Generation of Coherent X-Ray Radiation with Relativistic Nonlinear Processes

  • Y. Kato
  • M. Kando
  • A. S. Pirozhkov
  • T. Zh. Esirkepov
  • K. Kawase
  • H. Daido
  • H. Kiriyama
  • S. V. Bulanov
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 136)

Abstract

Generation of coherent x-ray radiation with plasmas at relativistic intensities is a promising approach which can be scaled to shorter wavelengths without being limited by ionization as in atomic harmonics and plasma x-ray lasers. Here we report experimental results of the two approaches: frequency up-shifting with a relativistic flying mirror and high order harmonic generation in underdense relativistic plasma. Although investigations are in initial stages, both approaches are promising for generating bright x-ray radiation in the xuv to x-ray regions.

Keywords

Coherent Radiation Source Pulse High Order Harmonic Generation Wake Wave Plasma Mirror 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Matthews, D.L., Hagelstein, P.L., Rosen, M.D., et al.:: ‘Demonstration of a soft x-ray amplifier’, Phys. Rev. Lett. 54, 110-113, 1985.ADSCrossRefGoogle Scholar
  2. 2.
    Suckewer. S., Skinner, C.H., Milchberg, H., Keane, C., and Voorhees, D.: ‘Amplification of stimulated soft-x-ray emission in a confined plasma column’, Phys. Rev. Lett. 55, 1753-1756, 1985.Google Scholar
  3. 3.
    MacGowan, B.J., Maxon, S., Da Silva, L.B., et al.:: ‘Demonstration of x-ray amplifier near the carbon K edge’, Phys. Rev. Lett. 65, 420-423, 1990.ADSCrossRefGoogle Scholar
  4. 4.
    Nickles, P.V., Shlyaptsev, V.N., Kalacknikov, M., Schnurer, M., Will, I., and Sandner, W.: ‘Short pulse x-ray laser at 32.6 nm based on transient gain in neonlike titanium’, Phys. Rev. Lett. 78, 2748-2751, 1997.ADSCrossRefGoogle Scholar
  5. 5.
    Keenan, R. Dunn, J., Patel, P.K., Price, D.F., Smith, R.F., and Shlyaptsev, V.N.: ‘High repetition-rate grazing-incidence pumped x-ray laser operating at 18.9 nm’, Phys. Rev. Lett. 94, 103901, 2005.Google Scholar
  6. 6.
    Benware, B.R., Macchietto, C.D., Moreno, C.H., and Rocca, J.J.: ‘Demonstration of a high average power tabletop soft x-ray laser’, Phys. Rev. Lett. 81, 5804-5807, 1998.ADSCrossRefGoogle Scholar
  7. 7.
    Takahashi, E.J., Kanai, T., Ishikawa, K.L., Nabekawa, Y., and Midorikawa, K.: ‘Coherent water window x ray by phase-matched high-order harmonic generation in neutral media’, Phys. Rev. Lett. 101, 253901, 2008.ADSCrossRefGoogle Scholar
  8. 8.
    Ayvazyan, V., Baboi, N., Bahr, J. et al.,:: ‘First operation of a free-electron laser generating GW power radiation at 32 nm wavelength’, Eur. Phys. J. D 37, 297303, 2006.Google Scholar
  9. 9.
    Shintake, T., Tanaka, H., Hara, T., et al.:: A compact free-electron laser for generating coherent radiation in the extreme ultraviolet region’, Nature Photonics 2, 555-559, 2008.CrossRefGoogle Scholar
  10. 10.
    Emma, P., Akre, R., Arthur, J. et al.:: ‘First lasing and operation of an angstrom- wavelength free-electron laser’, Nature Photonics 4, 641-647, 2010.ADSCrossRefGoogle Scholar
  11. 11.
    Kato, Y. and Kawachi, T.: ‘Prospect of Laser-Driven X-Ray Lasers for Extention to Shorter Wavelengths’, Progress in Ultrafast Intense Laser Science IV215-232, Springer 2008.Google Scholar
  12. 12.
    Esarey, E., Ride, S.K, and Sprangle, P.: ‘Nonlinear Thomson scattering of intense laser pulses from beams and plasmas’, Phys. Rev. E 48, 3003-3021, 1993.Google Scholar
  13. 13.
    Ta Phuoc, K., Rousse, A., Pittman, M., et al.,: ‘X-ray radiation from non linear Thomson scattering of an intense femtosecond laser on relativistic electrons in a helium plasma, Phys. Rev. Lett. 91, 195001, 2003.Google Scholar
  14. 14.
    Rousse, A., Ta Phuoc, K., Shah, R., et al.,:: "Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction,’ Phys. Rev. Lett. 93, 135005, 2004.Google Scholar
  15. 15.
    Teubner, U. and Gibbon, P.: ‘High-order harmonics from laser-irradiated plasma surfaces’, Rev. Mod. Phys. 81, 445-479, 2009.ADSCrossRefGoogle Scholar
  16. 16.
    Zhidkov, A. G., Koga, J., Sasaki, A., and Uesaka, M.: ‘Radiation damping effects on the interaction of ultraintense laser pulses with an overdense plasma’, Phys. Rev. Lett. 88, 185002, 2002.ADSCrossRefGoogle Scholar
  17. 17.
    Bulanov, S. V., Esirkepov, T. Zh., and Tajima, T.: ‘Light Intensification towards the Schwinger Limit’, Phys. Rev. Lett. 91, 085001, 2003.ADSCrossRefGoogle Scholar
  18. 18.
    Kando, M., Fukuda, Y., Pirozhkov, A. S., et al.: ‘Demonstration of laser- frequency upshift by electron-density modulations in a plasma wakefield’, Phys. Rev. Lett. 99, 135001, 2007.ADSCrossRefGoogle Scholar
  19. 19.
    Pirozhkov, A. S., Ma, J., Kando, M., et al.: ‘Frequency multiplication of light back-reflected from a relativistic wake wave’, Phys. Plasmas 14, 123106, 2007.ADSCrossRefGoogle Scholar
  20. 20.
    Kando, M., Pirozhkov, A. S., Kawase, K., et al.: ‘Enhancement of photon number reflected by the relativistic flying mirror’, Phys. Rev. Lett. 103, 235003, 2009.ADSCrossRefGoogle Scholar
  21. 21.
    Bulanov, S. V., Inovenkov, I. N., Kirsanov, V. I., Naumova, N. M., and Sakhharov, A. S.: ‘Nonlinear depletion of ultrashort and relativistically strong laser-pulses in an underdense plasma’, Phys. Fluids B 4, 1935-1942, 1992.ADSCrossRefGoogle Scholar
  22. 22.
    Lee, K., Cha, Y. H., Shin, M. S., Kim, B. H., and Kim, D.: ‘Relativistic nonlinear Thomson scattering as attosecond x-ray source’, Phys. Rev. E, 67, 026502, 2003.ADSCrossRefGoogle Scholar
  23. 23.
    Esirkepov, T. Zh., Kato, Y. & Bulanov, S. V.: ‘Bow wave from ultraintense electromagnetic pulses in plasmas’, Phys. Rev. Lett. 101, 265001, 2008.ADSCrossRefGoogle Scholar

Copyright information

© Canopus Academic Publishing Limited 2011

Authors and Affiliations

  • Y. Kato
    • 1
    • 2
  • M. Kando
    • 2
  • A. S. Pirozhkov
    • 2
  • T. Zh. Esirkepov
    • 2
  • K. Kawase
    • 2
  • H. Daido
    • 3
  • H. Kiriyama
    • 2
  • S. V. Bulanov
    • 2
  1. 1.The Graduate School for the Creation of New Photonics IndustriesHamamatsuJapan
  2. 2.Advanced Photon Research CenterJAEAKizugawaJapan
  3. 3.Applied Laser Technology InstituteJAEATsurugaJapan

Personalised recommendations