Advertisement

A City and Its Hinterland: Vienna’s Energy Metabolism 1800–2006

  • Fridolin KrausmannEmail author
Chapter
Part of the Human-Environment Interactions book series (HUEN, volume 2)

Abstract

Cities are centres of resource consumption and urban resource use has a considerable influence on both the economy and the environment in the resource-providing hinterland. This chapter looks at cities from a socio-ecological perspective and investigates the evolution of the energy metabolism of the city of Vienna since the beginning of industrialisation. Based on time series data on the size and structure of energy consumption in Vienna in the period from 1800 to 2006, it analyses the energy transition and how it relates to urban growth. It shows that during the last 200 years, a multiplication of energy use and a shift from renewable biomass towards coal and finally oil and natural gas as the dominating energy source have been observed. This energy transition was not a continuous process, but different phases in the energy transition can be distinguished. Also the spatial relations between the city and its resource-supplying hinterland changed. But growth in urban resource use was not simply causing an equal growth of the spatial imprint of urban consumption. Our results show that the size and spatial location of the resource-supplying hinterland is the combined result of various dynamic processes, including transport technology and agricultural productivity.

The paper shows how energy and transport revolution abolished barriers of growth inherent to the old energy regime.

Keywords

Urban metabolism Energy consumption Energy transition Industria-lization City-hinterland relation 

Notes

Acknowledgments

The research for this paper was supported by the Austrian Science Fund (Project No. P21012 G11). I want to thank Rolf Peter Sieferle, Verena Winiwarter, Marina Fischer-Kowalski and Simone Gingrich for their support of this research and Marian Chertow and Helmut Haberl for a critical review of the manuscript.

References

  1. Ayres, R. U., & Ayres, L. W. (1998). Accounting for resources, 1, economy-wide applications of mass-balance principles to materials and waste. Cheltenham/Lyme: Edward Elgar.Google Scholar
  2. Barles, S. (2005). A metabolic approach to the city: Nineteenth and twentieth century Paris. In D. Schott, B. Luckin, & G. Massard-Guilbaud (Eds.), Resources of the city. Contributions to an environmental history of modern Europe (pp. 28–47). Aldershot: Ashgate.Google Scholar
  3. Barles, S. (2007). Feeding the city: Food consumption and flow of nitrogen, Paris, 1801–1914. The Science of the Total Environment, 375, 48–58.CrossRefGoogle Scholar
  4. Barles, S. (2009). Urban metabolism of Paris and its region. Journal of Industrial Ecology, 13, 898–913.CrossRefGoogle Scholar
  5. Billen, G., Barles, S., Garnier, J., Rouillard, J., & Benoit, P. (2009). The food-print of Paris: Long-term reconstruction of the nitrogen flows imported into the city from its rural hinterland. Regional Environmental Change, 9, 13–24.CrossRefGoogle Scholar
  6. Billen, G., Garnier, J., Barles, S. (2012). History of the urban environmental imprint: introduction to a multidisciplinary approach to the long-term relationships between Western cities and their hinterland. Regional Environmental Change, 12, 249–253.Google Scholar
  7. BMLF – Bundesministerium für Land- und Forstwirtschaft. (1997). Lebensmittelbericht Österreich. Vienna: BMLF.Google Scholar
  8. Boyden, S., Millar, S., Newcombe, K., & O’Neill, B. J. (1981). The ecology of a city and its people: The case of Hong Kong. Canberra: ANU Press.Google Scholar
  9. Buchmann, B. M. (1979). Die Verzehrungssteuer. Wiener Geschichtsblätter, 1979(1), 20–29.Google Scholar
  10. Castaldi, C., & Nuvolari, A. (2003). Technological revolutions and economic growth: The “age of steam” reconsidered (Eindhoven Centre for Innovation Studies Working Paper 03.25). Eindhoven: Eindhoven Centre for Innovation Studies.Google Scholar
  11. Daniels, P. L., & Moore, S. (2001). Approaches for quantifying the metabolism of physical economies, part I: Methodological overview. Journal of Industrial Ecology, 5, 69–93.CrossRefGoogle Scholar
  12. Daxbeck, H., Kisliakova, A., & Obernosterer, R. (2001). Der ökologische Fußabdruck der Stadt Wien. Vienna: Magistrat der Stadt Wien (MA22).Google Scholar
  13. Eigner, P., & Schneider, P. (2005). Das Wachstum von Wien. In K. Brunner & P. Schneider (Eds.), Umwelt Wien. Geschichte des Natur- und Lebensraumes Wien (pp. 22–53). Vienna: Böhlau.Google Scholar
  14. Erb, K.-H., Krausmann, F., & Schulz, N. B. (2001) Der ökologische Fußabdruck des österreichischen Außenhandels (Social Ecology Working Paper 62). Vienna: IFF Social Ecology.Google Scholar
  15. Fischer-Kowalski, M., Haberl, H., Hüttler, W., Payer, H., Schandl, H., Winiwarter, V., & Zangerl-Weisz, H. (1997). Gesellschaftlicher Stoffwechsel und Kolonisierung von Natur. Ein Versuch in Sozialer Ökologie. Amsterdam: Gordon & Breach Fakultas.Google Scholar
  16. Fischer-Kowalski, M., Krausmann, F., & Smetschka, B. (2004). Modelling scenarios of transport across history from a socio-metabolic perspective. Review Fernand Braudel Center, 27, 307–342.Google Scholar
  17. Folke, C., Jansson, A., Larsson, J., & Costanza, R. (1997). Ecosystem appropriation by cities. Ambio, 26, 167–172.Google Scholar
  18. Gingrich, S., Haidvogl, G., & Krausmann, F. (2012). The Danube and Vienna: Urban resource use, transport and land use 1800 to 1910. Regional Environmental Change, 12, 283–294. doi: 10.1007/s10113-010-0201.
  19. Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J. G., Bai, X. M., & Briggs, J. M. (2008). Global change and the ecology of cities. Science, 319, 756–760.CrossRefGoogle Scholar
  20. Grübler, A. (2004). Transitions in energy use. In C. J. Cleveland (Ed.), Encyclopedia of energy (pp. 163–177). Amsterdam: Elsevier.Google Scholar
  21. Haberl, H. (2001). The energetic metabolism of societies, part I: Accounting concepts. Journal of Industrial Ecology, 5, 11–33.CrossRefGoogle Scholar
  22. Haberl, H., Erb, K.-H., & Krausmann, F. (2001). How to calculate and interpret ecological footprints for long periods of time: The case of Austria 1926–1995. Ecological Economics, 38, 25–45.CrossRefGoogle Scholar
  23. Handels- und Gewerbekammer in Wien (Ed.). (1867). Statistik der Volkswirtschaft in Nieder-Oesterreich 1855–1866. Vienna: Leopold Sommer.Google Scholar
  24. Hauer, F. (2010). Die Verzehrungssteuer 1829–1913 als Grundlage einer umwelthistorischen Untersuchung des Metabolismus der Stadt Wien (Social Ecology Working Paper 129). Vienna: IFF Social Ecology.Google Scholar
  25. Hoffmann, R. C. (2007). Footprint metaphor and metabolic realities. Environmental impacts of medieval European cities. In P. Squatriti (Ed.), Natures past. The environment and human history (pp. 288–325). Ann Arbor: The University of Michigan Press.Google Scholar
  26. Johann, E. (2005). Die städtische Holzversorgung vom 17. bis zum 19. Jahrhundert. In K. Brunner & P. Schneider (Eds.), Umwelt Wien. Geschichte des Natur- und Lebensraumes Wien (pp. 170–179). Vienna: Böhlau.Google Scholar
  27. Jones, L. W. (1955). The hinterland reconsidered. American Sociological Review, 20, 40–44.CrossRefGoogle Scholar
  28. Juraschek, F. (1896). Das Wachsthum des Territoriums, der Bevölkerung und des Verkehers von Wien 1857–1894. Statistische Monatsschrift, 22, 328–344.Google Scholar
  29. Kennedy, C. A., Cuddihy, J., & Engel-Yan, J. (2007). The changing metabolism of cities. Journal of Industrial Ecology, 11, 1–17.CrossRefGoogle Scholar
  30. Krausmann, F. (2004). Milk, manure and muscular power. Livestock and the industrialization of agriculture. Human Ecology, 32, 735–773.CrossRefGoogle Scholar
  31. Krausmann, F., & Haberl, H. (2007). Land-use change and socio-economic metabolism. A macro view of Austria 1830–2000. In M. Fischer-Kowalski & H. Haberl (Eds.), Socioecological transitions and global change: Trajectories of social metabolism and land use (pp. 31–59). Cheltenham/Northampton: Edward Elgar.Google Scholar
  32. Loomis, R. S., & Connor, D. J. (1992). Crop ecology: Productivity and management in agricultural systems. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  33. Lorenz von Liburnau, J. R. (1878). Atlas der Urproduction Oesterreichs. Vienna: R. von Waldheim.Google Scholar
  34. Luck, M. A., Jenerette, G. D., Wu, J., & Grimm, N. B. (2001). The urban funnel model and the spatially heterogeneous ecological footprint. Ecosystems, 4, 782–796.CrossRefGoogle Scholar
  35. Marull, J., Pino, J., Tello, E., & Cordobilla, M. J. (2010). Social metabolism, landscape change and land-use planning in the Barcelona metropolitan region. Land Use Policy, 27, 497–510.CrossRefGoogle Scholar
  36. Mühlpeck, V., Sandgruber, R., & Woitek, H. (1979). Index der Verbraucherpreise 1800 bis 1914. Eine Rückberechnung für Wien und den Gebietsstand des heutigen Österreich. In Anonymous (Ed.), Geschichte und Ergebnisse der zentralen amtlichen Statistik in Österreich 1829–1979 (pp. 649–687). Vienna: Kommissionsverlag.Google Scholar
  37. Mumford, L. (1956). The natural history of urbanization. In W. L. Thomas Jr. (Ed.), Man’s role in changing the face of the Earth (pp. 382–398). Chicago: The University of Chicago Press.Google Scholar
  38. Nagl, H. (1966). Die Energiewirtschaft Wiens. Dissertation, University of Vienna, Vienna.Google Scholar
  39. Niza, S., Rosado, L., & Ferrao, P. (2009). Urban metabolism: Methodological advances in urban material flow accounting based on the Lisbon case study. Journal of Industrial Ecology, 13, 384–405.CrossRefGoogle Scholar
  40. Peterson, B. (2005). Die Lebensmittelversorgung der Stadt. In K. Brunner & P. Schneider (Eds.), Umwelt Wien. Geschichte des Natur- und Lebensraumes Wien (pp. 207–221). Vienna: Böhlau.Google Scholar
  41. Pfister, C. (1996). Das 1950er Syndrom: Der Weg in die Konsumgesellschaft. Bern/Vienna: Haupt.Google Scholar
  42. Pfister, C. (2003). Energiepreis und Umweltbelastung. Zum Stand der Diskussion über das “1950er Syndrom”. In W. Siemann (Ed.), Umweltgeschichte Themen und Perspektiven (pp. 61–86). Munich: C.H. Beck.Google Scholar
  43. Pizzala, J. (1884). Der Brennstoffverbrauch Wiens in den Jahren 1860 bis 1882. Statistische Monatsschrift, 10, 323–326.Google Scholar
  44. Radkau, J. (1989). Technik in Deutschland. Vom 18. Jahrhundert bis zur Gegenwart. Frankfurt am Main: Edition Suhrkamp.Google Scholar
  45. Sahely, H. R., Dudding, S., & Kennedy, C. A. (2003). Estimating the urban metabolism of Canadian cities: Greater Toronto Area case study. Canadian Journal for Civil Engineering, 30, 468–483.CrossRefGoogle Scholar
  46. Sandgruber, R. (1978). Wirtschaftswachstum und Energie in Österreich 1840–1913. In H. Kellenbenz (Ed.), Wirtschaftswachstum, Energie und Verkehr vom Mittelalter bis ins 19. Jahrhundert (pp. 67–95). Stuttgart/New York: Fischer Verlag.Google Scholar
  47. Sandgruber, R. (1983). Wiens Energieverbrauch und Energieversorgung in der Phase der Industrialisierung. Vienna: Magistrat der Stadt Wien.Google Scholar
  48. Sandgruber, R. (1987). Die Energieversorgung Wiens im 18. und 19. Jahrhundert. In A. Kusternig (Ed.), Bergbau in Niederösterreich (pp. 459–491). Vienna: NÖ Institut für Landeskunde.Google Scholar
  49. Satterthwaite, D. (2009). The implications of population growth and urbanization for climate change. Environment and Urbanization, 21, 545–567.CrossRefGoogle Scholar
  50. Schmid-Neset, T.-S., & Lohm, U. (2005). Spatial imprint of food consumption. A historical analysis for Sweden, 1870–2000. Human Ecology, 33, 565–580.CrossRefGoogle Scholar
  51. Sieferle, R. P. (2001). The subterranean forest. Energy systems and the industrial revolution. Cambridge: The White Horse Press.Google Scholar
  52. Sieferle, R. P., Krausmann, F., Schandl, H., & Winiwarter, V. (2006). Das Ende der Fläche. Zum gesellschaftlichen Stoffwechsel der Industrialisierung. Köln: Böhlau.Google Scholar
  53. Statistik Austria. (2008). Online database ISIS of Statistik Austria. www.statistik.at
  54. Stenitzer, M., Fickl, S., Papousek, B., & Cerveny, M. (1997). Energieeinsatz und CO 2 -Emissionen in Wien. Vienna: Magistrat der Stadt Wien, MA 22.Google Scholar
  55. Tarr, J. A. (2002). The metabolism of the industrial city. The case of Pittsburgh. Journal of Urban History, 28, 511–545.CrossRefGoogle Scholar
  56. Thünen, J. Hv. (1826). Der isolierte Staat in Beziehung auf Landwirtschaft und Nationalökonomie. Jena: Fischer.Google Scholar
  57. Wackernagel, M., Monfreda, C., Schulz, N. B., Erb, K.-H., Haberl, H., & Krausmann, F. (2004). Calculating national and global ecological footprint time series: Resolving conceptual challenges. Land Use Policy, 21, 271–278.CrossRefGoogle Scholar
  58. Warren-Rhodes, K., & Koenig, A. (2001). Escalating trends in the urban metabolism of Hong Kong: 1971–1997. Ambio, 30, 429–438.Google Scholar
  59. Weisz, H., & Steinberger, J. K. (2010). Reducing energy and materials flows in cities. Current Opinion in Environmental Sustainability, 2, 185–192.CrossRefGoogle Scholar
  60. Wessely, J. (1880). Forstliches Jahrbuch für Oesterreich-Ungarn. Vienna: Carl Fromme.Google Scholar
  61. Wessely, J. (1882). Forstliches Jahrbuch für Oesterreich – Ungarn. Oesterreichs Donauländer. II. Theil: Spezial-Gemälde der Donauländer. Vienna: Carl Fromme.Google Scholar
  62. Wien. Magistrat der Stadt Wien (MSW). (1885). Statistisches Jahrbuch der Stadt Wien (various years 1885 to 2008).Google Scholar
  63. Wien. Magistrat der Stadt Wien (MSW). (2002). Statistisches Jahrbuch der Stadt Wien für das Jahr 2000.Google Scholar
  64. Wien. Magistrat der Stadt Wien (MSW). (2008). Statistisches Jahrbuch der Stadt Wien für das Jahr 2006.Google Scholar
  65. Wiener Stadtwerke. (1975). Energiekonzept der Stadt Wien. Vienna: Wiener Stadtwerke Generaldirektion.Google Scholar
  66. Wiener Stadtwerke. (1978). Energiekonzept der Stadt Wien. Vienna: Wiener Stadtwerke Generaldirektion.Google Scholar
  67. Wiener Stadtwerke. (1983). Energie für Wien. Energiekonzept der Stadt Wien. 1. Fortschreibung. Vienna: Wiener Stadtwerke.Google Scholar
  68. Wiener Stadtwerke. (1994). Energie in Wien. Wien: Wiener Stadtwerke.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of Social Ecology Vienna (SEC)Alpen-Adria Universitaet Klagenfurt, Wien, GrazViennaAustria

Personalised recommendations