Source Development and Novel Applications of Laser-Driven Plasma X-ray Lasers in JAEA

  • T. Kawachi
  • N. Hasegawa
  • M. Nishikino
  • M. Ishino
  • T. Imazono
  • T. Ohba
  • T. Kaihori
  • M. Kishimoto
  • Y. Ochi
  • M. Tanaka
  • M. Koike
  • M. Kado
  • K. Namikawa
  • T. Suemoto
  • K. Terakawa
  • T. Tomita
  • M. Yamamoto
  • N. Sarukura
  • H. Nishimura
  • A. Y. Faenov
  • S. Bulanov
  • H. Daido
  • Y. Kato
Part of the Springer Proceedings in Physics book series (SPPHY, volume 136)

Abstract

This paper gives an overview of recent progress in the study of laser-driven plasma x-ray lasers in Japan Atomic Energy Agency (JAEA). Fully spatial coherent plasma soft x-ray laser (SXRL) at 13.9 nm with 0.1 Hz repetition rate is now routinely used in the wide variety of the applications: The highlights of these applications are the study of fluctuation in the atomic structure of ferroelectric substances under the phase transition using double SXRL probe technique and the first observation of surface dynamics of laser ablation with 10 ps-time and 1 nm-depth resolution using a single-shot SXRL interferometer.

Keywords

Ablation Threshold Japan Atomic Energy Agency Polarization Cluster Temporal Correlation Function Imaging Mirror 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Luther B. M., et al., “Saturated high-repetition rate 18.9-nm tabletop laser in nickellike molybdenum” Opt. Lett. 30, 165-167, 2005.ADSCrossRefGoogle Scholar
  2. 2.
    Kawachi T., et al., “Gain saturation of nickel-like silver and tin x-ray lasers by use of a tabletop pumping laser system”, Phys. Rev. A 66, 033815, 2002.ADSCrossRefGoogle Scholar
  3. 3.
    Dunn J, et al., “Gain saturation regime for laser-driven tabletop, transient Ni-like ion x-ray laser”, Phys. Rev. Lett. 84, 4834-4837, 2000.ADSCrossRefGoogle Scholar
  4. 4.
    Tanaka M., et al., “X-ray laser beam with diffraction-limited divergence generated with two gain media”, Opt. Lett. 28, 1680-1682, 2003.ADSCrossRefGoogle Scholar
  5. 5.
    Nishikino M., et al., “Characterization of a high-brilliance soft x-ray laser at 13.9 nm by use of an oscillator-amplifier configuration”, Appl. Opt. 47, 1129-1134, 2008.ADSCrossRefGoogle Scholar
  6. 6.
    Wang Y, et al., “High-brightness injection-seeded soft x-ray-laser amplifier using a solid target.”, Phys. Rev. Lett. 97, 123901, 2006.Google Scholar
  7. 7.
    Ochi Y., et al., “Development of a chirped pulse amplification laser with zigzag slab Nd:glass amplifiers dedicated to x-ray laser research”, Appl. Opt. 46, 1500-1506, 2007.ADSCrossRefGoogle Scholar
  8. 8.
    Tai R. Z., et al., “Picosecond snapshot of the speckle from ferroelectric BaTiOs by means of x-ray lasers”, Phys. Rev. Lett. 89, 257602, 2003.ADSCrossRefGoogle Scholar
  9. 9.
    Tai R. Z., et al., “Picosecond view of microscopic-scale polarization clusters in paraelectric BaTiOs,” Phys. Rev. Lett. 93, 087601, 2004.ADSCrossRefGoogle Scholar
  10. 10.
    Namba S., et al., “Enhancement of double Auger decay probability in Xe clusters irradiated with a SXRL pulse.”, Phys. Rev. Lett. 99, 043004, 2007.Google Scholar
  11. 11.
    Faenov A. Ya., et al., “Low-threshold ablation of dielectrics irradiated by picosecond soft x-ray laser pulses”, Appl. Phys. Lett. 94, 231107, 2009.Google Scholar
  12. 12.
    Namikawa K, et al., “Direct Observation of the Critical Relaxation of Polarization Clusters in BaTiOs Using a Pulsed X-Ray Laser Technique”, Phys. Rev. Lett. 103, 197401, 2009ADSCrossRefGoogle Scholar
  13. 13.
    Suemoto T. et al., “Single-shot picosecond interferometry with one- nanometer resolution for dynamical surface morphlogy using a soft x-ray laser”, Opt. Exp. 18, 14114, 2010.CrossRefGoogle Scholar
  14. 14.
    Faenov A. Ya., et al., “Submicrometer-resolution in situ imaging of the focus pattern of a soft x-ray laser by color center formation in LiF crystal”, Opt. Lett. 34, 941-943, 2009.Google Scholar
  15. 15.
    Inogamov N. A., et al., “Spallative ablation of dielectrics by X-ray laser “, Appl. Phys. A, 101, 87-96, 2009.ADSCrossRefGoogle Scholar
  16. 16.
    Kawachi T and Kato Y, “X-ray absorption by highly charged ions in plasmas: toward photo-pumping x-ray laser”, J. Phys.: Conf. Ser. 163, 012100, 2009.Google Scholar
  17. 17.
    Nishikino M et al., “Application of laser produced plasma Ka x-ray probe in radiation biology”, Rev. Sci. Instr. 81, 026107, 2010.ADSCrossRefGoogle Scholar

Copyright information

© Canopus Academic Publishing Limited 2011

Authors and Affiliations

  • T. Kawachi
    • 1
  • N. Hasegawa
    • 1
  • M. Nishikino
    • 1
  • M. Ishino
    • 1
  • T. Imazono
    • 1
  • T. Ohba
    • 1
  • T. Kaihori
    • 1
  • M. Kishimoto
    • 1
  • Y. Ochi
    • 1
  • M. Tanaka
    • 1
  • M. Koike
    • 1
  • M. Kado
    • 1
  • K. Namikawa
    • 2
  • T. Suemoto
    • 3
  • K. Terakawa
    • 3
  • T. Tomita
    • 4
  • M. Yamamoto
    • 1
    • 4
  • N. Sarukura
    • 5
  • H. Nishimura
    • 5
  • A. Y. Faenov
    • 1
  • S. Bulanov
    • 1
  • H. Daido
    • 6
  • Y. Kato
    • 7
  1. 1.Quantum Beam Science DirectorateJapan Atomic Energy Agency (JAEA)NakaJapan
  2. 2.Department of PhysicsTokyo University of ScienceTokyoJapan
  3. 3.Institute of Solid State Physics (ISSP)University of TokyoTokyoJapan
  4. 4.Faculty of EngineeringUniversity of TokushimaTokushimaJapan
  5. 5.Institute of Laser Engineering (ILE)Osaka UniversityOsakaJapan
  6. 6.Applied Laser Technology InstituteJapan Atomic Energy Agency (JAEA)NakaJapan
  7. 7.Graduate School for the Creation of New Photonics Industries (GPI)SizuokaJapan

Personalised recommendations