Skip to main content

Socioeconomic Metabolism and the Human Appropriation of Net Primary Production: What Promise Do They Hold for LTSER?

  • Chapter
  • First Online:
Book cover Long Term Socio-Ecological Research

Abstract

This chapter reviews approaches to analysing the ‘metabolism’ of socioeconomic systems consistently across space and time. Socioeconomic metabolism refers to the material, substance or energy throughput of socioeconomic systems, i.e. all the biophysical resources required for production, consumption, trade and transportation. We also introduce the broader concept of socio-ecological metabolism, which additionally considers human-induced changes in material, substance or energy flows in ecosystems. An indicator related to this broader approach is the human appropriation of net primary production (HANPP). We discuss how these approaches can be used to analyse society-nature interaction at different spatial and temporal scales, thereby representing one indispensible part of the methodological tool box of LTSER. These approaches are complimentary to other methods from the social sciences and humanities, as well as to genuinely transdisciplinary approaches. Using Austria’s sociometabolic transition from agrarian to industrial society from 1830 to 2000 as an example, we demonstrate the necessity of including a comprehensive stock-flow framework in order to use the full potential of the socio-ecological metabolism approach in LTSER studies. We demonstrate how this approach can be implemented in integrated socio-ecological models that can improve understanding of changes in society-nature interrelations through time, another highly important objective of LTSER.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Agricultural fields are excluded from the definition of society’s biophysical stocks even though they are produced and maintained by human labour, for accounting reasons, among others. For a detailed discussion on conceptual and methodological considerations, see Fischer-Kowalski and Weisz (1999) and Eurostat (2007).

  2. 2.

    Water and air together comprise 85–90% of all total material input. In order not to drown other “economically valued” materials in water and air, the latter are excluded from MFA. Another reason for their exclusion is the low environmental impact of their use, a supposition which is now beginning to be questioned in the context of discussions on ecosystem services (see http://www.teebweb.org/).

  3. 3.

    For example, converting natural ecosystems to cropland increases HANPP. Increasing yields per unit area and year or reducing losses in the production chain allows the HANPP per unit of final product to be reduced and therefore HANPP to be ‘decoupled’ from supply of food or other land-dependent products.

  4. 4.

    Gridded HANPP data can be freely downloaded at http://www.uni-klu.ac.at/socec/inhalt/1191.htm

  5. 5.

    HANPP studies are not restricted to terrestrial ecosystems, but can also be used to analyse trends, trajectories and the magnitude of human impacts on e.g. marine ecosystems (Pauly et al. 2005; Swartz et al. 2010). The utility of these approaches in LTSER has so far not been explored.

  6. 6.

    Note that before 1918 the current territory of Austria was part of the much larger Austro-Hungarian monarchy. For this period, we were obliged to use data that refer to a territory that is similar, but not exactly identical to Austria’s current territory. These data were used to extrapolate to Austria in its current boundaries, in order to generate a consistent time series (see Krausmann and Haberl 2007for detail).

  7. 7.

    Free software is readily available, for example Vensim, http://www.vensim.com/

References

  • Akimoto, H. (2003). Global air quality and pollution. Science, 302, 1716–1719.

    Article  CAS  Google Scholar 

  • Allan, J. A. (1998). Virtual water: A strategic resource. Global solutions to regional deficits. Ground Water, 36, 545–546.

    Article  CAS  Google Scholar 

  • Ayres, R. U., & Kneese, A. V. (1969). Production, consumption and externalities. The American Economic Review, 59, 282–297.

    Google Scholar 

  • Ayres, R. U., & Simonis, U. E. (Eds.). (1994). Industrial metabolism: Restructuring for sustainable development. Tokyo/New York/Paris: United Nations University Press.

    Google Scholar 

  • Billen, G., Barles, S., Garnier, J., Rouillard, J., & Benoit, P. (2009). The food-print of Paris: Long-term reconstruction of the nitrogen flows imported into the city from its rural hinterland. Regional Environmental Change, 9, 13–24.

    Article  Google Scholar 

  • Boulding, K. E. (1972). The economics of the coming spaceship Earth. In H. E. Daly (Ed.), Steady state economics(pp. 121–132). San Francisco: W.H. Freeman.

    Google Scholar 

  • Boyden, S. V. (Ed.). (1992). Biohistory: The interplay between human society and the biosphere – Past and present. Paris/Casterton Hall/Park Ridge: UNESCO and Parthenon Publishing Group.

    Google Scholar 

  • Cleveland, C. J., Costanza, R., Hall, C. A. S., Kaufmann, R. K., & Stern, D. I. (1984). Energy and the U.S. economy: A biophysical perspective. Science, 225, 890–897.

    Article  CAS  Google Scholar 

  • Crutzen, P. J., & Steffen, W. (2003). How long have we been in the anthropocene era? Climatic Change, 61, 251–257.

    Article  Google Scholar 

  • Dearing, J. A., Graumlich, L. J., Grove, R., Grübler, A., Haberl, H., Hole, F., Pfister, C., & van der Leeuw, S. E. (2007). Integrating socio-environment interactions over centennial timescales: Needs and issues. In R. Costanza, L. J. Graumlich, & W. Steffen (Eds.), Sustainability or collapse? An integrated history and future of people on Earth(pp. 243–274). Cambridge, MA/London: The MIT Press.

    Google Scholar 

  • DeFries, R. S., Field, C. B., Fung, I., Collatz, G. J., & Bounoua, L. (1999). Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Global Biogeochemical Cycles, 13, 803–815.

    Article  CAS  Google Scholar 

  • Erb, K.-H. (2004). Land-use related changes in aboveground carbon stocks of Austria’s terrestrial ecosystems. Ecosystems, 7, 563–572.

    Article  Google Scholar 

  • Erb, K.-H., Haberl, H., & Krausmann, F. (2007). The fossil-fuel powered carbon sink. Carbon flows and Austria’s energetic metabolism in a long-term perspective. In M. Fischer-Kowalski & H. Haberl (Eds.), Socioecological transitions and global change: Trajectories of social metabolism and land use(pp. 60–82). Cheltenham/Northampton: Edward Elgar.

    Google Scholar 

  • Erb, K.-H., Gingrich, S., Krausmann, F., & Haberl, H. (2008). Industrialization, fossil fuels and the transformation of land use: An integrated analysis of carbon flows in Austria 1830–2000. Journal of Industrial Ecology, 12, 686–703.

    Article  CAS  Google Scholar 

  • Erb, K.-H., Krausmann, F., Gaube, V., Gingrich, S., Bondeau, A., Fischer-Kowalski, M., & Haberl, H. (2009a). Analyzing the global human appropriation of net primary production – Processes, trajectories, implications. An introduction. Ecological Economics, 69, 250–259.

    Article  Google Scholar 

  • Erb, K.-H., Krausmann, F., & Haberl, H. (Eds.) (2009b). Analyzing the global human appropriation of net primary production – Processes, trajectories, implications(Special section of Ecological Economics 69(2)).Amsterdam: Elsevier.

    Google Scholar 

  • Erb, K.-H., Krausmann, F., Lucht, W., & Haberl, H. (2009c). Embodied HANPP: Mapping the spatial disconnect between global biomass production and consumption. Ecological Economics, 69, 328–334.

    Article  Google Scholar 

  • Eurostat (Ed.). (2007). Economy-wide material flow accounting. A compilation guide. Luxembourg: European Statistical Office.

    Google Scholar 

  • FAO. (2004). FAOSTAT 2004, FAO statistical databases: Agriculture, fisheries, forestry, nutrition. Rome: FAO.

    Google Scholar 

  • Fischer-Kowalski, M. (1998). Society’s metabolism. The intellectual history of material flow analysis, part I: 1860–1970. Journal of Industrial Ecology, 2, 61–78.

    Article  Google Scholar 

  • Fischer-Kowalski, M. (2011). Analyzing sustainability transitions as a shift between socio-metabolic regimes. Environmental Innovation and Societal Transitions, 1, 152–159.

    Article  Google Scholar 

  • Fischer-Kowalski, M., & Haberl, H. (1997). Tons, joules and money: Modes of production and their sustainability problems. Society and Natural Resources, 10, 61–85.

    Article  Google Scholar 

  • Fischer-Kowalski, M., & Haberl, H. (Eds.). (2007). Socioecological transitions and global change: Trajectories of social metabolism and land use. Cheltenham/Northhampton: Edward Elgar.

    Google Scholar 

  • Fischer-Kowalski, M., & Hüttler, W. (1998). Society’s Metabolism. The intellectual history of material flow analysis, part II: 1970–1998. Journal of Industrial Ecology, 2, 107–137.

    Article  Google Scholar 

  • Fischer-Kowalski, M., & Rotmans, J. (2009). Conceptualizing, observing and influencing social-ecological transitions. Ecology and Society, 14, 3. (Online) URL: http://www.ecologyandsociety.org/vol4/iss2/art3

  • Fischer-Kowalski, M., & Weisz, H. (1999). Society as a hybrid between material and symbolic realms. Toward a theoretical framework of society-nature interaction. Advances in Human Ecology, 8, 215–251.

    Google Scholar 

  • Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S.,Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A.,Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., & Snyder, P. K. (2005). Global consequences of land use. Science, 309, 570–574.

    Article  CAS  Google Scholar 

  • Garcia, J. M. (Ed.). (2006). Theory and practical exercises of system dynamics. Barcelona: Juan Martin Garcia.

    Google Scholar 

  • Gaston, K. J. (2000). Global patterns in biodiversity. Nature, 405, 220–227.

    Article  CAS  Google Scholar 

  • Gavrilova, O., Jonas, M., Erb, K.-H., & Haberl, H. (2010). International trade and Austria’s livestock system: Direct and hidden carbon emission flows associated with production and consumption of products. Ecological Economics, 69, 920–929.

    Article  Google Scholar 

  • Gerbens-Leenes, W., Hoekstra, A. Y., & van der Meer, T. H. (2009). The water footprint of bioenergy. Proceedings of the National Academy of Sciences, 106, 10219–10223.

    Article  CAS  Google Scholar 

  • Gerten, D., Hoff, H., Bondeau, A., Lucht, W., Smith, P., & Zaehle, S. (2005). Contemporary “green” water flows: Simulations with a dynamic global vegetation and water balance model. Physics and Chemistry of the Earth, Parts A/B/C, 30, 334–338.

    Article  Google Scholar 

  • Giampietro, M., Mayumi, K., & Bukkens, S. G. F. (2001). Multiple-scale integrated assessment of societal metabolism: An analytical tool to study development and sustainability. Environment, Development and Sustainability, 3, 275–307.

    Article  Google Scholar 

  • Gingrich, S., Erb, K.-H., Krausmann, F., Gaube, V., & Haberl, H. (2007). Long-term dynamics of terrestrial carbon stocks in Austria. A comprehensive assessment of the time period from 1830 to 2000. Regional Environmental Change, 7, 37–47.

    Article  Google Scholar 

  • Graedel, T. E., & Cao, J. (2010). Metal spectra as indicators of development. Proceedings of the National Academy of Sciences of the United States of America, 107, 20905–20910.

    Article  CAS  Google Scholar 

  • Haberl, H. (2001a). The energetic metabolism of societies, part I: Accounting concepts. Journal of Industrial Ecology, 5, 11–33.

    Article  Google Scholar 

  • Haberl, H. (2001b). The energetic metabolism of societies, part II: Empirical examples. Journal of Industrial Ecology, 5, 71–88.

    Article  Google Scholar 

  • Haberl, H. (2006). The global socioeconomic energetic metabolism as a sustainability problem. Energy – The International Journal, 31, 87–99.

    Google Scholar 

  • Haberl, H., & Krausmann, F. (2007). The local base of the historical agrarian-industrial transition, and the interaction between scales. In M. Fischer-Kowalski & H. Haberl (Eds.), Socioecological transitions and global change: Trajectories of social metabolism and land use(pp. 116–138). Cheltenham/Northampton: Edward Elgar.

    Google Scholar 

  • Haberl, H., Erb, K.-H., Krausmann, F., Loibl, W., Schulz, N. B., & Weisz, H. (2001). Changes in ecosystem processes induced by land use: Human appropriation of net primary production and its influence on standing crop in Austria. Global Biogeochemical Cycles, 15, 929–942.

    Article  CAS  Google Scholar 

  • Haberl, H., Erb, K.-H., Krausmann, F., Adensam, H., & Schulz, N. B. (2003). Land-use change and socioeconomic metabolism in Austria. Part II: Land-use scenarios for 2020. Land Use Policy, 20, 21–39.

    Article  Google Scholar 

  • Haberl, H., Fischer-Kowalski, M., Krausmann, F., Weisz, H., & Winiwarter, V. (2004a). Progress Towards sustainability? What the conceptual framework of material and energy flow accounting (MEFA) can offer. Land Use Policy, 21, 199–213.

    Article  Google Scholar 

  • Haberl, H., Schulz, N. B., Plutzar, C., Erb, K.-H., Krausmann, F., Loibl, W., Moser, D., Sauberer, N., Weisz, H., Zechmeister, H. G., & Zulka, P. (2004b). Human appropriation of net primary production and species diversity in agricultural landscapes. Agriculture, Ecosystems and Environment, 102, 213–218.

    Article  Google Scholar 

  • Haberl, H., Plutzar, C., Erb, K.-H., Gaube, V., Pollheimer, M., & Schulz, N. B. (2005). Human appropriation of net primary production as determinant of avifauna diversity in Austria. Agriculture, Ecosystems and Environment, 110, 119–131.

    Article  Google Scholar 

  • Haberl, H., Weisz, H., Amann, C., Bondeau, A., Eisenmenger, N., Erb, K.-H., Fischer-Kowalski, M., & Krausmann, F. (2006a). The energetic metabolism of the European Union and the United States: Decadal energy input time-series with an emphasis on biomass. Journal of Industrial Ecology, 10, 151–171.

    Article  Google Scholar 

  • Haberl, H., Winiwarter, V., Andersson, K., Ayres, R. U., Boone, C. G., Castillio, A., Cunfer, G., Fischer-Kowalski, M., Freudenburg, W. R., Furman, E., Kaufmann, R., Krausmann, F., Langthaler, E., Lotze-Campen, H., Mirtl, M., Redman, C. A., Reenberg, A., Wardell, A. D., Warr, B., & Zechmeister, H. (2006b). From LTER to LTSER: Conceptualizing the socio-economic dimension of long-term socio-ecological research. Ecology and Society, 11,13. (Online), http://www.ecologyandsociety.org/vol11/iss2/art13/

  • Haberl, H., Erb, K.-H., Krausmann, F., Gaube, V., Bondeau, A., Plutzar, C., Gingrich, S., Lucht, W., & Fischer-Kowalski, M. (2007a). Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 104, 12942–12947.

    Article  CAS  Google Scholar 

  • Haberl, H., Erb, K.-H., Plutzar, C., Fischer-Kowalski, M., Krausmann, F., Hak, T., Moldan, B., & Dahl, A. L. (2007b). Human appropriation of net primary production (HANPP) as indicator for pressures on biodiversity. In Sustainability indicators. A scientific assessment(pp. 271–288). Washington, DC, Covelo/London: SCOPE, Island Press.

    Google Scholar 

  • Haberl, H., Erb, K.-H., Krausmann, F., Berecz, S., Ludwiczek, N., Musel, A., Schaffartzik, A., & Martinez-Alier, J. (2009a). Using embodied HANPP to analyze teleconnections in the global land system: Conceptual considerations. Geografisk Tidsskrift – Danish Journal of Geography, 109, 119–130.

    Google Scholar 

  • Haberl, H., Gaube, V., Díaz-Delgado, R., Krauze, K., Neuner, A., Peterseil, J., Plutzar, C., Singh, S. J., & Vadineanu, A. (2009b). Towards an integrated model of socioeconomic biodiversity drivers, pressures and impacts. A feasibility study based on three European long-term socio-ecological research platforms. Ecological Economics, 68, 1797–1812.

    Article  Google Scholar 

  • Haberl, H., Fischer-Kowalski, M., Krausmann, F., Martinez-Alier, J., & Winiwarter, V. (2011). A socio-metabolic transition towards sustainability? Challenges for another great transformation. Sustainable Development, 19, 1–14.

    Article  Google Scholar 

  • Hall, C. A. S., Cleveland, C. J., & Kaufmann, R. K. (Eds.). (1986). Energy and resource quality. The ecology of the economic process. New York: Wiley-Interscience.

    Google Scholar 

  • Hall, C. A. S., Lindenberger, D., Kümmel, R., Kroeger, T., & Eichhorn, W. (2001). The need to reintegrate the natural sciences into economics. BioScience, 51, 663–673.

    Article  Google Scholar 

  • Hatanaka, N., Wright, W., Loyin, R. H., & MacNally, R. (2011). ‘Ecologically complex carbon’ – Linking biodiversity values, carbon storage and habitat structure in some austral temperate forests. Global Ecology and Biogeography, 20, 260–271.

    Article  Google Scholar 

  • Hoekstra, A. Y., & Chapagain, A. K. (2007). Water footprints of nations: Water use by people as a function of their consumption pattern. Water and Resource Management, 21, 35–48.

    Article  Google Scholar 

  • Hoekstra, A. Y., & Chapagain, A. K. (Eds.). (2008). Globalization of water. Sharing the planet’s freshwater resources. Malden: Blackwell Publishing.

    Google Scholar 

  • Hoekstra, R., & van den Bergh, J. C. J. M. (2006). Constructing physical input-output tables for environmental modeling and accounting: Framework and illustrations. Ecological Economics, 59(3), 375–393.

    Article  Google Scholar 

  • IEA. (2010, December 19). “World energy statistics”, IEA World energy statistics and balances (database). doi: 10.1787/data-00510-en. OECD Library (Klagenfurt University). International Energy Agency (IEA).

  • IPCC. (2007). Climate change 2007. Synthesis report. Contribution of Working Groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • Kastner, T. (2009). Trajectories in human domination of ecosystems: Human appropriation of net primary production in the Philippines during the 20th century. Ecological Economics, 69, 260–269.

    Article  Google Scholar 

  • Kastner, T., Kastner, M., & Nonhebel, S. (2011). Tracing distant environmental impacts of agricultural products from a consumer perspective. Ecological Economics, 70, 1032–1040.

    Article  Google Scholar 

  • Kauppi, P. E., Ausubel, J. H., Fang, J., Mather, A. S., Sedjo, R. A., & Waggoner, P. E. (2006). Returning forests analyzed with the forest identity. Proceedings of the National Academy of Sciences of the United States of America, 103, 17574–17579.

    Article  CAS  Google Scholar 

  • Kay, J. J., Regier, H. A., Boyle, M., & Francis, G. (1999). An ecosystem approach for sustainability: Addressing the challenge of complexity. Futures, 31, 721–742.

    Article  Google Scholar 

  • Körner, C. (2009). Biologische Kohlenstoffsenken: Umsatz und Kapital nicht verwechseln! Gaia, 18, 288–293.

    Google Scholar 

  • Kovanda, J., Havranek, M., & Hak, T. (2007). Calculation of the “Net additions to stock” indicator for the Czech Republic using a direct method. Journal of Industrial Ecology, 11, 140–154.

    Article  Google Scholar 

  • Krausmann, F. (2001). Land use and industrial modernization: An empirical analysis of human influence on the functioning of ecosystems in Austria 1830–1995. Land Use Policy, 18, 17–26.

    Article  Google Scholar 

  • Krausmann, F. (2004). Milk, manure and muscular power. Livestock and the industrialization of agriculture. Human Ecology, 32, 735–773.

    Article  Google Scholar 

  • Krausmann, F., & Haberl, H. (2002). The process of industrialization from the perspective of energetic metabolism. Socioeconomic energy flows in Austria 1830–1995. Ecological Economics, 41, 177–201.

    Article  Google Scholar 

  • Krausmann, F., & Haberl, H. (2007). Land-use change and socio-economic metabolism. A macro view of Austria 1830–2000. In M. Fischer-Kowalski & H. Haberl (Eds.), Socioecological transitions and global change: Trajectories of social metabolism and land use(pp. 31–59). Cheltenham/Northampton: Edward Elgar.

    Google Scholar 

  • Krausmann, F., Gingrich, S., Eisenmenger, N., Erb, K.-H., Haberl, H., & Fischer-Kowalski, M. (2009a). Growth in global materials use, GDP and population during the 20th century. Ecological Economics, 68, 2696–2705.

    Article  Google Scholar 

  • Krausmann, F., Haberl, H., Erb, K.-H., Wiesinger, M., Gaube, V., & Gingrich, S. (2009b). What determines spatial patterns of the global human appropriation of net primary production? Journal of Land Use Science, 4, 15–34.

    Article  Google Scholar 

  • Kuemmerle, T., Olofsson, P., Chaskovskyy, O., Baumann, M., Ostapowicz, K., Woodcock, C. E., Houghton, R. A., Hostert, P., Keeton, W. S., & Radeloff, V. C. (2011). Post-Soviet farmland abandonment, forest recovery, and carbon sequestration in western Ukraine. Global Change Biology, 17, 1335–1349.

    Article  Google Scholar 

  • Lambin, E. F., & Geist, H. J. (Eds.). (2006). Land-use and land-cover change. Local processes and global impacts. Berlin: Springer.

    Google Scholar 

  • Lambin, E. F., Rounsevell, M. D. A., & Geist, H. J. (2000). Are agricultural land-use models able to predict changes in land-use intensity? Agriculture, Ecosystems and Environment, 82, 321–331.

    Article  Google Scholar 

  • Lambin, E. F., Turner, B. L. I., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., Coomes, O. T., Dirzo, R., Fischer, G., Folke, C., George, P. S., Homewood, K., Imbernon, J., Leemans, R., Li, X., Moran, E. F., Mortimore, M., Ramakrishnan, P. S., Richards, J. F., Skanes, H., Steffen, W., Stone, G. D., Svedin, U., Veldkamp, T. A., Vogel, C., & Xu, J. (2001). The causes of land-use and land-cover change: Moving beyond the myths. Global Environmental Change, 11, 261–269.

    Article  Google Scholar 

  • Lieth, H., & Whittaker, R. H. (Eds.). (1975). Primary productivity of the biosphere. Berlin/Heidelberg/New York: Springer.

    Google Scholar 

  • Lindeman, R. L. (1942). The trophic-dynamic aspect of ecology. Ecology, 23, 399–417.

    Article  Google Scholar 

  • Martinez-Alier, J. (Ed.). (1987). Ecological economics. Energy, environment and society. Oxford: Blackwell.

    Google Scholar 

  • Mather, A. S., & Fairbairn, J. (1990). From floods to reforestation: The forest transition in Switzerland. The American Historical Review, 95, 693–714.

    Article  Google Scholar 

  • Matthews, E., Amann, C., Fischer-Kowalski, M., Bringezu, S., Hüttler, W., Kleijn, R., Moriguchi, Y., Ottke, C., Rodenburg, E., Rogich, D., Schandl, H., Schütz, H., van der Voet, E., & Weisz, H. (Eds.). (2000). The weight of nations: Material outflows from industrial economies. Washington, DC: World Resources Institute.

    Google Scholar 

  • McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G., Foley, J. A., Heimann, M., Joos, F., Kaplan, J., Kicklighter, D. W., Meier, R. A., Melillo, J. M., Moore, B., III, Prentice, I. C., Ramankutty, N., Reichenau, T., Schloss, A., Tian, H., Williams, L. J., & Wittenberg, U. (2001). Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land-use effects with four process-based ecosystem models. Global Biogeochemical Cycles, 15, 183–206.

    Article  CAS  Google Scholar 

  • Meyfroidt, P., Rudel, T. K., & Lambin, E. F. (2010). Forest transitions, trade, and the global displacement of land use. Proceedings of the National Academy of Sciences of the United States of America, 107, 20917–20922.

    Article  CAS  Google Scholar 

  • Millennium Ecosystem Assessment (Ed.). (2005). Ecosystems and human well-being – Our human planet. Summary for decision makers. Washington, DC: Island Press.

    Google Scholar 

  • Musel, A. (2009). Human appropriation of net primary production in the United Kingdom, 1800–2000. Changes in society’s impact on ecological energy flows during the agrarian-industrial transition. Ecological Economics, 69, 270–281.

    Article  Google Scholar 

  • Odum, H. T. (Ed.). (1971). Environment, power, and society. New York: Wiley-Interscience.

    Google Scholar 

  • OECD. (2008). Measuring material flows and resource productivity. Synthesis report. Paris: Organisation for Economic Co-operation and Development (OECD).

    Google Scholar 

  • Pauly, D., Watson, R., & Alder, J. (2005). Global trends in world fisheries: Impacts on marine ecosystems and food security. Philosophical Transactions: Biological Sciences, 360, 5–12.

    Article  Google Scholar 

  • Pimentel, D., Hurd, L. E., Bellotti, A. C., Forster, M. J., Oka, I. N., Sholes, O. D., & Whitman, R. J. (1973). Food production and the energy crisis. Science, 182, 443–449.

    Article  CAS  Google Scholar 

  • Pimentel, D., Dazhong, W., & Giampietro, M. (1990). Technological changes in energy use in U.S. agricultural production. In S. R. Gliessman (Ed.), Agroecology, researching the ecological basis for sustainable agriculture(pp. 305–321). New York: Springer.

    Google Scholar 

  • Postel, S. L., Daily, G. C., & Ehrlich, P. R. (1996). Human appropriation of renewable fresh water. Science, 271, 785–788.

    Article  CAS  Google Scholar 

  • Rappaport, R. A. (1971). The flow of energy in an agricultural society. Scientific American, 225, 117–133.

    Article  CAS  Google Scholar 

  • Rauch, J. N. (2010). Global spatial indexing of the human impact on Al, Cu, Fe, and Zn mobilization. Environmental Science and Technology, 44, 5728–5734.

    Article  CAS  Google Scholar 

  • Rauch, J. N., & Pacyna, J. M. (2009). Earth’s global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles. Global Biogeochemical Cycles, 23, GB2001. doi:10.1029/2008GB003376.

    Article  CAS  Google Scholar 

  • Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W.-P., Suh, S., Weidema, B. P., & Pennington, D. W. (2004). Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment International, 30, 701–720.

    Article  CAS  Google Scholar 

  • Sala, O. E., Chapin, F. S., III, Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sannwald, E., Huennecke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., Mooney, H. A., Oesterheld, M., Poff, N. L., Sykes, M. T., Walker, B., Walker, M., & Wall, D. H. (2000). Global biodiversity scenarios for the year 2100. Science, 287, 1770–1774.

    Article  CAS  Google Scholar 

  • Schlamadinger, B., Apps, M. J., Bohlin, F., Gustavsson, L., Jungmeier, G., Marland, K., Pingoud, K., & Savolainen, I. (1997). Towards a standard methodology for greenhouse gas balances of bioenergy systems and comparison with fossil energy systems. Biomass and Bioenergy, 13, 359–375.

    Article  CAS  Google Scholar 

  • Schwarzlmüller, E. (2009). Human appropriation of aboveground net primary production in Spain, 1955–2003: An empirical analysis of the industrialization of land use. Ecological Economics, 69, 282–291.

    Article  Google Scholar 

  • Searchinger, T. D., Hamburg, S. P., Melillo, J., Chameides, W., Havlik, P., Kammen, D. M., Likens, G. E., Lubowski, R. N., Obersteiner, M., Oppenheimer, M., Philip Robertson, G., Schlesinger, W. H., & vid Tilman, G. (2009). Fixing a critical climate accounting error. Science, 326, 527–528.

    Article  CAS  Google Scholar 

  • Sieferle, R. P., Krausmann, F., Schandl, H., & Winiwarter, V. (2006). Das Ende der Fläche. Zum gesellschaftlichen Stoffwechsel der Industrialisierung. Köln: Böhlau.

    Google Scholar 

  • Steffen, W., Sanderson, A., Tyson, P. D., Jäger, J., Matson, P. A., Moore, B., III, Oldfield, F., Richardson, K., Schellnhuber, H. J., Turner, B. L., II, & Wasson, R. J. (Eds.). (2004). Global change and the Earth system. A planet under pressure. Berlin: Springer.

    Google Scholar 

  • Steffen, W., Crutzen, P. J., & McNeill, J. R. (2007). The Anthropocene: Are humans now overwhelming the great forces of nature. Ambio, 36, 614–621.

    Article  CAS  Google Scholar 

  • Suh, S. (2005). Theory of materials and energy flow analysis in ecology and economics. Ecological Modelling, 189, 251–269.

    Article  Google Scholar 

  • Swartz, W., Sala, E., Tracey, S., Watson, R., & Pauly, D. (2010). The spatial expansion and ecological footprint of fisheries (1950 to present). PLoS ONE, 5, e15154.

    Article  CAS  Google Scholar 

  • Turner, B. L. I., Lambin, E. F., & Reenberg, A. (2007). The emergence of land change science for global environmental change and sustainability. Proceedings of the National Academy of Sciences of the United States of America, 104, 20666–20671.

    Article  CAS  Google Scholar 

  • van der Leeuw, S. E. (2004). Why model? Cybernetics and Systems, 35, 117–128.

    Article  Google Scholar 

  • Verburg, P. H., Chen, Y., & Veldkamp, T. (2000). Spatial explorations of land use change and grain production in China. Agriculture, Ecosystems and Environment, 82, 333–354.

    Article  Google Scholar 

  • Verburg, P. H., Neumann, K., & Nol, L. (2010). Challenges in using land use and land cover data for global change studies. Global Change Biology, 17, 974–989.

    Article  Google Scholar 

  • Vitousek, P. M., Ehrlich, P. R., Ehrlich, A. H., & Matson, P. A. (1986). Human appropriation of the products of photosynthesis. BioScience, 36, 363–373.

    Article  Google Scholar 

  • Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H., & Tilman, D. G. (1997). Human alteration of the global nitrogen cycle: Causes and consequences(Issues in ecology, 1). Washington, DC: Ecological Society of America.

    Google Scholar 

  • Vörösmarty, C. J., Sharma, K. P., Fekete, V. M., Copeland, A. H., Holden, J., Marble, J., & Lough, J. A. (1997). The storage and aging of continental runoff in large reservoir systems of the world. Ambio, 26, 210–219.

    Google Scholar 

  • Waide, R. B., Willig, M. R., Steiner, C. F., Mittelbach, G., Gough, L., Dodson, S. I., Juday, G. P., & Parmenter, R. (1999). The relationship between productivity and species richness. Annual Review of Ecology and Systematics, 30, 257–300.

    Article  Google Scholar 

  • Wang, T., Müller, D. B., & Graedel, T. E. (2007). Forging the anthropogenic iron cycle. Environmental Science and Technology, 41, 5120–5129.

    Article  CAS  Google Scholar 

  • Weiß, M., Schaldach, R., Alcamo, J., & Flörke, M. (2009). Quantifying the human appropriation of fresh water by African agriculture. Ecology and Society, 14,25. (Online] URL: http://www.ecologyandsociety.org/vol14/iss2/art25/

  • Weisz, H., & Duchin, F. (2006). Physical and monetary input-output analysis: What makes the difference? Ecological Economics, 57, 534–541.

    Article  Google Scholar 

  • Weisz, H., Krausmann, F., Amann, C., Eisenmenger, N., Erb, K.-H., Hubacek, K., & Fischer-Kowalski, M. (2006). The physical economy of the European Union: Cross-country comparison and determinants of material consumption. Ecological Economics, 58, 676–698.

    Article  Google Scholar 

  • Whittaker, R. H., & Likens, G. E. (1973). Primary production: The biosphere and man. Human Ecology, 1, 357–369.

    Article  Google Scholar 

  • Wright, D. H. (1983). Species-energy theorie: An extension of the species-area theory. Oikos, 41, 495–506.

    Google Scholar 

  • Wright, D. H. (1990). Human impacts on the energy flow through natural ecosystems, and implications for species endangerment. Ambio, 19, 189–194.

    Google Scholar 

Download references

Acknowledgments

This chapter has profited from research funded by the Austrian Science Fund (FWF), project P20812-G11, by the Austrian Ministry of Science within the research programme proVISION, and from the FP7 Project Volante. It contributes to the Global Land Project (http://www.globallandproject.org) and to long-term socio-ecological research (LTSER) initiatives within LTER Europe (http://www.lter-europe.ceh.ac.uk/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Haberl Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Haberl, H., Erb, KH., Gaube, V., Gingrich, S., Singh, S.J. (2013). Socioeconomic Metabolism and the Human Appropriation of Net Primary Production: What Promise Do They Hold for LTSER?. In: Singh, S., Haberl, H., Chertow, M., Mirtl, M., Schmid, M. (eds) Long Term Socio-Ecological Research. Human-Environment Interactions, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1177-8_2

Download citation

Publish with us

Policies and ethics