Global Socio-metabolic Transitions

  • Fridolin KrausmannEmail author
  • Marina Fischer-Kowalski
Part of the Human-Environment Interactions book series (HUEN, volume 2)


This chapter provides a macro-perspective on the evolution of society-nature interactions during industrialisation. It explores the emergence of the industrial metabolic regime and investigates the links between economic development, population growth, resource use and environmental change. It discusses the constraints that the environment imposes upon socioeconomic development and the role of technology in both alleviating these constraints and altering the natural environment. Starting from a discussion of the sociometabolic characteristics of the agrarian socio-ecological regime, the paper develops a socio-ecological perspective of global industrialisation taking the development in different world regions into account. It shows how a shift from a solar energy system tapping into flows of renewable biomass towards a fossil fuel powered energy system based on the exploitation of large stocks of energy resources allowed for an emancipation of the energy system from land use and abolished traditional limits of growth. This metabolic transition facilitated unprecedented population growth and triggered a surge in the per capita use of material and energy. The paper argues that industrial society’s high demand for material and energy resources is structurally determined and cannot be reduced simply by a more frugal or efficient use of resources.


Social metabolism Metabolic regimes Decoupling Resource use Industrialization 



This paper draws on research funded by the Austrian Science Fund FWF (Projects P21012-G11 and P20812-G11). We would like to express our heartfelt gratitude to Rolf Peter Sieferle, who was kind enough to look through earlier versions of this text and made helpful comments and to Helmut Haberl and Martin Schmid for their critical review, which helped to improve the paper. We would also like to thank Michael Neundlinger, who supported us in collecting and preparing the data. Ursula Lindenberg supplied a thoughtful translation of the German original into English.


  1. Ayres, R. U., & Warr, B. (2009). The economic growth engine: How energy and work drive material prosperity. Cheltenham/Northhampton: Edward Elgar.Google Scholar
  2. Baccini, P., & Brunner, P. H. (1991). The metabolism of the anthroposphere. Berlin: Springer.CrossRefGoogle Scholar
  3. Bork, H. R., Bork, H., Dalchow, C., Faust, B., Piorr, H.-P., & Schatz, T. (1998). Landschaftsentwicklung in Mitteleuropa. Gotha/Stuttgart: Klett-Perthes.Google Scholar
  4. Boserup, E. (1965). The conditions of agricultural growth. The economics of agrarian change under population pressure. Chicago: Aldine/Earthscan.Google Scholar
  5. Boserup, E. (1981). Population and technological change – A study of long-term trends. Chicago: The University of Chicago Press.Google Scholar
  6. Brimblecombe, P. (1987). The big smoke. A history of air pollution in London since medieval times. London: Methuen.Google Scholar
  7. Carson, R. (1962). Silent spring. Boston: Houghton Mifflin Company.Google Scholar
  8. Crosby, A. W. (1986). Ecological imperialism. The biological expansion of Europe, 900–1900. Cambridge: Cambridge University Press.Google Scholar
  9. Cunfer, G. (2005). On the Great Plains: Agriculture and environment. College Station: Texas A&M University Press.Google Scholar
  10. Cusso, X., Garrabou, R., & Tello, E. (2006). Social metabolism in an agrarian region of Catalonia (Spain) in 1860 to 1870: Flows, energy balance and land use. Ecological Economics, 58(1), 49–65.CrossRefGoogle Scholar
  11. Darby, H. C. (1956). The clearing of the woodland in Europe. In W. L. Thomas Jr. (Ed.), Man’s role in changing the face of the Earth (pp. 183–216). Chicago: The University of Chicago Press.Google Scholar
  12. De Zeeuw, J. W. (1978). Peat and the Dutch golden age (A.A.G. Bijdragen 21, pp. 3–31). Wageningen: Afdeling Agrarische Geschiedenis Landbouwhogeschool.Google Scholar
  13. Deffeyes, K. S. (2001). Hubbert’s peak, the impending world oil shortage. Princeton: Princeton University Press.Google Scholar
  14. Diamond, J. M. (2005). Collapse: How societies choose to fail or succeed. New York: Viking.Google Scholar
  15. EIA. (2010). International energy outlook 2010. Washington, DC: Energy Information Administration, Department of Energy (DOE).Google Scholar
  16. Fischer-Kowalski, M. (1998). Society’s metabolism. The intellectual history of material flow analysis, part I: 1860–1970. Journal of Industrial Ecology, 2(1), 61–78.CrossRefGoogle Scholar
  17. Fischer-Kowalski, M., & Haberl, H. (1997). Stoffwechsel und Kolonisierung: Konzepte zur Beschreibung des Verhältnisses von Gesellschaft und Natur. In M. Fischer-Kowalski et al. (Eds.), Gesellschaftlicher Stoffwechsel und Kolonisierung von Natur (pp. 3–12). Amsterdam: Gordon & Breach Fakultas.Google Scholar
  18. Freund, P., & Martin, G. T. (1993). The ecology of the automobile. Montreal: Black Rose Publishing.Google Scholar
  19. Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Cai, J., Freney, L. A., Martinelli, S. P., Seitzinger, M., & Sutton, A. (2008). Transformation of the nitrogen cycle: Recent trends, questions and potential solutions. Science, 320, 889–892.CrossRefGoogle Scholar
  20. Global Footprint Network. (2006). Ecological footprint and biocapacity data.
  21. Grigg, D. B. (1992). The transformation of agriculture in the west. Oxford: Blackwell.Google Scholar
  22. Grübler, A. (1998). Technology and global change. Cambridge: Cambridge University Press.Google Scholar
  23. Haberl, H., Winiwarter, V., Andersson, K., Ayres, R. U., Boone, C. G., Castillio, A., Cunfer, G., Fischer-Kowalski, M., Freudenburg, W. R., Furman, E., Kaufmann, R., Krausmann, F., Langthaler, E., Lotze-Campen, H., Mirtl, M., Redman, C. A., Reenberg, A., Wardell, A. D., Warr, B., & Zechmeister H. (2006). From LTER to LTSER: Conceptualizing the socio-economic dimension of long-term socio-ecological research. Ecology and Society, 11(2), 13. (Online)
  24. Haberl, H., Erb, K.-H., Krausmann, F., Gaube, V., Bondeau, A., Plutzar, C., Gingrich, S., Lucht, W., & Fischer-Kowalski, M. (2007). Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 104(31), 12942–12947.CrossRefGoogle Scholar
  25. Hall, C. A. S., Cleveland, C. J., & Kaufmann, R. K. (1986). Energy and resource quality. The ecology of the economic process. New York: Wiley Interscience.Google Scholar
  26. Harris, M., & Ross, E. (1987). Death, sex & fertility: Population regulation in pre-industrial & developing societies. New York: Columbia University Press.Google Scholar
  27. Hilty, L. M. (2008). Information technology and sustainability. Essays on the relationship between information technology and sustainable development. Norderstedt: Books on Demand.Google Scholar
  28. IEA. (2007). Energy statistics of non-OECD countries, 2004–2005 (2007 ed.) CD-ROM. Paris: International Energy Agency (IEA), Organisation of Economic Co-Operation and Development (OECD).Google Scholar
  29. IPCC. (2005). IPCC special report on carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge/New York: Cambridge University Press.Google Scholar
  30. IPCC. (2007). Climate Change 2007 – Impacts, adaptation and vulnerability. Contribution of the Working Group II to the fourth assessment report of the IPCC. Cambridge/New York/Melbourne: Cambridge University Press.Google Scholar
  31. Jackson, T. (2009). Prosperity without growth:Economics for a finite planet. London: Earthscan.Google Scholar
  32. Krausmann, F. (2004). Milk, manure and muscular power. Livestock and the industrialization of agriculture. Human Ecology, 32(6), 735–773.CrossRefGoogle Scholar
  33. Krausmann, F., & Cunfer, G. (2009, August 4–8). Agroecosystems on the American frontier: Material and energy systems and sustainability. Presentation at the World Congress of Environmental History, Copenhagen.Google Scholar
  34. Krausmann, F., Fischer-Kowalski, M., Schandl, H., & Eisenmenger, N. (2008a). The global socio-metabolic transition: Past and present metabolic profiles and their future trajectories. Journal of Industrial Ecology, 12(5/6), 637–656.CrossRefGoogle Scholar
  35. Krausmann, F., Schandl, H., & Sieferle, R. P. (2008b). Socio-ecological regime transitions in Austria and the United Kingdom. Ecological Economics, 65(1), 187–201.CrossRefGoogle Scholar
  36. Krausmann, F., Gingrich, S., Eisenmenger, N., Erb, K.-H., Haberl, H., & Fischer-Kowalski, M. (2009). Growth in global materials use, GDP and population during the 20th century. Ecological Economics, 68(10), 2696–2705.CrossRefGoogle Scholar
  37. Leach, G. (1976). Energy and food production. Guildford: IPC Science and Technology Press.Google Scholar
  38. Leaf, M. J. (2004). Green revolution. In S. Krech III et al. (Eds.), Encyclopedia of world environmental history (pp. 615–619). London/New York: Routledge.Google Scholar
  39. Lutz, B. (1989). Der kurze Traum immerwährender Prosperität. Eine Neuinterpretation der industriell-kapitalistischen Entwicklung im Europa des 20. Jahrhunderts. Frankfurt am Main/New York: Campus Verlag.Google Scholar
  40. Maddison, A. (2008). Historical statistics for the world economy: 1–2006 AD.
  41. Marland, G., Boden, T. A., & Andres, R. J. (2007). Global, regional, and national CO2 emissions. In Oak Ridge National Laboratory, U.S. Department of Energy (Ed.), Trends: A compendium of data on global change. Oak Ridge: Carbon Dioxide Information Analysis Center (CDIAC).Google Scholar
  42. Mazoyer, M., Roudart, L., & Membrez, J. H. (2006). A history of world agriculture: From the neolithic age to the current crisis. London: Earth Scan.Google Scholar
  43. McNeill, J. R. (2000). Something new under the sun. An environmental history of the twentieth century. London: Allen Lane.Google Scholar
  44. Meadows, D. L., Meadows, D. H., & Randers, J. (1972). Die Grenzen des Wachstums. Bericht an den Club of Rome. Stuttgart: DVA.Google Scholar
  45. Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: Vol. 1. Current state and trends. Washington/Covelo/London: Island Press.Google Scholar
  46. Mitchell, B. R. (2003). International historical statistics. New York: Palgrave Mcmillan.Google Scholar
  47. Müller-Herold, U., & Sieferle, R. P. (1998). Surplus and survival: Risk, ruin and luxury in the evolution of early forms of subsistence. Advances in Human Ecology, 6, 201–220.Google Scholar
  48. National Academy of Sciences. (1992). Geoengineering. In Committee on Science Engineering and Public Policy (U.S.). Panel on Policy Implications of Greenhouse Warming (Ed.), Policy implications of greenhouse warming: Mitigation, adaptation, and the science base (pp. 433–464). Washington, DC: National Academy Press.Google Scholar
  49. Pfister, C. (2003). Energiepreis und Umweltbelastung. Zum Stand der Diskussion über das “1950er Syndrom”. In W. Siemann (Ed.), Umweltgeschichte Themen und Perspektiven (pp. 61–86). München: C.H. Beck.Google Scholar
  50. Pimentel, D., & Pimentel, M. (1979). Food, energy and society. London: Edward Arnold.Google Scholar
  51. Podobnik, B. (1999). Toward a sustainable energy regime, a long-wave interpretation of global energy shifts. Technological Forecasting and Social Change, 62(3), 155–172.CrossRefGoogle Scholar
  52. Prentice, I. C., Heimann, M., & Sitch, S. (2001). Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change. In J. T. Houghton et al. (Eds.), Climate change 2001: The scientific basis (pp. 183–237). Cambridge, MA: Cambridge University Press.Google Scholar
  53. Ruddiman, W. F. (2003). The anthropogenic greenhouse era began thousands of years ago. Climatic Change, 61(3), 261–293.CrossRefGoogle Scholar
  54. Schandl, H., & Krausmann, F. (2007). The great transformation: A socio-metabolic reading of the industrialization of the United Kingdom. In M. Fischer-Kowalski & H. Haberl (Eds.), Socioecological transitions and global change: Trajectories of social metabolism and land use (pp. 83–115). Cheltenham/Northampton: Edward Elgar.Google Scholar
  55. Sieferle, R. P. (1997). Rückblick auf die Natur: Eine Geschichte des Menschen und seiner Umwelt. München: Luchterhand.Google Scholar
  56. Sieferle, R. P. (2001). The subterranean forest. Energy systems and the industrial revolution. Cambridge: The White Horse Press.Google Scholar
  57. Sieferle, R. P. (2003). Nachhaltigkeit in universalhistorischer Perspektive. In W. Siemann (Ed.), Umweltgeschichte Themen und Perspektiven (pp. 39–60). München: C.H. Beck.Google Scholar
  58. Singh, S. J., Haberl, H., Gaube, V., Grünbühel, C. M., Lisievici, P., Lutz, J., Matthews, R., Mirtl, M., Vadineanu, A., & Wildenberg, M. (2010). Conceptualising Long-term socio-ecological research (LTSER): Integrating the social dimension. In F. Müller et al. (Eds.), Long-term ecological research, between theory and application (pp. 377–398). Dordrecht/Heidelberg/London/New York: Springer.CrossRefGoogle Scholar
  59. Smil, V. (2001). Enriching the earth. Fritz Haber, Carl Bosch, and the transformation of world food production. Cambridge, MA: MIT Press.Google Scholar
  60. Smil, V. (2003). Energy at the crossroads. Global perspectives and uncertainties. Cambridge, MA/London/England: MIT Press.Google Scholar
  61. Steffen, W., Crutzen, P. J., & McNeill, J. R. (2007). The anthropocene: Are humans now overwhelming the great forces of nature. Ambio, 36(8), 614–621.CrossRefGoogle Scholar
  62. Tainter, J. A. (1988). The collapse of complex societies. Cambridge: Cambridge University Press.Google Scholar
  63. The World Bank Group. (2007). World development indicators 2007. CD-ROM. Washington, DC: The World Bank.Google Scholar
  64. United Nations, D. o. E. a. S. A. (2004). Statistical yearbook (Forty Eight issue). New York: United Nations.Google Scholar
  65. von Gottl-Ottlilienfeld, F. (1924). Fordismus. Über Industrie und Technische Vernunft. Jena: Fischer.Google Scholar
  66. Weizsäcker, E. U., Lovins, A. B., & Lovins, H. L. (1995). Faktor Vier – Doppelter Wohlstand, halbierter Naturverbrauch. Der neue Bericht an den Club of Rome. München: Droemer Knaur.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of Social Ecology Vienna (SEC)Alpen-Adria Universitaet Klagenfurt, Wien, GrazViennaAustria

Personalised recommendations