Advertisement

Long-Term Socio-ecological Research in Mountain Regions: Perspectives from the Tyrolean Alps

  • Ulrike TappeinerEmail author
  • Axel Borsdorf
  • Michael Bahn
Chapter
Part of the Human-Environment Interactions book series (HUEN, volume 2)

Abstract

Mountain habitats have been classified as particularly sensitive to changes in land use and climate, which are occurring at increasingly high rates. The Tyrolean Alps host a strong tradition of research on a range of ecological processes in mountain environments, and how they are affected by changing environmental conditions. Research topics, partly studied over several decades, include responses of organisms and of biogeochemical processes to extreme life conditions and to global changes in both terrestrial and aquatic ecosystems. Research sites in the Tyrolean Alps span a vast range in altitude (1,000–3,450 m) and climate. For two valleys/valley sections, socio-economic changes have been documented and past, current and possible future landscape changes have been assessed, evaluating also effects on ecosystem services. The recent research history at the Tyrolean Alps LTSER Platform has shown that a monitoring of the biogeochemistry of target ecosystems combined with an experimental unravelling of global change effects on processes, and the consideration of socioeconomic developments together constitute a fruitful way forward, increasing the value of LTSER sites also for international projects and networks.

Keywords

Land-use Climate change Long term socio-ecological research Mountain ecosystems Semi-natural and natural ecosystems 

References

  1. Auer, I., Böhm, R., Jurkovic, A., Lipa, W., Orlik, A., Potzmann, R., Schoner, W., Ungersbock, M., Matulla, C., Briffa, K., Jones, P., Efthymiadis, D., Brunetti, M., Nanni, T., Maugeri, M., Mercalli, L., Mestre, O., Moisselin, J. M., Begert, M., Muller-Westermeier, G., Kveton, V., Bochnicek, O., Stastny, P., Lapin, M., Szalai, S., Szentimrey, T., Cegnar, T., Dolinar, M., Gajic-Capkaj, M., Zaninovic, K., Majstorovic, Z., & Nieplova, E. (2007). HISTALP – Historical instrumental climatological surface time series of the greater Alpine region 1760–2003. Journal of Climatology, 27, 17–46.CrossRefGoogle Scholar
  2. Bahn, M., & Körner, C. H. (2003). Recent increases in summit flora caused by warming in the Alps. In L. Nagy, G. Grabherr, C. H. Körner, & D. B. A. Thompson (Eds.), Alpine biodiversity in Europe (Ecological Studies 167, pp. 437–442). Berlin: Springer.CrossRefGoogle Scholar
  3. Bahn, M., Knapp, M., Garajova, Z., Pfahringer, N., & Cernusca, A. (2006). Root respiration in temperate mountain grasslands differing in land use. Global Change Biology, 12, 995–1006.CrossRefGoogle Scholar
  4. Bahn, M., Rodeghiero, M., Anderson-Dunn, M., Dore, S., Gimeno, S., Drösler, M., Williams, M., Ammann, C., Berninger, F., Flechard, C., Jones, S., Balzarolo, M., Kumar, S., Newesely, C., Priwitzer, T., Raschi, A., Siegwolf, R., Susiluoto, S., Tenhunen, J., Wohlfahrt, G., & Cernusca, A. (2008). Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems, 11, 1352–1367.CrossRefGoogle Scholar
  5. Bahn, M., Schmitt, M., Siegwolf, R., Richter, A., & Brüggemann, N. (2009). Does photosynthesis affect grassland soil respired CO2 and its carbon isotope composition on a diurnal timescale? New Phytologist, 182, 452–460.CrossRefGoogle Scholar
  6. Bamberger, I., Hörtnagl, L., Schnitzhofer, R., Graus, M., Ruuskanen, T., Müller, M., Dunkel, J., Wohlfahrt, G., & Hansel, A. (2010). BVOC fluxes above mountain grassland. Biogeosciences, 7, 1413–1424.CrossRefGoogle Scholar
  7. Bayfield, N., Barancok, P., Furger, M., Sebastia, M. T., Domínguez, G., Lapka, M., Cudlinova, E., Vescovo, L., Gianelle, D., Cernusca, A., Tappeiner, U., & Drösler, M. (2008). Stakeholder Perceptions of the Impacts of Rural Funding Scenarios on Mountain Landscapes across Europe. Ecosystems, 11, 1368–1382.CrossRefGoogle Scholar
  8. Becker, A., Körner, C. H., Björnsen Gurung, A., Brun, J., Guisan, A., Haeberli, W., & Tappeiner, U. (2007). Altitudinal Gradient Studies and Highland-lowland Linkages in Mountain Biosphere Reserves. Mountain Research and Development, 27, 58–65.CrossRefGoogle Scholar
  9. Beniston, M. (2006). Mountain weather and climate: A general overview and a focus on climatic change in the Alps. Hydrobiologia, 562, 3–16.CrossRefGoogle Scholar
  10. Borsdorf, A. (2004). Innsbruck. From city to cyta? Outskirt development as an indicator of spatial, economic and social development. In G. Dubois-Taine (Ed.), From Helsinki to Nicosia. Eleven case studies & synthesis. European Cities. Insights on Outskirts (pp. 75–96). Brussels: COST Office C10.Google Scholar
  11. Cernusca, A., Tappeiner, U., Agostini, A., Bahn, M., Bezzi, A., Egger, R., Kofler, R., Newesely, C., Orlandi, D., Prock, S., Schatz, H., & Schatz, I. (1992). Ecosystem research on mixed grassland/woodland ecosystems. First results of the EC-STEP-project INTEGRALP on Mt. Bondone. Studi trentini di scienze naturali, Acta Biologica, 67, 99–133.Google Scholar
  12. Cernusca, A., Tappeiner, U., & Bayfield, N. (Eds.). (1999). Land-use changes in European mountain ecosystems. ECOMONT – Concept and results. Berlin: Blackwell Science.Google Scholar
  13. Cernusca, A., Bahn, M., Berninger, F., Tappeiner, U., & Wohlfahrt, G. (2008). Effects of land use changes on sources, sinks and fluxes of carbon in European mountain grasslands. Ecosystems, 11, 1335–1337.CrossRefGoogle Scholar
  14. Chapin, F. S., III, Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., et al. (2000). Consequences of changing biodiversity. Nature, 405, 234–242.CrossRefGoogle Scholar
  15. Díaz, S., Lavorel, S., de Bello, F., Quétier, F., Grigulis, K., & Robson, M. T. (2007). Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences, 104, 20684–20689.CrossRefGoogle Scholar
  16. EEA. (2004). Impacts of Europe’s changing climate – An indicator-based assessment (EEA report No. 2). Copenhagen: EEA.Google Scholar
  17. Ehrendorfer, F. (2004). Anton Kerner von Marilaun als Pionier der botanischen Evolutionsforscher. In M. Petz-Grabenbauer & M. Kiehn (Eds.), Anton Kerner von Marilaun (1831–1898) (pp. 65–76). Vienna: Verlag der Österr. Akademie der Wiss.Google Scholar
  18. Erschbamer, B., Ruth, N. S., & Winkler, E. (2008). Colonization processes on a central Alpine glacier foreland. Journal of Vegetation Science, 19, 855–862.CrossRefGoogle Scholar
  19. Escaravage, N., & Wagner, J. (2004). Pollination effectiveness and pollen dispersal in a Rhododendron ferrugineum (Ericaceae) population. Plant Biology, 6, 606–615.CrossRefGoogle Scholar
  20. Fischer, A. (2010). Glaciers and climate change: Interpretation of 50 years of direct mass balance of Hintereisferner. Global and Planetary Change, 71, 13–26.CrossRefGoogle Scholar
  21. Fischer, A., & Markl, G. (2009). Mass balance measurements on Hintereisferner, Kesselwandferner and Jamtalferner 2003 to 2006: database and results. Zeitschrift für Gletscherkunde und Glazialgeologie, 42, 47–83.Google Scholar
  22. Gärtner, G. (2004). Anton Kerner und die Botanik an der Universität Innsbruck in den Jahren 1860–1878. In M. Petz-Grabenbauer & M. Kiehn (Eds.), Anton Kerner von Marilaun (1831–1898) (pp. 27–36). Vienna: Verlag der Österr. Akademie der Wiss.Google Scholar
  23. Gottfried, M., Pauli, H., Reiter, K., et al. (2002). Potential effects of climate change on alpine and nival plants in the Alps. In C. Körner & E. M. Spehn (Eds.), Mountain biodiversity – A global assessment (pp. 213–223). London/New York: Parthenon Publishing.Google Scholar
  24. Grabherr, G., Gottfried, M., & Pauli, H. (1994). Climate effects on mountain plants. Nature, 369, 448–448.CrossRefGoogle Scholar
  25. Grabherr, G., Gottfried, M., Gruber, A., et al. (1995). Patterns and current changes in alpine plant diversity. In F. S. Chapin & C. Körner (Eds.), Arctic and Alpine biodiversity: Patterns, causes and ecosystem consequences (Ecological Studies 113, pp. 167–181). Berlin: Springer.CrossRefGoogle Scholar
  26. Grabherr, G., Gottfried, M., & Pauli, H. (2010). Climate change impacts in Alpine environments. Geography Compass, 4, 1133–1153.CrossRefGoogle Scholar
  27. Groenendijk, M., Dolman, A. J., van der Molen, M. K., Arneth, A., Delpierre, N., Gash, J. H. C., Leuning, R., Lindroth, A., Richardson, A. D., Verbeek, H., & Wohlfahrt, G. (2011). Assessing parameter variability in a photosynthesis model within and between plant functional types using global Fluxnet eddy covariance data. Agricultural and Forest Meteorology, 151, 22–38.CrossRefGoogle Scholar
  28. Hartmann, T. (2008). The lost origin of chemical ecology in the late 19th century. Proceedings of the National Academy of Sciences, 105, 4541–4546.CrossRefGoogle Scholar
  29. Huelber, K., Ertl, S., Gottfried, M., Reiter, K., & Grabherr, G. (2005). Gourmets or gourmands? Diet selection by large ungulates in high-alpine plant communities and possible impacts on plant propagation. Basic and Applied Ecology, 6, 1–10.CrossRefGoogle Scholar
  30. Huelber, K., Gottfried, M., Pauli, H., Reiter, K., Winkler, M., & Grabherr, G. (2006). Phenological responses of snowbed species to snow removal dates in the Central Alps: Implications for climate warming. Arctic, Antarctic, and Alpine Research, 38, 99–103.CrossRefGoogle Scholar
  31. IPCC. (2007). Climate change 2007. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson (Eds.), Fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.Google Scholar
  32. Ives, J. D., Messerli, B., & Spiess, E. (1997). Mountains of the world: A global priority: Chapter 1. In B. Messerli & J. D. Ives (Eds.), Mountains of the world: A global priority (pp. 1–16). London, New York: Parthenon.Google Scholar
  33. Kamenik, C., Koinig, K. A., Schmidt, R., Appleby, P. G., Dearing, J. A., Lami, A., Thompson, R., & Psenner, R. (2000). Eight hundred years of environmental changes in a high Alpine lake (Gossenköllesee, Tyrol) inferred from sediment records. Journal of Limnology, 59(Suppl. 1), 43–52.Google Scholar
  34. Keller, F., & Körner, C. (2003). The role of photoperiodism in alpine plant development. Arctic, Antarctic, and Alpine Research, 35, 361–368.CrossRefGoogle Scholar
  35. Körner, C. (2003). Alpine plant life – Functional plant ecology of high mountain ecosystems. Heidelberg: Springer.CrossRefGoogle Scholar
  36. Larcher, W. (1977a). Ergebnisse des IBP-Projektes “Zwergstrauchheide Patscherkofel”. Sitzungsbericht der Österreichischen Akademie der Wissenschaften (Wien) Math Naturwiss Kl I, 186, 301–371.Google Scholar
  37. Larcher, W. (1977b). Produktivität und Überlebensstrategien von Pflanzen und Pflanzenbeständen im Hochgebirge. Sitzungsbericht der Österreichischen Akademie der Wissenschaften (Wien) Math Naturwiss Kl I, 186, 373–386.Google Scholar
  38. Larcher, W. (2003). Physiological plant ecology. Berlin/New York: Springer.Google Scholar
  39. Leitinger, G., Höller, P., Tasser, E., Walde, J., & Tappeiner, U. (2008). Development and validation of a spatial snow-glide model. Ecological Modelling, 211, 363–374.CrossRefGoogle Scholar
  40. Leitinger, G., Tasser, E., Newesely, C., Obojes, N., & Tappeiner, U. (2010). Seasonal dynamics of surface runoff in mountain grassland ecosystems differing in land use. Journal of Hydrology, 385, 95–104.CrossRefGoogle Scholar
  41. Marcante, S., Winkler, E., & Erschbamer, B. (2009). Population dynamics along a primary succession gradient: do alpine species fit into demographic succession theory? Annals of Botany, 103, 1129–1143.CrossRefGoogle Scholar
  42. MEA. (2005). Millennium ecosystem assessment. Washington, DC: Island Press.Google Scholar
  43. Mirtl, M., Bahn, M., Battin, T., Borsdorf, A., Englisch, M., Gaube, V., Grabherr, G., Gratzer, G., Haberl, H., Kreiner, D., Richter, A., Schindler, S., Tappeiner, U., Winiwarter, V., & Zink, R. (2010) “Next Generation LTER” in Austria – On the status and orientation of process oriented ecosystem research, biodiversity and conservation research and socio-ecological research in Austria (Vol. 1). LTER-Austria Series. ISBN 978-3-901347-94-8. Retrieved from http://www.lter-austria.at
  44. Moser, W., Brzoska, W., Zachhuber, K., & Larcher, W. (1977). Ergebnisse des IBP-Projektes “Hoher Nebelkogel 3184 m”. Sitzungsbericht der Österreichischen Akademie der Wissenschaften (Wien) Math Naturwiss Kl I, 186, 378–419.Google Scholar
  45. Neuner, G., & Pramsohler, M. (2006). Freezing and high temperature thresholds of photosystem 2 compared to ice nucleation, frost and heat damage in evergreen subalpine plants. Physiologia Plantarum, 126, 196–204.CrossRefGoogle Scholar
  46. Niedrist, G., Tasser, E., Lüth, C., Dalla, V. J., & Tappeiner, U. (2009). Plant diversity declines with recent land use changes in European Alps. Plant Ecology, 202, 195–210.CrossRefGoogle Scholar
  47. Oberhuber, W., Kofler, W., Pfeifer, K., Seeber, A., Gruber, A., & Wieser, G. (2008). Long-term changes in tree-ring climate relationships at Mt. Patscherkofel (Tyrol, Austria) since the mid-1980s. Trees, 22, 31–40.CrossRefGoogle Scholar
  48. Ohl, C., Krauze, K., & Grünbühel, C. (2007). Towards an understanding of long-term ecosystem dynamics by merging socio-economic and environmental research: Criteria for long-term socio-ecological research sites selection. Ecological Economics, 63, 383–391.CrossRefGoogle Scholar
  49. Patzelt, G. (Ed.). (1987). MaB-Projekt Obergurgl (Veröffentlichung des Österreichischen MaB-Programm 10). Innsbruck: Universitätsverlag Wagner.Google Scholar
  50. Pauli, H., Gottfried, M., Reiter, K., Klettner, C., & Grabherr, G. (2007). Signals of range expansions and contractions of vascular plants in the high Alps: Observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Global Change Biology, 13, 147–156.CrossRefGoogle Scholar
  51. Pisek, A. (1971). Zur Geschichte der experimentellen Ökologie (besonders des in Innsbruck hierzu geleisteten Beitrages). Berichte der Deutschen Botanischen Gesellschaft, 84, 365–379.Google Scholar
  52. Price, M.F. (1995). Mountain research in Europe: An overview of MAB research from the Pyrenees to Siberia (MAB Book Series No. 14). Paris: UNESCO, and Carnforth: Parthenon.Google Scholar
  53. Psenner, R., & Schmidt, R. (1992). Climate-driven pH control of remote alpine lakes and effects of acid deposition. Nature, 56, 781–783.CrossRefGoogle Scholar
  54. Rose, K. C., Williamson, C. E., Saros, J. E., Sommaruga, R., & Fischer, J. M. (2009). Differences in UV transparency and thermal structure between alpine and subalpine lakes: Implications for organisms. Photochemical and Photobiological Sciences, 8, 1244–1256.CrossRefGoogle Scholar
  55. Schmitt, M., Bahn, M., Wohlfahrt, G., Tappeiner, U., & Cernusca, A. (2010). Land use affects the net ecosystem CO2 exchange and its components in mountain grasslands. Biogeosciences, 7, 2297–2309.CrossRefGoogle Scholar
  56. Schröter, D., Cramer, W., Leemans, R., Prentice, I. C., Araújo, M. B., Arnell, N. W., Bondeau, A., Bugmann, H., Carter, T. R., Gracia, C. A., de la Vega-Leinert, A. C., Erhard, M., Ewert, F., Glendining, M., House, J. I., Kankaanpää, S., Klein, R. J. T., Lavorel, S., Lindner, M., Metzger, M. J., Meyer, J., Mitchell, T. D., Reginster, I., Rounsevell, M., Sabaté, S., Sitch, S., Smith, B., Smith, J., Smith, P., Sykes, M. T., Thonicke, K., Thuiller, W., Tuck, G., Zaehle, S., & Zierl, B. (2005). Ecosystem service supply and vulnerability to global change in Europe. Science, 310, 1333–1337.CrossRefGoogle Scholar
  57. Sommaruga, R., & Augustin, G. (2006). Seasonality in UV transparency of an alpine lake is associated to changes in phytoplankton biomass. Aquatic Sciences, 68, 129–141.CrossRefGoogle Scholar
  58. Sommaruga-Wögrath, S., Koinig, K. A., Schmidt, R., Tessadri, R., Sommaruga, R., & Psenner, R. (1997). Temperature effects on the acidity of remote alpine lakes. Nature, 387, 64–67.CrossRefGoogle Scholar
  59. Streifeneder, T., Tappeiner, U., Ruffini, F. V., Tappeiner, G., & Hoffmann, C. (2007). Selected aspects of agro-structural change within the Alps: A comparison of harmonised agro-structural indicators on a municipal level. Journal of Alpine Research, 3, 27–40.Google Scholar
  60. Tappeiner, U., Tasser, E., Leitinger, G., & Tappeiner, G. (2006). Landnutzung in den Alpen: historische Entwicklung und zukünftige Szenarien. In R. Psenner & R. Lackner (Eds.), Die Alpen im Jahr 2020. Alpine Space – Man & Environment (Vol. 1, pp. 23–39). Innsbruck: Innsbruck University Press.Google Scholar
  61. Tappeiner, U., Tasser, E., Leitinger, G., Cernusca, A., & Tappeiner, G. (2008a). Effects of historical and likely future scenarios of land use on above- and below-ground vegetation carbon stocks of an Alpine valley. Ecosystems, 11, 1383–1400.CrossRefGoogle Scholar
  62. Tappeiner, U., Borsdorf, A., & Tasser, E. (Eds.). (2008b). Mapping the Alps. Heidelberg: Spektrum Verlag.Google Scholar
  63. Taschler, D., Beikircher, B., & Neuner, G. (2004). Frost resistance and ice nucleation in leaves of five woody timberline species measured in situ during shoot expansion. Tree Physiology, 24, 331–337.CrossRefGoogle Scholar
  64. Tasser, E., & Tappeiner, U. (2002). The impact of land-use changes in time and space on vegetation distribution in mountain areas. Applied Vegetation Science, 5, 173–184.CrossRefGoogle Scholar
  65. Tasser, E., Mader, M., & Tappeiner, U. (2003). Effects of land use in alpine grasslands on the probability of landslides. Basic and Applied Ecology, 4, 271–280.CrossRefGoogle Scholar
  66. Tenhunen, J., Geyer, R., Adiku, S., Reichstein, M., Tappeiner, U., Bahn, M., Cernusca, A., Dinh, N. Q., Kolcun, O., Lohila, A., Otieno, D., Schmidt, M., Schmitt, M., Wang, Q., Wartinger, M., & Wohlfahrt, G. (2009). Influences of changing land use and CO2 concentration on ecosystem and landscape level carbon and water balances in mountainous terrain of the Stubai valley, Austria. Global and Planetary Change, 67, 29–43.CrossRefGoogle Scholar
  67. Teuling, A. J., Seneviratne, S. I., Stöckli, R., Reichstein, M., Moors, E., Ciais, P., Luyssaert, S., van den Hurk, B., Ammann, C., Bernhofer, C., Dellwik, E., Gianelle, D., Gielen, B., Grünwald, T., Klumpp, K., Montagnani, L., Moureaux, C., Sottocornola, M., & Wohlfahrt, G. (2010). Contrasting response of European forest and grassland energy exchange to heat waves. Nature Geoscience, 3, 722–727.CrossRefGoogle Scholar
  68. Wieser, G., & Tausz, M. (Eds.). (2007). Trees at their upper limit. treelife limitation at the Alpine timberline (Series: Plant Ecophysiology Vol. 5). Berlin: Springer.Google Scholar
  69. Wieser, G., Hammerle, A., & Wohlfahrt, G. (2008). The water balance of grassland ecosystems in the Austrian Alps. Arctic, Antarctic, and Alpine Research, 40, 439–445.CrossRefGoogle Scholar
  70. Wohlfahrt, G., Bahn, M., Newesely, C., Sapinsky, S., Tappeiner, U., & Cernusca, A. (2003). Canopy structure versus physiology effects on net photosynthesis of mountain grasslands differing in land use. Ecological Modelling, 170, 407–426.CrossRefGoogle Scholar
  71. Wohlfahrt, G., Anfang, C., Bahn, M., Haslwanter, A., Newesely, C., Schmitt, M., Drösler, M., Pfadenhauer, J., & Cernusca, A. (2005). Quantifying nighttime ecosystem respiration of a meadow using eddy covariance, chambers and modelling. Agricultural and Forest Meteorology, 128, 141–162.CrossRefGoogle Scholar
  72. Wohlfahrt, G., Hammerle, A., Haslwanter, A., Bahn, M., Tappeiner, U., & Cernusca, A. (2008). Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: Effects of weather and management. Journal of Geophysical Research, 113, D08110. doi: 10.1029/2007JD009286.CrossRefGoogle Scholar
  73. Wöhlke, W. (1969). Kulturlandschaft als Funktion von Veränderlichen: Überlegungen zur dynamischen Betrachtung in der Kulturgeographie. Geographische Rundschau, 21, 298–308.Google Scholar
  74. Zeller, V., Bahn, M., Aichner, M., & Tappeiner, U. (2000). Impact of land-use changes on nitrogen mineralization in subalpine grasslands in the Southern Alps. Biology and Fertility of Soils, 31, 441–448.CrossRefGoogle Scholar
  75. Zeller, V., Bardgett, R. D., & Tappeiner, U. (2001). Site and management effects on soil microbial properties of subalpine meadows: A study of land abandonment along a north–south gradient in the European Alps. Soil Biology and Biochemistry, 33, 639–649.CrossRefGoogle Scholar
  76. Zimmermann, P., Tasser, E., Leitinger, G., & Tappeiner, U. (2010). Effects of land-use and land-cover pattern on landscape-scale biodiversity in the European Alps. Agriculture, Ecosystem and Environment, 139, 13–22.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of EcologyUniversity of InnsbruckInnsbruckAustria
  2. 2.Department of GeographyUniversity of InnsbruckInnsbruckAustria

Personalised recommendations