Building an Urban LTSER: The Case of the Baltimore Ecosystem Study and the D.C./B.C. ULTRA-Ex Project

  • J. Morgan GroveEmail author
  • Steward T. A. Pickett
  • Ali Whitmer
  • Mary L. Cadenasso
Part of the Human-Environment Interactions book series (HUEN, volume 2)


There is growing scientific interest, practical need, and substantial support for understanding urban and urbanising areas in terms of their long-term social and ecological trajectories: past, present, and future. Long-term social-ecological research (LTSER) platforms and programmes in urban areas are needed to meet these interests and needs. We describe our experiences as a point of reference for other ecologists and social scientists embarking on or consolidating LTSER research in hopes of sharing what we have learned and stimulating comparisons and collaborations in urban, agricultural, and forested systems. Our experiences emerge from work with two urban LTSERs: the Baltimore Ecosystem Study (BES) and the District of Columbia-Baltimore City Urban Long-Term Ecological Research Area-Exploratory DC-BC ULTRA-Ex project. We use the architectural metaphor of constructing and maintaining a building to frame the description of our experience with these two urban LTSERs. Considering each project to be represented as a building gives the following structure to the chapter: (1) building site context; (2) building structure; and (3) building process and maintenance.


Urban Ecology LTSER Social Ecology Baltimore Sustainability 



This material is based on work supported by the USDA Forest Service Northern Research Station and the National Science Foundation under DEB 1027188 (Baltimore Ecosystem Study) and DEB 0948947 (Washington D.C./Baltimore ULTRA-Ex). We gratefully acknowledge additional support from the Center for Urban Environmental Research and Education (CUERE) at the University of Maryland, Baltimore County and Georgetown University. Partnerships with the US Geological Survey, the City of Baltimore Department of Public Works and Department of Recreation and Parks, the Baltimore County Department of Environmental Protection and Resource Management and Department of Recreation and Parks, the Maryland Department of Natural Resources, Forest Service, The Parks & People Foundation, and the Casey Trees Foundation have been instrumental in the lessons reported here. We are grateful to our colleagues at these institutions for their intellectual contributions and insights into the environment and environmental management in the Baltimore region.

We would like to thank Cherie L. Fisher, Jarlath O’Neil-Dunne, Chris Boone and Gary Machlis for their assistance with figures for this chapter and helpful suggestions from Chris Boone, Dan Childers and two anonymous reviewers.


  1. Adams, L. W. (1994). Urban wildlife habitats: A landscape perspective. Minneapolis: University of Minnesota Press.Google Scholar
  2. Ahl, V., & Allen, T. F. H. (1996). Hierarchy theory: A vision, vocabulary, and epistemology (p. 206). New York: Columbia University Press.Google Scholar
  3. Alberti, M., Marzluff, J. M., Shulenberger, E., Bradley, G., Ryan, C., & Zumbrunnen, C. (2003). Integrating humans into ecology: Opportunities and challenges for studying urban ecosystems. BioScience, 53, 1169e–1179e.CrossRefGoogle Scholar
  4. Allen, T. F. H., & Hoekstra, T. W. (1992). Toward a unified ecology. New York: Columbia University Press.Google Scholar
  5. Attorre, F., Stanisci, A., & Bruno, F. (1997). The urban woods of Rome. Plant Biosystems, 131, 113–135.Google Scholar
  6. Band, L. E., & Moore, I. D. (1995). Scale: Landscape attributes and geographical information systems. Hydrological Processes, 9, 401–422.CrossRefGoogle Scholar
  7. Band, L. E., Cadenasso, M. L., Grimmond, S., & Grove, J. M. (2006). Heterogeneity in urban ecosystems: Pattern and process. In G. Lovett, C. G. Jones, M. G. Turner, & K. C. Weathers (Eds.), Ecosystem function in heterogeneous landscapes (pp. 257–278). New York: Springer.Google Scholar
  8. Black, P. E. (1991). Watershed hydrology. Prentice Hall: Englewood Cliffs.Google Scholar
  9. Bolin, B., Grineski, S., & Collins, T. (2005). The geography of despair: Environmental racism and the making of south Phoenix, Arizona, USA. Human Ecology Review, 12, 156–168.Google Scholar
  10. Bolund, P., & Hunhammar, S. (1999). Ecosystem services in urban areas. Ecological Economics, 29, 293–301.CrossRefGoogle Scholar
  11. Boone, C., Cadenasso, M., Grove, J., Schwarz, K., & Buckley, G. (2009). Landscape, vegetation characteristics, and group identity in an urban and suburban watershed: Why the 60s matter. Urban Ecosystems, 13, 255–271.CrossRefGoogle Scholar
  12. Bormann, F. H., & Likens, G. (1979). Patterns and processes in a forested ecosystem. New York: Springer.CrossRefGoogle Scholar
  13. Boyden, S. (1979). An integrative ecological approach to the study of human settlements. Paris: UNESCO.Google Scholar
  14. Brand, S. (2006). City planet. Strategy  +  Business, 42. Retrieved from:
  15. Brand, S. (2009). Whole earth discipline: An ecopragmatist manifesto. London: Viking/Penguin.Google Scholar
  16. Buckley, G. L., & Boone, C. G. (2011). “To promote the material and moral welfare of the community”: Neighborhood improvement associations in Baltimore, Maryland, 1900–1945. In R. Rodger & G. Massard-Guilbaud (Eds.), Environmental and social justice in the city: Historical perspectives (pp. 43–65). Cambridge: White Horse Press.Google Scholar
  17. Burch, W. R., Jr., & DeLuca, D. R. (1984). Measuring the social impact of natural resource policies. Albuquerque: New Mexico University Press.Google Scholar
  18. Cadenasso, M. L., Pickett, S. T. A., Weathers, K. C., Bell, S. S., Benning, T. L., Carreiro, M. M., & Dawson, T. E. (2003). An interdisciplinary and synthetic approach to ecological boundaries. BioScience, 53, 717–722.CrossRefGoogle Scholar
  19. Cadenasso, M. L., Pickett, S. T. A., & Grove, J. M. (2006). Dimensions of ecosystem complexity: Heterogeneity, connectivity, and history. Ecological Complexity, 3, 1–12.CrossRefGoogle Scholar
  20. Carpenter, S. R. (1998). The need for large-scale experiments to assess and predict the response of ecosystems to perturbation. In M. L. Pace & P. M. Groffman (Eds.), Successes, limitations, and frontiers in ecosystem science (pp. 287–312). New York: Springer.CrossRefGoogle Scholar
  21. Carreiro, M. M., Pouyat, R. V., Tripler, C. E., & Zhu, W. (2009). Carbon and nitrogen cycling in soils of remnant forests along urbanerural gradients: case studies in New York City and Louisville, Kentucky. In M. J. McDonnell, A. Hahs, & J. Breuste (Eds.), Comparative ecology of cities and towns (pp. 308–328). New York: Cambridge University Press.CrossRefGoogle Scholar
  22. Chan, S. (2007, December 4). Considering the urban planet 2050. New York Times, New York.Google Scholar
  23. Cilliers, S. S., & Bredenkamp, G. J. (1999). Analysis of the spontaneous vegetation of intensively managed open spaces in the Potchefstroom Municipal Area, North West Province, South Africa. South African Journal of Botany, 65, 59–68.Google Scholar
  24. Clay, G. (1973). Close up: How to read the American City. New York: Praeger Publishers.Google Scholar
  25. Colding, J. (2007). Ecological land-use complementation’ for building resilience in urban ecosystems. Landscape and Urban Planning, 81, 46–55.CrossRefGoogle Scholar
  26. Collins, S., Swinton, M, Anderson, C. W., Benson, B. J., Brunt J., Gragson, T. L., Grimm, N., Grove, J. M., Henshaw, D., Knapp, A. K., Kofinas, G., Magnuson, J. J., McDowell, W., Melack, J., Moore, J. C., Ogden, L., Porter, L., Reichman, J., Robertson, G. P., Smith, M. D., vande Castle, J., & Whitmer, A. C. (2007). Integrated science for society and the environment: A strategic research initiative (LTER Network Office Publication No 23). Albuquerque: LTER Network Office.Google Scholar
  27. Collins, S., Carpenter, S. R., Swinton, S. M., Orenstein, D. E., Childers, D. L., Gragson, T. L., Grimm, N. B., Grove, J. M., Harlan, S. L., Kaye, J. P., Knapp, A. K., Kofinas, G. P., Magnuson, J. J., McDowell, W. H., Melack, J. M., Ogden, L. A., Robertson, G. P., Smith, M. D., & Whitmer, A. C. (2011). An integrated conceptual framework for long-term social–ecological research. Frontiers in Ecology and the Environment, 9, 351–357.CrossRefGoogle Scholar
  28. Cook, W. M., Casagrande, D. G., Hope, D., Groffman, P. M., & Collins, S. L. (2004). Learning to roll with the punches: Adaptive experimentation in human-dominated systems. Frontiers in Ecology and the Environment, 2, 467–474.CrossRefGoogle Scholar
  29. Couzin, J. (2008). Living in the danger zone. Science, 19, 748–749.CrossRefGoogle Scholar
  30. Dalton, S. E. (2001). The Gwynns Falls watershed: A case 3 study of public and non-profit sector behavior in natural resource management. Published doctoral dissertation, Johns Hopkins University, Baltimore.Google Scholar
  31. Deutsch, L., Jansson, A., Troell, M., Ronnback, P., Folke, C., & Kautsky, N. (2000). The “ecological footprint”: communicating human dependence on nature’s work. Ecological Economics, 32, 351–355.CrossRefGoogle Scholar
  32. Duncan, O. D. (1961). From social system to ecosystem. Sociological Inquiry, 31, 140–149.CrossRefGoogle Scholar
  33. Duncan, O. D. (1964). Social organization and the ecosystem. In R. E. L. Faris (Ed.), Handbook of modern sociology (pp. 37–82). Chicago: Rand McNally & Co., Il printing.Google Scholar
  34. Field, D. R., Voss, P. R., Kuczenski, T. K., Hammer, R. B., & Radeloff, V. C. (2003). Reaffirming social landscape analysis in landscape ecology: A conceptual framework. Society and Natural Resources, 16, 349–361.CrossRefGoogle Scholar
  35. Folke, C., Jansson, A., Larsson, J., & Costanza, R. (1997). Ecosystem appropriation by cities. Ambio, 26, 167–172.Google Scholar
  36. Foster, D. R., Swanson, F., Aber, J., Tilman, D., Bropakw, N., Burke, I., & Knapp, A. (2002). The importance of land-use legacies to ecology and conservation. BioScience, 53(1), 77–88.CrossRefGoogle Scholar
  37. Galvin, M. F., Grove, J. M., & O’Neil-Dunne, J. P. M. (2006). A report on Baltimore City’s present and potential urban tree canopy. Annapolis: Maryland Department of Natural Resources, Forest Service.Google Scholar
  38. Garreau, J. (1991). Edge city: Life on the new frontier. New York: Doubleday.Google Scholar
  39. Grimm, N., Grove, J. M., Pickett, S. T. A., & Redman, C. L. (2000). Integrated approaches to long-term studies of urban ecological systems. BioScience, 50, 571–584.CrossRefGoogle Scholar
  40. Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. (2008). Global change and the ecology of cities. Science, 319, 756–760.CrossRefGoogle Scholar
  41. Groffman, P. M., & Crawford, M. K. (2003). Denitrification potential in urban riparian zones. Journal of Environmental Quality, 32, 1144–1149.CrossRefGoogle Scholar
  42. Groffman, P. M., Boulware, N. J., Zipperer, W. C., Pouyat, R. V., Band, L. E., & Colosimo, M. F. (2002). Soil nitrogen cycling processes in urban riparian zones. Environmental Science and Technology, 36, 4547–4552.CrossRefGoogle Scholar
  43. Groffman, P. M., Bain, D. J., Band, L. E., Belt, K. T., Brush, G. S., Grove, J. M., Pouyat, R. V., Yesilonis, I. C., & Zipperer, W. C. (2003). Down by the riverside: Urban riparian ecology. Frontiers in Ecology and the Environment, 1, 315–321.CrossRefGoogle Scholar
  44. Grove, J. M. (1996). The relationship between patterns and processes of social stratification and vegetation of an urban-rural watershed. Published doctoral dissertation, Yale University, New Haven.Google Scholar
  45. Grove, J. M., & Burch, W. R., Jr. (1997). A social ecology approach and applications of urban ecosystem and landscape analyses: A case study of Baltimore, Maryland. Journal of Urban Ecosystems, 1, 259–275.CrossRefGoogle Scholar
  46. Grove, J. M., & Hohmann, M. (1992). GIS and social forestry. Journal of Forestry, 90, 10–15.Google Scholar
  47. Grove, J. M., Burch, W. R., & Pickett, S. T. A. (2005). Social mosaics and urban forestry in Baltimore, Maryland. In R. G. Lee & D. R. Field (Eds.), Communities and forests: Where people meet the land (pp. 248–273). Corvalis: Oregon State University Press.Google Scholar
  48. Grove, J. M., Cadenasso, M. L., Burch, W. R., Jr., Pickett, S. T. A., O’Neil-Dunne, J. P. M., Schwarz, K., Wilson, M., Troy, A. R., & Boone, C. (2006a). Data and methods comparing social structure and vegetation structure of urban neighborhoods in Baltimore, Maryland. Society and Natural Resources, 19, 117–136.CrossRefGoogle Scholar
  49. Grove, J. M., Troy, A. R., O’Neil-Dunne, J. P. M., Burch, W. R., Cadenasso, M. L., & Pickett, S. T. A. (2006b). Characterization of households and its implications for the vegetation of urban ecosystems. Ecosystems, 9, 578–597.CrossRefGoogle Scholar
  50. Gunderson, L. H. (2000). Ecological resilience – In theory and application. Annual Review of Ecology and Systematics, 31, 425–439.CrossRefGoogle Scholar
  51. Hawley, A. H. (1950). Human ecology: A theory of community structure. New York: Ronald Press.Google Scholar
  52. Holling, C. S., & Gunderson, L. H. (2002). Resilience and adaptive cycles. In L. H. Gunderson & C. S. Holling (Eds.), Panarchy: Understanding transformations in human and natural systems (pp. 25–62). Washington, DC: Island Press.Google Scholar
  53. Hostetler, M. (1999). Scale, birds, and human decisions: A potential for integrative research in urban ecosystems. Landscape and Urban Planning, 45, 15–19.CrossRefGoogle Scholar
  54. Hough, M. (1984). City form and natural process: Towards a new urban vernacular. New York: Van Norstrand Reinhod Company.Google Scholar
  55. Jacobs, J. (1961). The death and life of great American cities. New York: Vintage Books.Google Scholar
  56. Jenkins, J. C., & Riemann, R. (2001). What does nonforest land contribute to the global C balance? In R. E. McRoberts, G. A. Reams, P. C. Van Deusen, & J. W. Moser (Eds.), Proceedings of the third annual forest inventory and analysis symposium, general technical report (pp. 173–179). St Paul: Department of Agriculture, Forest Service, North Central Research Station.Google Scholar
  57. Johnson, S. (2006). The ghost map: The story of London’s most terrifying epidemic – and How It changed science, cities, and the modern world. New York: Riverhead Books.Google Scholar
  58. Katz, B., & Bradley, J. (1999, December). Divided we sprawl. Atlantic Monthly, pp. 26–42.Google Scholar
  59. Kennedy, V. S., & Mountford, K. (2001). Human influences on aquatic resources in the Chesapeake Bay watershed. In P. D. Curtin, G. S. Brush, & G. W. Fisher (Eds.), Discovering the Chesapeake: The history of an ecosystem (pp. 191–219). Baltimore: The Johns Hopkins University Press.Google Scholar
  60. Kent, M., Stevens, R. A., & Zhang, L. (1999). Urban plant ecology patterns and processes: A case study of the flora of the city of Plymouth, Devon, UK. Journal of Biogeography, 26, 1281–1298.CrossRefGoogle Scholar
  61. LaDeau, S. L., Calder, C. A., Doran, P. J., & Marra, P. P. (2011). West Nile virus impacts in American crow populations are associated with human land use and climate. Ecological Research, 26, 909–916.CrossRefGoogle Scholar
  62. Law, N. L., Band, L. E., & Grove, J. M. (2004). Nutrient input from residential lawn care practices. Journal of Environmental Planning and Management, 47, 737–755.CrossRefGoogle Scholar
  63. Lenski, G. E. (1966). Power and privilege: A theory of social stratification. New York: McGraw-Hill.Google Scholar
  64. Li, H., & Reynolds, J. F. (1993). A new contagion index to quantify spatial patterns of landscapes. Landscape Ecology, 8, 155–162.CrossRefGoogle Scholar
  65. Li, H., & Reynolds, J. F. (1995). On definition and quantification of heterogeneity. Oikos, 73, 280–284.CrossRefGoogle Scholar
  66. Likens, G. E. (Ed.). (1989). Long-term studies in ecology: Approaches and alternatives. New York: Springer.Google Scholar
  67. Locke, D. H, Grove, J. M., Lu, J. W. T., Troy, A., O’Neil-Dunne, J. P. M., & Beck, B. (2011). The 3Ps March on: Prioritizing potential and preferable locations for increasing urban tree canopy in New York City. Cities and the Environment, 3, article 14. Retrieved from
  68. Lord, C., & Norquist, K. (2010). Cities as emergent systems: Race as a rule in organized complexity. Environmental Law, 40, 551–597.Google Scholar
  69. Loucks, O. L. (1994). Sustainability in urban ecosystems: Beyond an object of study. In R. H. Platt, R. A. Rowntree, & P. C. Muick (Eds.), The ecological city: Preserving and restoring urban biodiversity (pp. 48–65). Amherst: University of Massachusetts Press.Google Scholar
  70. Machlis, G. E., Force, J. E., & Burch, W. R., Jr. (1997). The human ecosystem part I: The human ecosystem as an organizing concept in ecosystem management. Society and Natural Resources, 10, 347–367.CrossRefGoogle Scholar
  71. Makse, H. A., Havlin, S., & Stanley, H. E. (1995). Modeling urban growth patterns. Nature, 377, 608–612.CrossRefGoogle Scholar
  72. McDonnell, M. J., Pickett, S. T. A., Pouyat, R. V., Parmelee, R. W., & Carreiro, M. M. (1997). Ecosystem processes along an urban-to-rural gradient. Urban Ecosystems, 1, 21–36.CrossRefGoogle Scholar
  73. McGrath, B., Marshall, V., Cadenasso, M. L., Grove, J. M., Pickett, S. T. A., Plunz, R., & Towers, J. (Eds.). (2007). Designing urban patch dynamics. New York: Columbia University Graduate School of Architecture, Planning and Preservation, Columbia University.Google Scholar
  74. Melosi, M. V. (2000). The sanitary city: Urban infrastructure in America from colonial times to the present. Baltimore: Johns Hopkins University Press.Google Scholar
  75. Merse, C. L., Buckley, G. L., & Boone, C. G. (2009). Street trees and urban renewal: A Baltimore case study. The Geographical Bulletin, 50, 65–81.Google Scholar
  76. Mohai, P., & Saha, R. (2007). Racial inequality in the distribution of hazardous waste: A national-level reassessment. Social Problems, 54, 343–370.CrossRefGoogle Scholar
  77. Niemela, J. (1999). Ecology and urban planning. Biodiversity and Conservation, 8, 118–131.CrossRefGoogle Scholar
  78. NOAA. (2004). Population trends along the coastal United States: 1980–2008. Washington, DC: U.S. Department of Commerce.Google Scholar
  79. Northridge, M. E., Sclar, E. D., & Biswas, P. (2003). Sorting out the connection between the built environment and health: A conceptual framework for navigating pathways and planning healthy cities. Journal of Urban Health: Bulletin of the New York Academy of Medicine, 80, 556–568.Google Scholar
  80. Nowak, D. J. (1994). Atmospheric carbon dioxide reduction by Chicago’s urban forest. In E. G. McPherson (Ed.), Chicago’s urban forest ecosystem: Results of the Chicago Urban Climate Project (pp. 83–94). Radnor: Northeastern Research Station, USDA Forest Service.Google Scholar
  81. Parker, J. K., & Burch, W. R., Jr. (1992). Toward a social ecology for agroforestry in Asia. In W. R. Burch Jr. & J. K. Parker (Eds.), Social science applications in Asian agroforestry (pp. 60–84). New Delhi: IBH Publishing.Google Scholar
  82. Pickett, S. T. A., & Cadenasso, M. L. (2002). The ecosystem as a multidimensional concept: Meaning, model, and metaphor. Ecosystems, 5, 1–10.CrossRefGoogle Scholar
  83. Pickett, S. T. A., & Cadenasso, M. L. (2008). Linking ecological and built components of urban mosaics: An open cycle of ecological design. Journal of Ecology, 96, 8–12.Google Scholar
  84. Pickett, S. T. A., & Cadenasso, M. L. (2009). Altered resources, disturbance, and heterogeneity: A framework for comparing urban and non-urban soils. Urban Ecosystems, 12, 23–44.CrossRefGoogle Scholar
  85. Pickett, S. T. A., & Grove, J. M. (2009). Urban ecosystems: What would Tansley do? Urban Ecosystems, 12, 1–8.CrossRefGoogle Scholar
  86. Pickett, S. T. A., & White, P. S. (Eds.). (1985). The ecology of natural disturbance and patch dynamics. Orlando: Academic.Google Scholar
  87. Pickett, S. T. A., Burch, W. R., Jr., & Dalton, S. (1997a). Integrated urban ecosystem research. Urban Ecosystems, 1, 183–184.CrossRefGoogle Scholar
  88. Pickett, S. T. A., Burch, W. R., Jr., Dalton, S., Foresman, T., Grove, J. M., & Rowntree, R. (1997b). A conceptual framework for the study of human ecosystems in urban areas. Journal of Urban Ecosystems, 1, 185–199.CrossRefGoogle Scholar
  89. Pickett, S. T. A., Burch, W. R., Jr., & Grove, J. M. (1999). Interdisciplinary research: Maintaining the constructive impulse in a culture of criticism. Ecosystems, 22, 302–307.CrossRefGoogle Scholar
  90. Pickett, S. T. A., Cadenasso, M. L., Grove, J. M., Nilon, C. H., Pouyat, R. V., Zipperer, W. C., & Costanza, R. (2001). Urban ecological systems: Linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annual Review of Ecology and Systematics, 32, 127–157.CrossRefGoogle Scholar
  91. Pickett, S. T. A., Cadenasso, M. L., & Grove, J. M. (2004). Resilient cities: Meaning, models and metaphor for integrating the ecological, socio-economic, and planning realms. Landscape and Urban Planning, 69, 369–384.CrossRefGoogle Scholar
  92. Pickett, S. T. A., Kolasa, J., & Jones, X. (2007). Ecological understanding: The nature of theory and the theory of nature (2nd ed.). New York: Springer.Google Scholar
  93. Pickett, S. T. A., Cadenasso, M. L., Grove, J. M., Boone, C. G., Groffman, P. E., Irwin, E., Kaushal, S. S., Marshall, V., McGrath, B. P., Nilon, C. H., Pouyat, R. V., Szlavecz, K., Troy, A. R., & Warne, P. (2011). Urban ecological systems: Scientific foundations and a decade of progress. Journal of Environmental Management, 92, 331–362.CrossRefGoogle Scholar
  94. Pincetl, S. (2010). From the sanitary to the sustainable city: Challenges to institutionalizing biogenic (nature’s services) infrastructure. Local Environment, 15, 43–58.CrossRefGoogle Scholar
  95. Pouyat, R. V., Carreiro, M. M., Groffman, P. M., & Pavao-Zuckerman, M. A. (2009). Investigative approaches to urban biogeochemical cycles: New York metropolitan area and Baltimore as case studies. In M. J. McDonnell, A. Hahs, & J. Breuste (Eds.), Ecology of cities and towns: A comparative approach (pp. 329–351). New York: Cambridge University Press.CrossRefGoogle Scholar
  96. Raciti, S., Galvin, M. F., Grove, J. M., O’Neil-Dunne, J., & Todd, A. (2006). Urban tree canopy goal setting: A guide for communities. Annapolis: USDA Forest Service, Chesapeake Bay Program Office, Northeastern Area, State and Private Forestry.Google Scholar
  97. Rebele, F. (1994). Urban ecology and special features of urban ecosystems. Global Ecology and Biogeographical Letters, 4, 173–187.CrossRefGoogle Scholar
  98. Redman, C. L., Grove, J. M., & Kuby, L. H. (2004). Integrating social science into the long-term ecological research (LTER) network: Social dimensions of ecological change and ecological dimensions of social change. Ecosystems, 7, 161–171.CrossRefGoogle Scholar
  99. Romolini, M., & Grove, J. M. (2010, August 3). Polycentric networks and resilience in urban systems: A comparison of Baltimore & Seattle. Ecological Society of America annual meeting, Pittsburgh, PA.Google Scholar
  100. Schaaf, T., Zhao, X., & Keil, G. (1995). Towards a sustainable city: Methods of urban ecological planning and its application in Tianjin, China. Berlin: Urban System Consult GmbH.Google Scholar
  101. Schnore, L. F. (1958). Social morphology and human ecology. The American Journal of Sociology, 63, 620–634.CrossRefGoogle Scholar
  102. Seto, K., Sanchez-Rodriguez, R., & Fragkias, M. (2010). The new geography of contemporary urbanization and the environment. Annual Review of Environmental Resources, 35, 167–194.CrossRefGoogle Scholar
  103. Shane, G. D. (2005). Recombinant urbanism: Conceptual modeling in architecture, urban design, and city theory. Chichester: Wiley.Google Scholar
  104. Spirn, A. W. (1984). The granite garden: Urban nature and human design. New York: Basic Books, Inc.Google Scholar
  105. Stearns, F. (1970). Urban ecology today. Science, 170, 1006–1007.CrossRefGoogle Scholar
  106. Stearns, F., & Montag, T. (Eds.). (1974). The urban ecosystem: A holistic approach. Stroudsburg: Dowden, Hutchinson and Ross, Inc.Google Scholar
  107. Stokes, D. E. (1997). Pasteur’s Quadrant – Basic science and technological innovation. Washington, DC: Brookings Institution Press.Google Scholar
  108. Svendsen, E. S., & Campbell, L. K. (2008). Urban ecological stewardship: Understanding the structure, function and network of community-based urban land management. Cities and the Environment, 1, 1–32.Google Scholar
  109. Tansley, A. G. (1935). The use and abuse of vegetational concepts and terms. Ecology, 16, 284–307.CrossRefGoogle Scholar
  110. Thompson, G. E., & Steiner, F. R. (Eds.). (1997). Ecological design and planning. New York: Wiley.Google Scholar
  111. Toepfer, K. (2005). From the desk of Klaus Toepfer, United Nations Under-Secretary-General and Executive Director, UNEP. Our Planet.Google Scholar
  112. Troy, A. R., Grove, J. M., O’Neil-Dunne, J. P. M., Pickett, S. T. A., & Cadenasso, M. L. (2007). Predicting opportunities for greening and patterns of vegetation on private urban lands. Environmental Management, 40, 394–412.CrossRefGoogle Scholar
  113. Turner, B. L., II, Kasperson, R. E., Matosn, P. A., McCarthy, J. J., Corell, R. W., Christensen, L., Eckley, N., Kasperson, J. X., Luers, A., Martello, M. L., Polsky, C., Pulsipher, A., & Schiller, A. (2003). A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences USA, 100, 8074–8079.CrossRefGoogle Scholar
  114. van der Leeuw, S. E. (1998). The ARCHAEOMEDES Project B understanding the natural and anthropogenic causes of land degradation and desertification in the Mediterranean Basin. Luxemburg: Office of Publications of the European Union.Google Scholar
  115. Vandruff, L. W., Bolen, E. G., & San Julian, G. J. (1994). Management of urban wildlife. In T. A. Bookhout (Ed.), Research and management techniques for wildlife and habitats (pp. 507–530). Bethesda: The Wildlife Society.Google Scholar
  116. Vincent, G., & Bergeron, Y. (1985). Weed synecology and dynamics in urban environment. Urban Ecology, 9, 161–175.CrossRefGoogle Scholar
  117. Wiens, J. A. (1995). Landscape mosaics and ecological theory. In L. Hansson, L. Fahrig, & G. Merriam (Eds.), Mosaic landscapes and ecological processes (pp. 1–26). New York: Chapman & Hall.CrossRefGoogle Scholar
  118. Wu, J., & Loucks, O. L. (1995). From balance of nature to hierarchical patch dynamics: A paradigm shift in ecology. The Quarterly Review of Biology, 70, 439–466.CrossRefGoogle Scholar
  119. Zhou, W., Troy, A. R., & Grove, J. M. (2009a). Modeling residential lawn fertilization practices: Integrating high resolution remote sensing with socioeconomic data. Environmental Management, 41, 742–752.CrossRefGoogle Scholar
  120. Zhou, W., Grove, J. M., Troy, A., & Jenkins, J. C. (2009b). Can money buy green? Demographic and socioeconomic predictors of lawncare expenditures and lawn greenness in urban residential areas. Society and Natural Resources, 22, 744–760.CrossRefGoogle Scholar
  121. Zimmerman, J. K., Scatena, F. N., Schneider, L. C., Gragson, T., Boone, C., & Grove, J. M. (2009). Challenges for the implementation of the decadal plan for long-term ecological research: Land and water use change: Report of a workshop (LTER Network Office Report).Google Scholar
  122. Zipperer, W. C., Foresman, T. W., Sisinni, S. M., & Pouyat, R. V. (1997). Urban tree cover: An ecological perspective. Urban Ecosystems, 1, 229–247.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • J. Morgan Grove
    • 1
    Email author
  • Steward T. A. Pickett
    • 2
  • Ali Whitmer
    • 3
  • Mary L. Cadenasso
    • 4
  1. 1.Northern Research StationUS Department of Agriculture Forest ServiceBaltimoreUSA
  2. 2.Cary Institute of Ecosystem StudiesMillbrookUSA
  3. 3.Georgetown UniversityWashingtonUSA
  4. 4.Department of Plant SciencesUniversity of CaliforniaDavisUSA

Personalised recommendations