Advertisement

Applications: Nanobiosystems, Medicine, and Health

  • Chad A. Mirkin
  • André Nel
  • C. Shad Thaxton
Chapter
Part of the Science Policy Reports book series (SCIPOLICY, volume 1)

Abstract

Over the past decade, nanomedicine and nanobiology have undergone radical transformations from fantasy to real science. The days of discussing advances in this area in the context of “nanobots” are over, and systems and nanomaterials have emerged that provide major analytical or therapeutic advantages over conventional molecule-based structures and approaches. We have come to recognize that much of biology is executed at the nanoscale level, therefore providing a rational approach to using the structure and function of engineered nanomaterials at the nano-bio interface for interrogation of disease, diagnosis, treatment, and imaging at levels of sophistication not possible before [1]. Fabrication of a host of nanostructures has been coupled with advanced chemical manipulation in order to impart biological recognition and interaction capabilities. Often, chemical manipulation results in nanomaterials that provide performance enhancement of therapeutics, imaging agents, diagnostics, and materials for tissue engineering and for basic science applications.

Keywords

Nanotechnology Nanodiagnostic Nanotherapeutics Theranostics Translational Nanotechnology, Imaging Drug delivery Cancer treatment Tissue regeneration Synthetic biology Sensors to monitor human health International perspective 

References

  1. 1.
    A.E. Nel, L. Madler, D. Velegol, T. Xia, E.M.V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson, Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8(7), 543–557 (2009). doi: 10.1038/nmat2442 CrossRefGoogle Scholar
  2. 2.
    European Science Foundation (ESF), Nanomedicine: An ESF – European Medical Research Council Forward Look Report (ESF, Strasbourg, France, 2005), Available online: http://www.esf.org/publications/forward-looks.html
  3. 3.
    A. Nel, T. Xia, L. Madler, N. Li, Toxic potential of materials at the nanolevel. Science 311(5761), 622–627 (2006). doi: 10.1126/science.1114397 CrossRefGoogle Scholar
  4. 4.
    P. Grodzinski, M. Silver, L.K. Molnar, Nanotechnology for cancer diagnostics: promises and challenges. Expert Rev. Mol. Diagn. 6(3), 307–318 (2006)CrossRefGoogle Scholar
  5. 5.
    F. Alexis, E.M. Pridgen, R. Langer, O.C. Farokhzad, Nanoparticle technologies for cancer therapy. Handb. Exp. Pharmacol. 197, 55–86 (2010)CrossRefGoogle Scholar
  6. 6.
    S.X. Tang, J. Zhao, J.J. Storhoff, P.J. Norris, R.F. Little, R. Yarchoan, S.L. Stramer, T. Patno, M. Domanus, A. Dhar, C. Mirkin, I.K. Hewlett, Nanoparticle-based biobarcode amplification assay (BCA) for sensitive and early detection of human immunodeficiency type 1 capsid (p24) antigen. J. Acquir. Immune Defic. Syndr. 46(2), 231–237 (2007). doi: 10.1097/QAI.0b013e31814a554b CrossRefGoogle Scholar
  7. 7.
    M.E. Davis, J.E. Zuckerman, C.H. Choi, D. Seligson, A. Tolcher, C.A. Alabi, Y. Yen, J.D. Heidel, A. Ribas, Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291), 1067–1070 (2010). doi: 10.1038/nature08956 CrossRefGoogle Scholar
  8. 8.
    A.E. Prigodich, D.S. Seferos, M.D. Massich, D.A. Giljohann, B.C. Lane, C.A. Mirkin, Nano-flares for mRNA regulation and detection. ACS Nano 3(8), 2147–2152 (2009). doi: 10.1021/nn9003814 CrossRefGoogle Scholar
  9. 9.
    D.S. Seferos, D.A. Giljohann, H.D. Hill, A.E. Prigodich, C.A. Mirkin, Nano-flares: probes for transfection and mRNA detection in living cells. J. Am. Chem. Soc. 129(50), 15477–15479 (2007). doi: 10.1021/ja0776529 CrossRefGoogle Scholar
  10. 10.
    D. Zheng, D.S. Seferos, D.A. Giljohann, P.C. Patel, C.A. Mirkin, Aptamer nano-flares for molecular detection in living cells. Nano Lett. 9(9), 3258–3261 (2009). doi: 10.1021/nl901517b CrossRefGoogle Scholar
  11. 11.
    A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingham, S. Bodapati, Z. liu, J. Levi, B.R. Smith, T. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B.T. Kuri-Yakub, S.S. Gambhir, Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 3(9), 557–562 (2008). doi: 10.1038/nnano.2008.231 CrossRefGoogle Scholar
  12. 12.
    S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, S.S. Gambhir, Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 105(15), 5844–5849 (2008). doi: 10.1073/pnas.0710575105 CrossRefGoogle Scholar
  13. 13.
    J.L. Major, T.J. Meade, Bioresponsive, cell-penetrating, and multimeric MR contrast agents. Acc. Chem. Res. 42(7), 893–903 (2009). doi: 10.1021/ar800245h CrossRefGoogle Scholar
  14. 14.
    Y. Song, X. Xu, K.W. MacRenaris, X.Q. Zhang, C.A. Mirkin, T.J. Meade, Multimodal gadolinium-enriched DNA-gold nanoparticle conjugates for cellular imaging. Angew. Chem. Int. Ed Engl. 48(48), 9143–9147 (2009)CrossRefGoogle Scholar
  15. 15.
    C. Zavaleta, A. de la Zerda, Z. Liu, S. Keren, Z. Cheng, M. Schipper, X. Chen, H. Dai, S.S. Gambhir, Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Lett. 8(9), 2800–805 (2008). Available online: http://www.adelazerda.com/NanoLetters_08.pdf CrossRefGoogle Scholar
  16. 16.
    S. George, S. Pokhrel, T. Xia, B. Gilbert, Z. Ji, M. Schowalter, A. Rosenauer, R. Damoiseaux, K.A. Bradley, L. Madler, A.E. Nel, Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4(1), 15–29 (2010)CrossRefGoogle Scholar
  17. 17.
    M. Liong, J. Lu, M. Kovochich, T. Xia, S.G. Ruehm, A.E. Nel, F. Tamanoi, J.I. Zink, Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5), 889–896 (2008). doi: 10.1021/nn800072t CrossRefGoogle Scholar
  18. 18.
    J. Lu, M. Liong, S. Sherman, T. Xia, M. Kovochich, A. Nel, J. Zink, F. Tamanoi, Mesoporous silica nanoparticles for cancer therapy: energy-dependent cellular uptake and delivery of pacli­taxel to cancer cells. Nanobiotechnology 3(3), 89–95 (2007). doi: 10.1007/s12030-008-9003-3 CrossRefGoogle Scholar
  19. 19.
    J. Lu, M. Liong, Z. Li, J.I. Zink, F. Tamanoi, Biocompatability, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6(16), 1794–1805 (2010)CrossRefGoogle Scholar
  20. 20.
    H. Meng, M. Liong, T. Xia, Z. Li, Z. Ji, J.I. Link, A.E. Nel, Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and Pgp siRNA to overcome drug resistance in a cancer cell line. ACS Nano 4(8), 4539–4550 (2010). doi: 10.1021/nn100690m CrossRefGoogle Scholar
  21. 21.
    H. Meng, M. Xie, T. Xia, Y. Zhao, F. Tamanoi, J.F. Stoddart, J.I. Zink, A. Nel, Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J. Am. Chem. Soc. 132(36), 12690–12697 (2010). doi: 10.1021/ja104501a CrossRefGoogle Scholar
  22. 22.
    T. Xia, M. Kovochich, M. Liong, H. Meng, S. Kabahie, S. george, J.I. Zink, A. Nel, Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nano­particles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3(10), 3273–3286 (2009)CrossRefGoogle Scholar
  23. 23.
    D.G. Georganopoulou, L. Chang, J.W. Nam, C.S. Thaxton, E.J. Mufson, W.L. Klein, C.A. Mirkin, Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A. 102(7), 2273–2276 (2004). doi: 10.1073/pnas.0409336102 CrossRefGoogle Scholar
  24. 24.
    C.A. Mirkin, C.S. Thaxton, N.L. Rosi, Nanostructures in biodefense and molecular diagnostics. Expert Rev. Mol. Diagn. 4(6), 749–751 (2004)CrossRefGoogle Scholar
  25. 25.
    J.M. Nam, S.I. Stoeva, C.A. Mirkin, Bio-bar-code-based DNA detection with PCR-like sensitivity. J. Am. Chem. Soc. 126(19), 5932–5933 (2004). doi: 10.1021/ja049384+ CrossRefGoogle Scholar
  26. 26.
    J.M. Nam, C.S. Thaxton, C.A. Mirkin, Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301(5641), 1884–1886 (2003). doi: 10.1126/science.1088755 CrossRefGoogle Scholar
  27. 27.
    S.I. Stoeva, J.S. Lee, C.S. Thaxton, C.A. Mirkin, Multiplexed DNA detection with bio­barcoded nanoparticle probes. Angew. Chem. Int. Ed Engl. 45(20), 3303–3306 (2006). doi: 10.1002/anie.200600124 CrossRefGoogle Scholar
  28. 28.
    C.S. Thaxton, H.D. Hill, D.G. Georganopoulou, S.I. Stoeva, C.A. Mirkin, A bio-bar-code assay based upon dithiothreitol-induced oligonucleotide release. Anal. Chem. 77(24), 8174–8178 (2005)CrossRefGoogle Scholar
  29. 29.
    C.S. Thaxton, N.L. Rosi, C.A. Mirkin, Optically and chemically encoded nanoparticle materials for DNA and protein detection. MRS Bull. 30(5), 376–380 (2005)CrossRefGoogle Scholar
  30. 30.
    D. Kim, W.L. Daniel, C.A. Mirkin, Microarray-based multiplexed scanometric immunoassay for protein cancer markers using gold nanoparticle probes. Anal. Chem. 81(21), 9183–9187 (2009). doi: 10.1021/ac9018389 CrossRefGoogle Scholar
  31. 31.
    T.A. Taton, C.A. Mirkin, R.L. Letsinger, Scanometric DNA array detection with nanoparticle probes. Science 289(5485), 1757–1760 (2000). doi: 10.1126/science.289.5485.1757 CrossRefGoogle Scholar
  32. 32.
    C.R. Pound, A.W. Partin, M.A. Eisenberger, D.W. Chan, J.D. Pearson, P.C. Walsh, Natural history of progression after PSA elevation following radical prostatectomy. JAMA 281(17), 1591–1597 (1999)CrossRefGoogle Scholar
  33. 33.
    G.L. Andriole, R.L. Grubb III, S.S. Buys, D. Chia, T.R. Church, M.N. Fouad, E.P. Gelmann, P.A. Kvale, D.J. Reding, J.L. Weissfeld, L.A. Yokochi, E.D. Crawford, B. O’Brien, J.D. Clapp, J.M. Rathmell, T.L. Riley, R.B. Hayes, B.S. Kramer, G. Izmirlian, A.B. Miller, P.F. Pinsky, P.C. Prorok, J.K. Gohagan, C.D. Berg, Mortality results from a randomized prostate-cancer screening trial. N. Engl. J. Med. 360(13), 1310–1319 (2009)CrossRefGoogle Scholar
  34. 34.
    F.H. Schroder, J. Hugosson, M.J. Roobol, T.L.J. Tammela, S. Ciatto, V. Nelen, M. Kwiatkowski, M. Lujan, H. Lilja, M. Zappa, L.J. Denis, F. Recker, A. Berenguer, L. Määttänen, C.H. Bangma, G. Aus, A. Villers, X. Rebillard, T. van der Kwast, B.G. Blijenberg, S.M. Moss, H.J. de Koning, A. Auvinen, ERSPC Investigators, Screening and prostate-cancer mortality in a randomized European study. N. Engl. J. Med. 360(13), 1320–1328 (2009)CrossRefGoogle Scholar
  35. 35.
    W.J. Catalona, D.S. Smith, 5-year tumor recurrence rates after anatomical radical retropubic prostatectomy for prostate cancer. J. Urol. 152(5), 1837–1842 (1994)Google Scholar
  36. 36.
    T.L. Jang, M. Han, K.A. Roehl, S.A. Hawkins, W.J. Catalona, More favorable tumor features and progression-free survival rates in a longitudinal prostate cancer screening study: PSA era and threshold-specific effects. Urology 67(2), 343–348 (2006). doi: 10.1016/j.urology.2005.08.048 CrossRefGoogle Scholar
  37. 37.
    J.G. Trapasso, J.B. deKernion, R.B. Smith, F. Dorey, The incidence and significance of detectable levels of serum prostate specific antigen after radical prostatectomy. J. Urol. 152(5), 1821–1825 (1994)Google Scholar
  38. 38.
    B.J. Trock, M. Han, S.J. Freedland, E.B. Humphreys, T.L. DeWeese, A.W. Partin, P.C. Walsh, Prostate cancer-specific survival following salvage radiotherapy vs observation in men with biochemical recurrence after radical prostatectomy. JAMA 299(23), 2760–2769 (2008)CrossRefGoogle Scholar
  39. 39.
    H. Yu, E.P. Diamandis, A.F. Prestigiacomo, T.A. Stamey, Ultrasensitive assay of prostate-specific antigen used for early detection of prostate cancer relapse and estimation of tumor-doubling time after radical prostatectomy. Clin. Chem. 41(3), 430–434 (1995)Google Scholar
  40. 40.
    C.S. Thaxton, R. Elghanian, A.D. Thomas, S.I. Stoeva, J.S. Lee, N.D. Smith, A.J. Schaeffer, H. Klocker, W. Horninger, G. Bartsch, C.A. Mirkin, Nanoparticle-based bio-barcode assay redefines “undetectable” PSA and biochemical recurrence after radical prostatectomy. Proc. Natl. Acad. Sci. U. S. A. 106(44), 18437–18442 (2009). doi: 10.1073/pnas.0904719106 CrossRefGoogle Scholar
  41. 41.
    A.K. Lytton-Jean, C.A. Mirkin, A thermodynamic investigation into the binding properties of DNA functionalized gold nanoparticle probes and molecular fluorophore probes. J. Am. Chem. Soc. 127(37), 12754–12755 (2005)CrossRefGoogle Scholar
  42. 42.
    R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, C.A. Mirkin, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329), 1078–1081 (1997). doi: 10.1126/science.277.5329.1078 CrossRefGoogle Scholar
  43. 43.
    J.J. Storhoff, A.D. Lucas, V. Garimella, Y.P. Bao, U.R. Muller, Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat. Biotechnol. 22(7), 883–887 (2004)CrossRefGoogle Scholar
  44. 44.
    J.J. Storhoff, S.S. Marla, P. Bao, S. Hagenow, H. Mehta, A. Lucas, V. Garimella, T. Patno, W. Buckingham, W. Cork, U.R. Muller, Gold nanoparticle-based detection of genomic DNA targets on microarrays using a novel optical detection system. Biosens. Bioelectron. 19(8), 875–883 (2004). doi: 10.1016/j.bios.2003.08.014 CrossRefGoogle Scholar
  45. 45.
    D.A. Giljohann, D.S. Seferos, A.E. Prigodich, P.C. Patel, C.A. Mirkin, Gene regulation with polyvalent siRNA-nanoparticle conjugates. J. Am. Chem. Soc. 131(6), 2072–2073 (2009). doi: 10.1021/ja808719p CrossRefGoogle Scholar
  46. 46.
    N.L. Rosi, D.A. Giljohann, C.S. Thaxton, A.K.R. Lytton-Jean, M.S. Han, C.A. Mirkin, Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312(5776), 1027–1030 (2006). doi: 10.1126/science.1125559 CrossRefGoogle Scholar
  47. 47.
    D.S. Seferos, A.E. Prigodich, D.A. Giljohann, P.C. Patel, C.A. Mirkin, Polyvalent DNA nano­par­ticle conjugates stabilize nucleic acids. Nano Lett. 9(1), 308–311 (2009). doi: 10.1021/nl802958f CrossRefGoogle Scholar
  48. 48.
    D.S. Seferos, D.A. Giljohann, N.L. Rosi, C.A. Mirkin, Locked nucleic acid-nanoparticle conjugates. Chem. Biochem 8(11), 1230–1232 (2007). doi: 10.1002/cbic.200700262 Google Scholar
  49. 49.
    N. Nerambourg, R. Praho, M.H.V. Werts, D. Thomas, M. Blanchard-Desce, Hydrophilic monolayer-protected gold nanoparticles and their functionalisation with fluorescent chromophores. Int. J. Nanotechnol. 5(6–8), 722–740 (2008). doi: 10.1504/IJNT.2008.018693 CrossRefGoogle Scholar
  50. 50.
    T. Meade, Seeing is believing. Acad. Radiol. 8(1), 1–3 (2001)CrossRefGoogle Scholar
  51. 51.
    D. Neuberger, J. Wong, Suspension for intravenous injection: image analysis of scanning electron micrographs of particles to determine size and volume. PDA J. Pharm. Sci. Technol. 59(3), 187–199 (2005)Google Scholar
  52. 52.
    L.M. Manus, D.J. Mastarone, E.A. Waters, X.-Q. Zhang, E.A. Schultz-Sikma, K.W. MacRenaris, D. Ho, T.J. Meade, Gd(III)-nanodiamond conjugates for MRI contrast enhancement. Nano Lett. 10(2), 484–489 (2010). doi: 10.1021/nl903264h CrossRefGoogle Scholar
  53. 53.
    C.L. Zavaleta, B.R. Smith, I. Walton, W. Doering, G. Davis, B. Shojaei, M.J. Natan, S.S. Gambhir, Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 106(32), 13511–13516 (2009). doi: 10.1073/pnas.0813327106 CrossRefGoogle Scholar
  54. 54.
    S.M. van de Ven, N. Mincu, J. Brunette, G. Ma, M. Khayat, D.M. Ikeda, S.S. Gambhir, Molecular imaging using light-absorbing imaging agents and a clinical optical breast imaging system–a phantom study. Department of Radiology, Stanford University Medical Center, Stanford, CA, USA. Mol Imaging Biol. Apr;13(2):232–238 (2011)Google Scholar
  55. 55.
    M.E. Davis, The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol. Pharm. 6(3), 659–668 (2009). doi: 10.1021/mp900015y CrossRefGoogle Scholar
  56. 56.
    D.W. Bartlett, M.E. Davis, Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconjug. Chem. 18(2), 456–468 (2007). doi: 10.1021/bc0603539 CrossRefGoogle Scholar
  57. 57.
    S.H. Pun, N.C. Bellocq, A. Liu, G. Jensen, T. Machemer, E. Quijano, T. Schluep, S. Wen, H. Engler, J. Heidel, M.E. Davis, Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjug. Chem. 15(4), 831–840 (2004). doi: 10.1021/bc049891g CrossRefGoogle Scholar
  58. 58.
    D.J. Heidel, J.D. Heidel, J. Yi-Ching Liu, Y. Yen, B. Zhou, B.S.E. Heale, J.J. Rossi, D.W. Bartlett, M.E. Davis, Potent siRNA inhibitors of ribonucleotide reductase subunit RRM2 reduce cell proliferation in vitro and in vivo. Clin. Cancer Res. 13(7), 2207–2215 (2007). doi: 10.1158/1078-0432.CCR-06-2218 CrossRefGoogle Scholar
  59. 59.
    D.J. Heidel, Z. Yu, J. Yi-Ching Liu, S.M. Rele, Y. Liang, R.K. Zeidan, D.J. Kornbrust, M.E. Davis, Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc. Natl. Acad. Sci. U. S. A. 104(14), 5715–5721 (2007). doi: 10.1073/pnas.0701458104 CrossRefGoogle Scholar
  60. 60.
    S. Hu-Lieskovan, J.D. Heidel, D.W. Bartlett, M.W. Davis, T.J. Triche, Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 65(19), 8984–8992 (2005). doi: 10.1158/0008-5472.CAN-05-0565 CrossRefGoogle Scholar
  61. 61.
    D.W. Bartlett, H. Su, I.J. Hildebrandt, W.A. Weber, M.E. Davis, Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multi­modality in vivo imaging. Proc. Natl. Acad. Sci. U. S. A. 104(39), 15549–15554 (2007). doi: 10.1073/pnas.0707461104 CrossRefGoogle Scholar
  62. 62.
    D.W. Bartlett, M.E. Davis, Impact of tumor-specific targeting and dosing schedule on tumor growth inhibition after intravenous administration of siRNA-containing nanoparticles. Biotechnol. Bioeng. 99(4), 975–85 (2008). doi: 10.1002/bit.21668 CrossRefGoogle Scholar
  63. 63.
    L.M. Demers, C.A. Mirkin, R.C. Mucic, R.A. Reynolds III, R.L. Letsinger, R. Elghanian, G. Viswanadham, A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal. Chem. 72(22), 5535–5541 (2000)CrossRefGoogle Scholar
  64. 64.
    D.A. Giljohann, D.S. Seferos, P.C. Patel, J.E. Millstone, N.L. Rosi, C.A. Mirkin, Oligo­nucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett. 7(12), 3818–3821 (2007)CrossRefGoogle Scholar
  65. 65.
    C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592), 607–609 (1996). doi: 10.1038/382607a0 CrossRefGoogle Scholar
  66. 66.
    I. Lebedeva, C.A. Stein, Antisense oligonucleotides: promise and reality. Annu. Rev. Pharmacol. Toxicol. 41, 403–419 (2001)CrossRefGoogle Scholar
  67. 67.
    G.S. Getz, C.A. Reardon, Nutrition and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 27(12), 2499–2506 (2007)CrossRefGoogle Scholar
  68. 68.
    R. Josi, S. Jan, Y. Wu, S. MacMahon, Global inequalities in access to cardiovascular health care. J. Am. Coll. Cardiol. 52(23), 1817–1825 (2008)CrossRefGoogle Scholar
  69. 69.
    A.J. Lusis, Atherosclerosis. Nature 407(6801), 233–241 (2000)CrossRefGoogle Scholar
  70. 70.
    L.G. Spagnoli, E. Bonanno, G. Sangiorgi, A. Mauriello, Role of inflammation in atherosclerosis. J. Nucl. Med. 48(11), 1800–1815 (2007). doi: 10.2967/jnumed.107.038661 CrossRefGoogle Scholar
  71. 71.
    W.B. Kannel, W.P. Castelli, T. Gordon, P.M. McNamara, Serum cholesterol, lipoproteins, and the risk of coronary heart disease: the Framingham study. Ann. Intern. Med. 74(1), 1–12 (1971)Google Scholar
  72. 72.
    W.B. Kannel, P.W.F. Wilson, An update on coronary risk factors. Med. Clin. North Am. 79(5), 951–971 (1995)Google Scholar
  73. 73.
    T.C. Andrews, K. Raby, J. Barry, C.L. Naimi, E. Allred, P. Ganz, A.P. Selwyn, Effect of cholesterol reduction on myocardial ischemia in patients with coronary disease. Circulation 95(2), 324–328 (1997)Google Scholar
  74. 74.
    C.M. Ballantyne, J.A. Herd, J.K. Dunn, P.H. Jones, J.A. Farmer, A.M. Gotto Jr., Effects of lipid lowering therapy on progression of coronary and carotid artery disease. Curr. Opin. Lipidol. 8(6), 354–361 (1997)CrossRefGoogle Scholar
  75. 75.
    A. Zambon, J.E. Hokanson, Lipoprotein classes and coronary disease regression. Curr. Opin. Lipidol. 9(4), 329–336 (1998)CrossRefGoogle Scholar
  76. 76.
    H.B. Brewer, Increasing HDL cholesterol levels. N. Engl. J. Med. 350(15), 1491–1494 (2004)CrossRefGoogle Scholar
  77. 77.
    E.M. Degoma, R.L. Degoma, D.J. Rader, Beyond high-density lipoprotein cholesterol levels: evaluating high-density lipoprotein function as influenced by novel therapeutic approaches. J. Am. Coll. Cardiol. 51(23), 2199–2211 (2008)CrossRefGoogle Scholar
  78. 78.
    T. Joy, R.A. Hegele, Is raising HDL a futile strategy for atheroprotection? Nat. Rev. Drug Discovery 7(2), 143–155 (2008)CrossRefGoogle Scholar
  79. 79.
    P. Conca, G. Franceschini, Synthetic HDL as a new treatment for atherosclerosis regression: has the time come? Nutr. Metab. Cardiovasc. Dis. 18(4), 329–335 (2008)CrossRefGoogle Scholar
  80. 80.
    A. Kontush, M.J. Chapman, Antiatherogenic small, dense HDL – guardian angel of the arterial wall? Nat. Clin. Pract. Cardiovasc. Med. 3(3), 144–153 (2006). doi: 10.1038/ncpcardio0500 CrossRefGoogle Scholar
  81. 81.
    I.M. Singh, M.H. Shishehbor, B.J. Ansell, High-density lipoprotein as a therapeutic target – A systematic review. JAMA 298(7), 786–798 (2007)CrossRefGoogle Scholar
  82. 82.
    G.F. Watts, P.H.R. Barrett, D.C. Chan, HDL metabolism in context: looking on the bright side. Curr. Opin. Lipidol. 19(4), 395–404 (2008)CrossRefGoogle Scholar
  83. 83.
    C.S. Thaxton, W.L. Daniel, D.A. Giljohann, A.D. Thomas, C.A. Mirkin, Templated spherical high density lipoprotein nanoparticles. J. Am. Chem. Soc. 131(4), 1384–1385 (2009). doi: 10.1021/ja808856z CrossRefGoogle Scholar
  84. 84.
    Y. Klichko, M. Liong, E. Choi, S. Angelos, A.E. Nel, J.F. Stoddart, F. Tamanoi, J.I. Zink, Mesostructured silica for optical functionality, nanomachines, and drug delivery. J. Am. Ceram. Soc. 92(s1), s2–s10 (2009). doi: 10.1111/j.1551-2916.2008.02722.x CrossRefGoogle Scholar
  85. 85.
    S. Saha, E. Johansson, A.H. Flood, H.-R. Tseng, J.I. Zink, J.F. Stoddart, A photoactive molecular triad as a nanoscale power supply for a supramolecular machine. Chemistry 11(23), 6846–6858 (2005). doi: 10.1002/ chem.200500371 CrossRefGoogle Scholar
  86. 86.
    S. Angelos, Y.W. Yang, K. Patel, J.F. Stoddart, J.I. Zink, pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes. Angew. Chem. Weinheim. Bergstr. Ger. 47(12), 2222–2226 (2008). doi: 10.1002/anie.200705211 Google Scholar
  87. 87.
    N.M. Khashab, M.E. Belowich, A. Trabolsi, D.C. Friedman, C. Valente, Y. Lau, H.A. Khatib, J.I. Zink, J.F. Stoddart, pH-responsive mechanised nanoparticles gated by semirotaxanes. Chem. Commun. Camb. 36, 5371–5373 (2009). doi: 10.1039/B910431C CrossRefGoogle Scholar
  88. 88.
    K. Patel, S. Angelos, W.R. Dichtel, A. Coskun, Y.-W. Yang, J.I. Zink, J.F. Stoddart, Enzyme-responsive snap-top covered silica nanocontainers. J. Am. Chem. Soc. 130(8), 2382–2383 (2008). doi: 10.1021/ja0772086 CrossRefGoogle Scholar
  89. 89.
    S.E. Gratton, S.S. Williams, M.E. Napier, P.D. Pohlhaus, Z. Zhou, K.B. Wiles, B.W. Maynor, C. Shen, T. Olafsen, E.T. Samulski, J.M. DeSimone, he pursuit of a scalable nanofabrication platform for use in material and life science applications. Acc. Chem. Res. 41(12), 1685–1695 (2008). doi: 10.1021/ar8000348 CrossRefGoogle Scholar
  90. 90.
    L.E. Euluss, J.A. DuPont, S. Gratton, J. DeSimone, Imparting size, shape, and composition control of materials for nanomedicine. Chem. Soc. Rev. 35(11), 1095–1104 (2006). doi: 10.1039/B600913C CrossRefGoogle Scholar
  91. 91.
    R.A. Petros, P.A. Ropp, J.M. DeSimone, Reductively labile PRINT particles for the delivery of doxorubicin to HeLa cells. J. Am. Chem. Soc. 130(15), 5008–5009 (2008)CrossRefGoogle Scholar
  92. 92.
    I. Elloumi-Hannachi, M. Yamato, T. Okano, Cell sheet engineering: a unique nanotechnology for scaffold-free tissue reconstruction with clinical applications in regenerative medicine. J. Intern. Med. 267(1), 54–70 (2010)CrossRefGoogle Scholar
  93. 93.
    T. Shimizu, H. Sekine, M. Yamato, T. Okano, Cell sheet-based myocardial tissue engineering: new hope for damaged heart rescue. Curr. Pharm. Des. 15(24), 2807–2814 (2009)CrossRefGoogle Scholar
  94. 94.
    S. Masuda, T. Shimizu, M. Yamato, T. Okano, Cell sheet engineering for heart tissue repair. Adv. Drug Deliv. Rev. 60, 277–285 (2008)CrossRefGoogle Scholar
  95. 95.
    C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, D.E. Ingber, Micropatterned surfaces for control of cell shape, position, and function. Biotechnol. Prog. 14(3), 356–363 (1998). doi: 10.1021/bp980031m CrossRefGoogle Scholar
  96. 96.
    J. James, E.D. Goluch, H. Hu, C. Liu, M. Mrksich, ubcellular curvature at the perimeter of micropatterned cells influences lamellipodial distribution and cell polarity. Cell Motil. Cytoskeleton 65(11), 841–852 (2008). Available online: http://www.mech.northwestern.edu/medx/web/publications/papers/196.pdf CrossRefGoogle Scholar
  97. 97.
    M. Mrksich, C.S. Chen, Y. Xia, L.E. Dike, D.E. Ingber, G.M. Whitesides, Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold. Proc. Natl. Acad. Sci. U. S. A. 93(20), 10775–10778 (1996)CrossRefGoogle Scholar
  98. 98.
    M. Mrksich, L.E. Dike, J. Tien, D.E. Ingber, G.M. Whitesides, Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. Exp. Cell Res. 235(2), 305–313 (1997)CrossRefGoogle Scholar
  99. 99.
    M. Mrksich, G.M. Whitesides, Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annu. Rev. Biophys. Biomol. Struct. 25, 55–78 (1996)CrossRefGoogle Scholar
  100. 100.
    S. Heydarkhan-Hagvall, C.H. Choi, J. Dunn, S. Heydarkhan, K. Schenke-Layland, W.R. MacLellan, R.E. Beygui, Influence of systematically varied nano-scale topography on cell morphology and adhesion. Cell Commun. Adhes. 14(5), 181–194 (2007)CrossRefGoogle Scholar
  101. 101.
    J.H. Silver, J.C. Lin, F. Lim, V.A. Tegoulia, M.K. Chaudhury, S.L. Cooper, Surface properties and hemocompatibility of alkyl-siloxane monolayers supported on silicone rubber: effect of alkyl chain length and ionic functionality. Biomaterials 20(17), 1533–1543 (1999). doi: 10.1016/S0142-9612(98)00173-2 CrossRefGoogle Scholar
  102. 102.
    A.J. Torres, L. Vasudevan, D. Holowka, B.A. Baird, Focal adhesion proteins connect IgE receptors to the cytoskeleton as revealed by micropatterned ligand arrays. Proc. Natl. Acad. Sci. U. S. A. 105(45), 17238–17244 (2008). doi: 10.1073/pnas.0802138105 CrossRefGoogle Scholar
  103. 103.
    D.W. Hobson, Commercialization of nanotechnology Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1(2), 189–202 (2009). doi: 10.1002/wnan.28 CrossRefGoogle Scholar
  104. 104.
    J. Shendure, R.D. Mitra, C. Varma, G.M. Church, Advanced sequencing technologies: methods and goals. Nat. Rev. Genet. 5(5), 335–344 (2004). doi: 10.1038/nrg1325 CrossRefGoogle Scholar
  105. 105.
    D. Gibson, G.A. Benders, C. Andrews-Pfannkoch, E.A. Denisova, H. Baden-Tillson, J. Zaveri, T.B. Stockwell, A. Brownley, D.W. Thomas, M.A. Algire, C. Merryman, L. Young, V.N. Noskov, J.I. Glass, J.C. Venter, C.A. Hutchison III, H.O. Smith, Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Sci. Signal. 319(5867), 1215–1220 (2008)Google Scholar
  106. 106.
    C. Noren, S. Anthony-Cahill, M. Griffith, P. Schultz, A general method for site-specific incorporation of unnatural amino acids into proteins. Science 244(4901), 182–188 (1989). doi: 10.1126/science.2649980 CrossRefGoogle Scholar
  107. 107.
    C. Gauchet, G. Labadie, C. Poulter, Regio- and chemoselective covalent immobilization of proteins through unnatural amino acids. J. Am. Chem. Soc. 128(29), 9274–9275 (2006)CrossRefGoogle Scholar
  108. 108.
    R. Baum, Drexler and Smalley make the case for and against ‘molecular assemblers. Chem. Eng. News 81(48), 37–42 (2003). Available online: http://pubs.acs.org/cen/coverstory/8148/8148counterpoint.html Google Scholar
  109. 109.
    H.F. Tibbals, Medical Nanotechnology and Nanomedicine (CRC Press, Boca Raton, 2010)CrossRefGoogle Scholar
  110. 110.
    F. Hu, K.W. MacRenaris, E.A. Waters, E.A. Schultz-Sikma, A.L. Eckermann, T.J. Meade, Highly dispersible, superparamagnetic magnetite nanoflowers for magnetic resonance imaging. Chem. Commun. Camb. 46(1), 73–75 (2010). doi: 10.1039/b916562b CrossRefGoogle Scholar
  111. 111.
    R.M. Shah, N.A. Shah, M.M. Del Rosario Lim, C. Hsieh, G. Nuber, S.I. Stupp, Supra­molecular design of self-assembling nanofibers for cartilage regeneration. Proc. Natl. Acad. Sci. 107(8), 3293–3298 (2010)CrossRefGoogle Scholar
  112. 112.
    V.M. Tysseling-Mattiace, V. Sahni, K.L. Niece, D. Birch, C. Czeisler, M.G. Fehlings, S.I. Stupp, J.A. Kessler, Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J. Neurosci. 28(14), 3814–3823 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business B.V. 2011

Authors and Affiliations

  1. 1.Department of ChemistryNorthwestern UniversityEvanstonUSA
  2. 2.Department of Medicine and California NanoSystems InstituteUniversity of CaliforniaLos AngelesUSA
  3. 3.Institute for Bionanotechnology in MedicineNorthwestern UniversityChicagoUSA

Personalised recommendations