Critical Scales for Long-Term Socio-ecological Biodiversity Research

  • Thomas DirnböckEmail author
  • Peter Bezák
  • Stefan Dullinger
  • Helmut Haberl
  • Hermann Lotze-Campen
  • Michael Mirtl
  • Johannes Peterseil
  • Stephan Redpath
  • Simron Jit Singh
  • Justin Travis
  • Sander M. J. Wijdeven
Part of the Human-Environment Interactions book series (HUEN, volume 2)


One challenge in the implementation of Long-Term Socio-Ecological Research (LTSER) is the consideration of relevant spatial and temporal scales. Mismatches between the scale(s) on which biodiversity is monitored and analysed, the scale(s) on which biodiversity is managed, and the scale(s) on which conservation policies are implemented have been identified as major obstacles towards halting or reducing biodiversity loss. Based on a meta-analysis of 18 biodiversity studies and a literature review, we discuss here a set of methods suitable to bridge the various scales of socio-ecological systems. For LTSER, multifunctionality of landscapes provides an inevitable link between natural and social sciences. Upscaling approaches from small-scale domains of classical long-term biodiversity research to the broad landscape scale include landscape metrics and spatial modelling. Multidisciplinary, integrated models are tools not only for linking disciplines but also for bridging scales. Models that are capable of analysing societal impacts on landscapes are particularly suitable for interdisciplinary biodiversity research. The involvement of stakeholders should be an integral part of these methods in order to minimise conflicts over local and regional management interventions implementing broad-scale policies. Participatory approaches allow the linkages between the specific scale domains of biodiversity, its management and policies.


Biodiversity Conservation Management Environmental policy Long term ecological research Long term socio-ecological research Scale • Scale mismatch • Cross-scale interaction 



The paper was developed within ALTER-Net, a Network of Excellence funded by the EU within its 6th Framework Programme. Apart from the authors, Rehema White, Erik Framstad, Vegar Bakkestuen, Andreas Richter, Clemens Grünbühel, and Norbert Sauberer, also participated in the project. We wish to thank Anke Fischer, Frederic Archeaux and Frank Wätzold for their valuable comments to an earlier draft of the manuscript. This research contributes to the Global Land Project (


  1. Akcakaya, H. R., McCarthy, M. A., & Pearce, J. L. (1995). Linking landscape data with population viability analysis: Management options for the helmeted honeyeater. Biological Conservation, 73, 169–176.CrossRefGoogle Scholar
  2. Akcakaya, H. R., Radeloff, V. C., & Mladenhoff, H. S. (2004). Integrating landscape and metapopulation modeling approaches: Viability of the sharp-tailed grouse in a dynamic landscape. Conservation Biology, 18, 526–537.CrossRefGoogle Scholar
  3. Ando, A., Camm, J., Polasky, S., & Solow, A. (1998). Species distributions, land values, and efficient conservation. Science, 279, 2126–2128.CrossRefGoogle Scholar
  4. Antrop, M. (2000). Background concepts for integrated landscape analysis. Agriculture, Ecosystems and Environment, 77, 17–28.CrossRefGoogle Scholar
  5. Axtell, R. L., Andrews, C. J., & Small, M. J. (2002). Agent-based modeling and industrial ecology. Journal of Industrial Ecology, 5, 10–13.CrossRefGoogle Scholar
  6. Ayres, R. U., & Kneese, A. (1969). Production, consumption and externalities. The American Economic Review, 59, 282–297.Google Scholar
  7. Boulding, K. E. (1973). The economics of the coming spaceship earth. In H. E. Daly (Ed.), Towards a steady state economy(pp. 3–14). San Francisco: Freeman.Google Scholar
  8. Carpenter, S. R., DeFries, R., Dietz, T., Mooney, H. A., Polasky, S., Reid, W. V., & Scholes, R. J. (2006). Millennium ecosystem assessment: Research needs. Science, 314, 257–258.CrossRefGoogle Scholar
  9. Cash, D. W., & Moser, S. C. (2000). Linking global and local scales: Designing dynamic assessment and management processes. Global Environmental Change, 10, 109–120.CrossRefGoogle Scholar
  10. Cash, D. W., Adger, W. N., Berkes, F., Garden, P., Lebel, L., Olsson, P., Pritchard, L., & Young, O. (2006). Scale and cross-scale dynamics: Governance and information in a multi-level world. Ecology and Society , 11, 8. (Online)
  11. CBD. (2003). Consideration of the results of the meeting on “2010: The global biodiversity challenge”. UNEP/CBD/SBSTTA/9/inf/9, Convention on Biological Diversity, Montreal, Canada.Google Scholar
  12. Conover, M. (2002). Resolving human-wildlife conflicts: The science of wildlife damage management. Boca Raton: CRC Press.Google Scholar
  13. Cullinan, V. I., & Thomas, J. M. (1992). A comparison of quantitative methods for examining landscape pattern and scale. Landscape Ecology, 7, 211–227.CrossRefGoogle Scholar
  14. Cumming, G. S., Cumming, D. H., & Redman, C. L. (2006). Scale mismatches in socio-ecological systems: Causes, consequences, and solutions. Ecology and Society, 11(2), 14.Google Scholar
  15. Dehnen-Schmutz, K., Perrings, C., & Williamson, W. (2004). Controlling Rhododendron ponticumin the British Isles: An economic analysis. Journal of Environmental Management, 70, 323–332.CrossRefGoogle Scholar
  16. Dirnböck, T., Bezák, P., Dullinger, S., Haberl, H., Lotze-Campen, H., Mirtl, M., Peterseil, J., Redpath, S., Singh, S. J., Travis, J., & Wijdeven, S. (2008). Scaling issues in long-term socio-ecological biodiversity research. A review of European cases(Social Ecology Working Paper No. 100). Vienna: IFF Social Ecology. Retrieved from
  17. Drechsler, M., Grimm, V., Mysiak, J., & Wätzold, F. (2007). Differences and similarities between economic and ecological models for biodiversity conservation. Ecological Economics, 62, 203–206.CrossRefGoogle Scholar
  18. Edenhofer, O., Bauer, N., & Kriegler, E. (2005). The impact of technological change on climate protection and welfare: Insights from the model MIND. Ecological Economics, 54, 277–292.CrossRefGoogle Scholar
  19. Edwards-Jones, G., Davies, B., & Hussian, S. (2000). Ecological economics: An introduction. Oxford: Blackwell Science Ltd.Google Scholar
  20. EEA. (2007). Europe’s Environment. The fourth assessment. Copenhagen: European Environment Agency.Google Scholar
  21. Erb, K.-H. (2004). Land-use related changes in aboveground carbon stocks of Austria’s terrestrial ecosystems. Ecosystems, 7, 563–572.CrossRefGoogle Scholar
  22. Farina, A. (2000). The cultural landscape as a model for the integration of ecology and economics. BioScience, 50, 313–320.CrossRefGoogle Scholar
  23. Firbank, L. G., Heard, M. S., Woiwod, I. P., Hawes, C., Haughton, A. J., Champion, G. T., Scott, R. J., Hill, M. O., Dewar, A. M., Squire, G. R., May, M. J., Brooks, D. R., Bohan, A. D., Daniels, R. E., Osborne, J. L., Roy, D. B., Black, H. I. J., Rothery, P., & Perry, J. N. (2003). An introduction to the farm-scale evaluations of genetically modified herbicide tolerant crops. Journal of Applied Ecology, 40, 2–16.CrossRefGoogle Scholar
  24. Fischer-Kowalski, M., & Haberl, H. (2007). Socioecological transitions and global change. Trajectories of social metabolism and land use. Cheltenham/Northampton: Edward Elgar.Google Scholar
  25. Forman, R. T. T., & Godron, M. (1986). Landscape ecology. New York: Wiley.Google Scholar
  26. Freckleton, R. P., Sutherland, W. J., & Watkinson, A. R. (2003). Deciding the future of GM crops in Europe. Science, 302, 994–996.CrossRefGoogle Scholar
  27. Gaube, V., Kaiser, C., Wildenberg, M., Adensam, H., Fleissner, P., Kobler, J., Lutz, J., Schaumberger, A., Schaumberger, J., Smetschka, B., Wolf, A., Richter, A., & Haberl, H. (2009). Combining agent-based and stock-flow modelling approaches in a participative analysis of the integrated land system in Reichraming, Austria. Landscape Ecology, 24, 1149–1165.CrossRefGoogle Scholar
  28. Gezon, L. L., & Paulson, S. (2004). Political ecology across spaces, scales and social groups. New Brunswick: Rutgers University Press.Google Scholar
  29. Giampietro, M. (2004). Multi-scale integrated analysis of agroecosystems. Boca Raton: CRC Press.Google Scholar
  30. Gibson, C. C., Ostrom, E., & Ahn, T. K. (2000). The concept of scale and the human dimension of global change: A survey. Ecological Economics, 32, 217–239.CrossRefGoogle Scholar
  31. Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147–186.CrossRefGoogle Scholar
  32. Gustafson, E. J. (1998). Quantifying landscape spatial pattern: What is the state of art? Ecosystems, 1, 143–156.CrossRefGoogle Scholar
  33. Haberl, H., Erb, K. H., Krausmann, F., Loibl, W., Schulz, N., & Weisz, H. (2001). Changes in ecosystem processes induced by land use: Human appropriation of net primary production and its influence on standing crop in Austria. Global Biogeochemical Cycles, 15, 929–942.CrossRefGoogle Scholar
  34. Haberl, H., Fischer-Kowalski, M., Krausmann, F., Weisz, H., & Winiwarter, V. (2004). Progress towards sustainability? What the conceptual framework of material and energy flow accounting (MEFA) can offer. Land Use Policy, 21, 199–213.CrossRefGoogle Scholar
  35. Haberl, H., Winiwarter, V., Andersson, K., Ayres, R., Boone, C., Castillo, A., Cunfer, G., Fischer-Kowalski, M., Freudenburg, W. R., Furman, E., Kaufmann, R., Krausmann, F., Langthaler, E., Lotze-Campen, H., Mirtl, M., Redman, C. L., Reenberg, A., Wardell, A., Warr, B., & Zechmeister. H. (2006). From LTER to LTSER: Conceptualizing the socio-economic dimension of long-term socio-ecological research. Ecology and Society, 11. (Online)
  36. Haberl, H., Erb, K.-H., Plutzar, C., Fischer-Kowalski, M., & Krausmann, F. (2007). Human appropriation of net primary production (HANPP) as indicator for pressures on biodiversity. In T. Hak, B. Moldan, & A. L. Dahl (Eds.), Sustainability indicators. A scientific assessment(pp. 271–288). Washington, DC/Covelo/London: Island Press.Google Scholar
  37. Ibáñez, I., Clark, J. S., Dietze, M. C., Feeley, K., Hersh, M., LaDeau, S., McBride, A., Welch, N. E., & Wolosin, M. S. (2006). Predicting biodiversity change: Outside the climate envelope, beyond the species–area curve. Ecology, 87, 1896–1906.CrossRefGoogle Scholar
  38. Janssen, A. M. (2004). Agent-based models. In J. Proops & P. Safonov (Eds.), Modelling in ecological economics(pp. 155–172). Cheltenham/Northampton: Edgar Elgar.Google Scholar
  39. Janssen, M. A., & Ostrom, E. (2006). Empirically based, agent-based models. Ecology and Society, 11. (Online)
  40. Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, R., Tilman, D., Loreau, M., & Gonzalez, A. (2004). The metacommunity concept: A framework or multi-scale community ecology. Ecology Letters, 7, 601–613.CrossRefGoogle Scholar
  41. Levin, S. A. (1992). The problem of pattern and scale in ecology. Ecology, 73, 1943–1967.CrossRefGoogle Scholar
  42. Liverman, D., Moran, E. F., Rindfuss, R. R., & Stern, P. C. (1998). People and pixels, linking remote sensing and social science. Washington, DC: National Academy Press.Google Scholar
  43. Manson, S. M., & Evans, T. (2007). Agent-based modelling of deforestation in southern Yucatán, Mexico, and reforestation in the Midwest United States. Proceedings of the National Academy of Sciences of the USA, 104, 20678–20683.CrossRefGoogle Scholar
  44. Meentemeyer, V., & Box, E. O. (1987). Scale effects in landscape studies. In M. G. Turner (Ed.), Landscape heterogeneity and disturbance(pp. 15–34). New York: Springer.CrossRefGoogle Scholar
  45. Millennium Ecosystem Assessment (MEA). (2003). Ecosystems and human well-being, a framework for assessment(Millennium ecosystem assessment series). Washington, DC: Island Press.Google Scholar
  46. Millennium Ecosystem Assessment (MEA). (2005). Ecosystems and human well-being: Biodiversity synthesis. Washington, DC: World Resources Institute.Google Scholar
  47. Mirtl, M. (2010). Introducing the next generation of ecosystem research in Europe: LTER-Europe’s multi-functional and multi-scale approach. In F. Müller, C. Baessler, H. Schubert, & S. Klotz (Eds.), Long-term ecological research: Between theory and application(pp. 75–94). Dordrecht: Springer.CrossRefGoogle Scholar
  48. Mirtl, M., Boamrane, M., Braat, L., Furman, E., Krauze, K., Frenzel, M., Gaube, V., Groner, E., Hester, A., Klotz, S., Los, W., Mautz, I., Peterseil, J., Richter, A., Schentz, H., Schleidt, K., Schmid, M., Sier, A., Stadler, J., Uhel, R., Wildenberg, M., & Zacharias, S. (2009). LTER-Europe design and implementation report – Enabling “next generation ecological science”: report on the design and implementation phase of LTER-Europe under ALTER-Net & management plan 2009/2010. Vienna: Umweltbundesamt, Environment Agency Austria.Google Scholar
  49. Naveh, Z. (2000a). The total human ecosystem: Integrating ecology and economics. BioScience, 50, 357–361.CrossRefGoogle Scholar
  50. Naveh, Z. (2000b). What is holistic landscape ecology? A conceptual introduction. Landscape and Urban Planning, 50, 7–26.CrossRefGoogle Scholar
  51. O’Neill, R. V., Hunsaker, C. T., Timmins, S. P., Jackson, B. L., Jones, K. B., Riiters, K. H., & Wickham, J. D. (1996). Scale problems in reporting landscape pattern at the regional scale. Landscape Ecology, 11, 169–180.CrossRefGoogle Scholar
  52. Pereira, H. M., & Daily, G. D. (2006). Modeling biodiversity dynamics in countryside landscapes. Ecology, 87, 1877–1885.CrossRefGoogle Scholar
  53. Peterson, D. L., & Parker, V. T. (1998). Ecological scale: Theory and application. New York: Columbia University Press.Google Scholar
  54. Rahbek, C. (2005). The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters, 8, 224–239.CrossRefGoogle Scholar
  55. Rastetter, E. B., Aber, J. D., Peters, D. P. C., Ojima, D. S., & Burke, I. C. (2003). Using mechanistic models to scale ecological processes across space and time. BioScience, 53, 68–76.CrossRefGoogle Scholar
  56. Redman, C. L., Grove, J. M., & Kuby, L. L. H. (2004). Integrating social science into the long-term ecological research (LTER) network: social dimensions of ecological change and ecological dimensions of social change. Ecosystems, 7, 161–171.CrossRefGoogle Scholar
  57. Redpath, S. M., Arroyo, B. E., Leckie, F. M., Bacon, P., Bayfield, N., Gutiérrez, R. J., & Thirgood, S. J. (2004). Using decision modelling with stakeholders to reduce human-wildlife conflict: A raptor – Grouse case study. Conservation Biology, 18, 350–359.CrossRefGoogle Scholar
  58. Rees, M., Condit, R., Crawley, M., Pacala, S., & Tilman, D. (2001). Long-term studies of vegetation dynamics. Science, 293, 650–655.CrossRefGoogle Scholar
  59. Reidsma, P., Tekelenburg, T., van den Berg, M., & Alkemade, R. (2006). Impacts of land-use change on biodiversity: An assessment of agricultural biodiversity in the European Union. Agriculture, Ecosystems and Environment, 114, 86–102.CrossRefGoogle Scholar
  60. Root, T., & Schneider, S. H. (2002). Strategic cycling scaling: Bridging five orders of magnitude scale gaps in climatic and ecological studies. Integrated Assessment, 3, 188–200.CrossRefGoogle Scholar
  61. Schröter, D., Cramer, W., Leemans, R., Prentice, I. C., Araújo, M. B., Arnell, N. W., Bondeau, A., Bugmann, H., Carter, T. R., Gracia, A., de la Vega-Leinert, C., Erhard, M., Ewert, F., Glendining, M., House, J. I., Kankaanpää, S., Klein, R. J. T., Lavorel, S., Lindner, M., Metzger, M. J., Meyer, J., Mitchell, T. D., Reginster, I., Rounsevell, M., Sabaté, S., Sitch, S., Smith, B., Smith, J., Smith, P., Sykes, M. T., Thonicke, K., Thuiller, W., Tuck, G., Zaehle, S., & Zierl, B. (2005). Ecosystem service supply and vulnerability to global change in Europe. Science, 310, 1333–1337.CrossRefGoogle Scholar
  62. Singh, S. J., Haberl, H., Gaube, V., Grünbühel, C. M., Lisievici, P., Lutz, J., Mathews, R., Mirtl, M., Vadineanu, A., & Wildenberg, M. (2010). Conceptualising long-term socio-ecological research (LTSER): Integrating socio-economic dimensions. In F. Müller, H. Schubert, & S. Klotz (Eds.), Long-term ecological research, between theory and application(pp. 377–398). Berlin: Springer.CrossRefGoogle Scholar
  63. Spangenberg, J. H. (2007). Biodiversity pressure and the driving forces behind. Ecological Economics, 61, 146–158.CrossRefGoogle Scholar
  64. Stephenson, C. M., MacKenzie, M. L., Edwards, C., & Travis, J. M. J. (2006). Modelling establishment probabilities of an exotic plant, Rhododendron ponticum, invading a heterogeneous, woodland landscape using logistic regression with spatial autocorrelation. Ecological Modelling, 193, 747–758.CrossRefGoogle Scholar
  65. Sustainability A-Test. (2010). Retrieved May 6, 2010, from
  66. Thirgood, S. J., & Redpath, S. M. (2005). Science, politics and human-wildlife conflicts: harriers and grouse in the UK. In R. Woodroffe, S. Thirgood, & A. Rabinowitz (Eds.), People or wildlife: Conflict or coexistence(pp. 192–208). London: Cambridge University Press.Google Scholar
  67. Tilman, D., & Kareiva, P. (1997). Spatial ecology: The role of space in population dynamics and interspecific interaction. Princeton: Princeton University Press.Google Scholar
  68. Tischendorf, L., & Fahrig, E. (2000). How should we measure landscape connectivity? Landscape Ecology, 15, 633–641.CrossRefGoogle Scholar
  69. Travis, J. M. J. (2003). Climate change and habitat destruction: A deadly anthropogenic cocktail. Proceedings of the Royal Society B: Biological Sciences, 270, 1471–2954.CrossRefGoogle Scholar
  70. Turner, M. G. (1989). Landscape ecology: The effect of pattern and process. Annual Review of Ecology and Systematics, 20, 171–197.CrossRefGoogle Scholar
  71. Vermaat, J. E., Eppink, F., van den Bergh, J. C. M., Barendregt, A., & van Belle, J. (2005). Aggregation and the matching of scales in spatial economics and landscape ecology: Empirical evidence and prospects for integration. Ecological Economics, 52, 229–237.CrossRefGoogle Scholar
  72. Vos, C. C., Verboom, J., Opdam, P. F. M., & Ter Braak, C. J. F. (2001). Toward ecologically scaled landscape indices. The American Naturalist, 183, 24–41.CrossRefGoogle Scholar
  73. Wätzold, F., & Drechsler, M. (2005). Spatially uniform versus spatially differentiated compensation payments for biodiversity-enhancing land-use measures. Environmental and Resource Economics, 31, 73–93.CrossRefGoogle Scholar
  74. Wätzold, F., Drechsler, M., Armstrong, C. W., Baumgärtner, S., Grimm, V., Huth, A., Perrings, C., Possingham, H. P., Shogren, J. F., Skonhoft, A., Verboom-Vasiljev, J., & Wissel, C. (2006). Ecological-economic modeling for biodiversity management: Potential, pitfalls, prospects. Conservation Biology, 20, 1034–1041.CrossRefGoogle Scholar
  75. Western, D., & Wright, R. M. (1994). Natural connections: Perspectives in community-based conservation. Washington, DC: Island Press.Google Scholar
  76. Wiens, J. A. (1989). Spatial scaling in ecology. Functional Ecology, 3, 385–397.CrossRefGoogle Scholar
  77. Wilbanks, T. J., & Kates, R. W. (1999). Global change in local places: How scale matters. Climatic Change, 43, 601–628.CrossRefGoogle Scholar
  78. Wrbka, T., Erb, K.-H., Schulz, N. B., Peterseil, J., Hahn, C., & Haberl, H. (2004). Linking pattern and process in cultural landscapes. An empirical study based on spatially explicit indicators. Land Use Policy, 21, 289–306.CrossRefGoogle Scholar
  79. Yoccoz, N. G., Nichols, J. D., & Boulinier, T. (2001). Monitoring of biological diversity in space and time. Trends in Ecology & Evolution, 16, 446–453.CrossRefGoogle Scholar
  80. Young, O., Lambin, E. F., Alcock F., Haberl, H., Karlsson, S. I., McConnell, W. J., Myint, T., Pahl-Wostl, C., Polsky, C., Ramakrishnan, P. S., Scouvart, M., Schröder, H., Verburg, P. (2006). A portfolio approach to analyzing complex human-environment interactions: Institutions and land change. Ecology and Society, 11. (Online)

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Thomas Dirnböck
    • 1
    Email author
  • Peter Bezák
    • 2
  • Stefan Dullinger
    • 3
  • Helmut Haberl
    • 4
  • Hermann Lotze-Campen
    • 5
  • Michael Mirtl
    • 6
  • Johannes Peterseil
    • 6
  • Stephan Redpath
    • 7
  • Simron Jit Singh
    • 4
  • Justin Travis
    • 8
  • Sander M. J. Wijdeven
    • 9
  1. 1.Environment Agency AustriaViennaAustria
  2. 2.Institute of Landscape EcologySlovak Academy of SciencesBratislavaSlovakia
  3. 3.Centre of BiodiversityUniversity of ViennaViennaAustria
  4. 4.Institute of Social Ecology Vienna (SEC)Alpen-Adria Universitaet Klagenfurt, Wien, GrazViennaAustria
  5. 5.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  6. 6.Department of Ecosystem Research and MonitoringEnvironment Agency AustriaViennaAustria
  7. 7.Aberdeen Centre for Environmental Sustainability (ACES)University of AberdeenAberdeenUK
  8. 8.Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
  9. 9.ALTERRAWageningenThe Netherlands

Personalised recommendations