Kawachi, M. Kado, M. Tanaka, A. Sasaki, N. Hasegawa, A. V. Kilpio, S. Namba, K. Nagashima, P. Lu, K. Takahashi, H. Tang, R. Tai, M. Kishimoto, M. Koike, H. Daido, and Y. Kato, Phys. Rev. A 66, 033815 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    Ph. Zeitoun, et al., Nature 431, 426 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    Y. Wang, E. Granados, M.A. Larotonda, M. Berrill, B.M. Luther, D. Patel, C.S. Menoni, and J.J. Rocca, Physical Review Letters 97, 123901 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Wang, E. Granados, F. Pedaci, D. Alessi, B. Luther, M. Berrill, and J.J. Rocca, Nature Photonics 2, 94 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    Y. Wang, M. Berrill, F. Pedaci, M. M. Shakya, S. Gilbertson, Zenghu Chang, E. Granados, B. M. Luther, M. A. Larotonda, and J. J. Rocca, Phys. Rev. A 79, 023810 (2009).Google Scholar
  17. 17.
    Kawachi, T. et al., Proc. SP1E 5919, 155 (2005).Google Scholar
  18. 18.
    M. Berrill, D. Alessi, Y. Wang, S.R. Domingue, D.H. Martz, B. Luther, Y. Liu, and J. J. Rocca, Optics Lett. 35, 2317 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    A. Klisnick et al. in these Proceedings.Google Scholar

Copyright information

© Canopus Academic Publishing Limited 2011

Authors and Affiliations

  • Jorge J. Rocca
    • 1
    • 2
  • B. Reagan
    • 1
  • F. Furch
    • 1
    • 2
  • Y. Wang
    • 1
  • D. Alessi
    • 1
  • D. H. Martz
    • 1
  • M. Berrill
    • 1
  • V. N. Shlyaptsev
    • 1
  • B. M. Luther
    • 1
  • A. H. Curtis
    • 1
  1. 1.NSF ERC for Extreme Ultraviolet Science and Technology and Department of Electrical and Computer EngineeringColorado State UniversityFort CollinsUSA
  2. 2.Department of PhysicsColorado State UniversityFort CollinsUSA

Personalised recommendations