Nanotechnology for Sustainability: Energy Conversion, Storage, and Conservation

  • C. Jeffrey BrinkerEmail author
  • David Ginger
Part of the Science Policy Reports book series (SCIPOLICY, volume 1)


Increasing standards of living and rising population numbers are leading to inevitable increases in global energy consumption. Worldwide energy usage is on track to increase by roughly 40% in the next 20 years (Fig. 1) and to nearly double by 2050. This demand could be met, in principle, from fossil energy resources, particularly coal. However, the cumulative nature of CO2 emissions in the atmosphere demands that holding atmospheric CO2 levels to even twice their pre-anthropogenic values by midcentury will require invention, development, and deployment of schemes for carbon-neutral energy production on a scale commensurate with, or larger than, the entire present-day energy supply from all sources combined [1, 2]. In addition to the negative climate impacts associated with burning fossil fuel, significant worldwide competition for these limited resources, and increases in the prices of energy-intensive commodities like fertilizer, are likely to have significant geo­political and social consequences, making energy an issue of national security.


Photovoltaics Solar cells Batteries Capacitors Solid state lighting Thermoelectric Hydrogen storage Thermal insulation Lightning, Green building International perspective 


  1. 1.
    N.S. Lewis, Toward cost-effective solar energy use. Science 315(5813), 798–801 (2007)CrossRefGoogle Scholar
  2. 2.
    N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U.S.A. 103(43), 15729–15735 (2006)CrossRefGoogle Scholar
  3. 3.
    Business Wire, Solarmer Energy, Inc. breaks psychological barrier with 8.13% OPV efficiency (2010), Available online: 27 July 2010
  4. 4.
    Y. Liang, Z. Xu, J. Xial, S.T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, For the bright future – bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, 1–4 (2010). doi: 10.1002/adma.200903528 CrossRefGoogle Scholar
  5. 5.
    P. Heremans, D. Cheyns, B.P. Rand, Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. Acc. Chem. Res. 42(11), 1740–1747 (2009)CrossRefGoogle Scholar
  6. 6.
    M.A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion (Springer, Berlin, 2004)Google Scholar
  7. 7.
    U.S. Department of Energy Office of Basic Energy Sciences (DOE/BES), Basic research needs for solar energy utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, 18–21 April 2004 (U.S. Department of Energy Office of Basic Energy Sciences, Washington, DC, 2005), Available online:
  8. 8.
    D. Gust, T.A. Moore, A.L. Moore, Solar fuels via artificial photosynthesis. Acc. Chem. Res. 42(12), 1890–1898 (2009)CrossRefGoogle Scholar
  9. 9.
    X. Ji, T.L. Kyu, L.F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009)CrossRefGoogle Scholar
  10. 10.
    C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008). doi: 10.1038/nnano.2007.411 CrossRefGoogle Scholar
  11. 11.
    C. Xu, F. Kang, B. Li, H. Du, Recent progress on manganese dioxide supercapacitors. J. Mater. Res. 25(8), 1421–1432 (2010). doi: 10.1557/JMR.2010.0211 CrossRefGoogle Scholar
  12. 12.
    L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009)CrossRefGoogle Scholar
  13. 13.
    A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377–379 (1997)CrossRefGoogle Scholar
  14. 14.
    C. Liu, Y. Chen, C.-Z. Wu, S.-T. Xu, H.-M. Cheng, Hydrogen storage in carbon nanotubes revisited. Carbon 48, 452–455 (2010)CrossRefGoogle Scholar
  15. 15.
    O.B. Shchekin, J.E. Epler, T.A. Trottier, D.A. Margalith, High performance thin-film flip-chip InGaN–GaN light-emitting diodes. Appl. Phys. Lett. 89, 071109 (2006)CrossRefGoogle Scholar
  16. 16.
    C. Wadia, A.P. Alivisatos, D.M. Kammen, Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ. Sci. Technol. 43(6), 2072–2077 (2009)CrossRefGoogle Scholar
  17. 17.
    U.S. Department of Energy Office of Basic Energy Sciences (DOE/BES), Basic Research Needs for Solid-State Lighting. Report of the Basic Energy Sciences Workshop on Solid-State Lighting 22–24 May 2006 (U.S. Department of Energy Office of Basic Energy Sciences, Washington, DC, 2006), Available online:
  18. 18.
    A. Majumdar, Materials science: enhanced thermoelectricity in semiconductor nanostructures. Science 303(5659), 777–778 (2004)CrossRefGoogle Scholar
  19. 19.
    A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2(5), 466–479 (2009)CrossRefGoogle Scholar
  20. 20.
    A. Balandin, K.L. Wang, Effect of phonon confinement on the thermoelectric figure of merit of quantum wells. J. Appl. Phys. 84(11), 6149–6153 (1998)CrossRefGoogle Scholar
  21. 21.
    G. Chen, Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57(23), 14958 (1998)CrossRefGoogle Scholar
  22. 22.
    T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Quantum dot superlattice thermoelectric materials and devices. Science 297(5590), 2229–2232 (2002)CrossRefGoogle Scholar
  23. 23.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856), 597–602 (2001)CrossRefGoogle Scholar
  24. 24.
    Y.K. Koh, C.J. Vineis, S.D. Calawa, M.P. Walsh, D.G. Cahill, Lattice thermal conductivity of nanostructured thermoelectric materials based on PbTe. Appl. Phys. Lett. 94(15), 153101–153103 (2009)CrossRefGoogle Scholar
  25. 25.
    G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, T. Caillat, Recent developments in thermoelectric materials. Int. Mater. Rev. 48, 45–66 (2003)CrossRefGoogle Scholar
  26. 26.
    H.-K. Lyeo, A.A. Khajetoorians, L. Shi, K.P. Pipe, R.J. Ram, A. Shakouri, C.K. Shih, Profiling the thermoelectric power of semiconductor junctions with nanometer resolution. Science 303(5659), 816–818 (2004). doi: 10.1126/science.1091600 CrossRefGoogle Scholar
  27. 27.
    U.S. Department of Energy Office of Energy Efficiency and Renewable Energy (DOE/EEaR), Solar energy technologies program: Multi-Year Program Plan 2007–2011, 2006 (DOE) (2006), Available online:
  28. 28.
    J. Fricke, A. Emmerling, Aerogels. J. Am. Ceram. Soc. 75(8), 2027–2036 (1992). Available online: CrossRefGoogle Scholar
  29. 29.
    R. Deshpande, D.W. Hua, D.M. Smith, C.J. Brinker, Pore structure evolution in silica-gel during aging drying. 3. Effects of surface-tension. J. Non. Cryst. Solids 144(1), 32–44 (1992)CrossRefGoogle Scholar
  30. 30.
    S.S. Prakash, C.J. Brinker, A.J. Hurd, S.M. Rao, Silica aerogel films prepared at ambient-pressure by using surface derivatization to induce reversible drying shrinkage. Nature 374(6521), 439–443 (1995)CrossRefGoogle Scholar
  31. 31.
    R. Baetens, B.P. Jelle, J.V. Thue, M.J. Tenpierik, S. Grynning, S. Uvsløkk, A. Gustavsen, Vacuum insulation panels for building applications: a review and beyond. Energy Build 42, 147–172 (2010)CrossRefGoogle Scholar
  32. 32.
    A. Jaeger-Waldau, PV Status Report 2009: research, solar cell production, and market implementation of photovoltaics (European Commission Joint Research Centre Institute for Energy, Ispra, 2009), Available online:
  33. 33.
    N.R. Council, Electricity from Renewable Resources: Status, Prospects, and Impediments (National Academy of Sciences, Washington, DC, 2010)Google Scholar
  34. 34.
    J. Johnson, Fossil fuel costs. Chem. Eng. News 87(43), 6 (2009)CrossRefGoogle Scholar
  35. 35.
    J. Hader, J.V. Moloney, B. Pasenow, S.W. Koch, M. Sabathil, N. Linder, S. Lutgen, On the importance of radiative and Auger losses in GaN-based quantum wells. Appl. Phys. Lett. 92, 261103 (2008). doi: 10.1063/1.2953543 CrossRefGoogle Scholar
  36. 36.
    M.G. Kanatzidis, Nanostructured thermoelectrics: the new paradigm? Chem. Mater. 22(3), 648–659 (2009)CrossRefGoogle Scholar
  37. 37.
    B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320(5876), 634–638 (2008). doi: 10.1126/science.1156446 CrossRefGoogle Scholar
  38. 38.
    K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis, Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303(5659), 818–821 (2004). doi: 10.1126/science.1092963 CrossRefGoogle Scholar
  39. 39.
    Business Wire, To cap off a magnificent year, Solarmer achieves 7.9% NREL Certified Plastic Solar Cell Efficiency (2009), Available online:
  40. 40.
    R. Gaudiana, Third-generation photovoltaic technology – the potential for low-cost solar energy conversion. J. Phys. Chem. Lett. 1(7), 1288–1289 (2010). doi: 10.1021/jz100290q CrossRefGoogle Scholar
  41. 41.
    G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor hetrojunctions. Science 270, 1789–1791 (1995)CrossRefGoogle Scholar
  42. 42.
    G. Li, V. Shrotriya, J.S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864–868 (2005). doi: 10.1038/nmat1500 CrossRefGoogle Scholar
  43. 43.
    S.H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 3(5), 297–302 (2009)CrossRefGoogle Scholar
  44. 44.
    G. Dennler, M.C. Scharber, C.J. Brabec, Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 21(13), 1323–1338 (2009). doi: 10.1002/adma.200801283 CrossRefGoogle Scholar
  45. 45.
    R. Giridharagopal, D.S. Ginger, Characterizing morphology in bulk heterojunction organic photovoltaic systems. J. Chem. Phys. Lett. 1(7), 1160–1169 (2010)CrossRefGoogle Scholar
  46. 46.
    E.J.W. Crossland, M. Kamperman, M. Nedelcu, C. Ducati, U. Wiesner, D.-M. Smilgies, G.E.S. Toombes, M.A. Hillmyer, S. Ludwigs, U.O. Steiner, H.J. Snaith, A bicontinuous double gyroid hybrid solar cell. Nano Lett. 9(8), 2807–2812 (2009). doi: 10.1021/nl803174p CrossRefGoogle Scholar
  47. 47.
    R.D. Schaller, V.I. Klimov, High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004). doi: 10.1103/PhysRevLett.92.186601 CrossRefGoogle Scholar
  48. 48.
    G. Nair, M.G. Bawendi, Carrier multiplication yields of CdSe and CdTe nanocrystals by transient photoluminescence spectroscopy. Phys. Rev. B 76, 081304(R) (2007)CrossRefGoogle Scholar
  49. 49.
    J.A. McGuire, M. Sykora, J. Joo, J.M. Pietryga, V.I. Klimov, Apparent versus true carrier multiplication yields in semiconductor nanocrystals. Nano Lett. 10, 2049–2057 (2010)CrossRefGoogle Scholar
  50. 50.
    I. Arslan, A.A. Talin, G.T. Wang, Three-dimensional visualization of surface defects in core-shell nanowires. J. Phys. Chem. C 112, 11093 (2008)CrossRefGoogle Scholar
  51. 51.
    G.T. Wang, A.A. Talin, D.J. Werder, J.R. Creighton, E. Lai, R.J. Anderson, I. Arslan, Highly aligned, template-free growth and characterization of vertical GaN nanowires on sapphire by metal-organic chemical vapor deposition. Nanotechnology 17, 5773 (2006)CrossRefGoogle Scholar
  52. 52.
    V.M. Agranovich, D.M. Basko, G.C. La Rocca, F. Bassani, New concept for organic LEDs: non-radiative electronic energy transfer from semiconductor quantum well to organic overlayer. Synth. Met. 116(1–3), 349–351 (2001)CrossRefGoogle Scholar
  53. 53.
    M. Achermann, M.A. Petruska, S. Kos, D.L. Smith, D.D. Koleske, V.I. Klimov, Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well. Nature 429(6992), 642–646 (2004)CrossRefGoogle Scholar
  54. 54.
    J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321(5888), 554–557 (2008). doi: 10.1126/science.1159725 CrossRefGoogle Scholar
  55. 55.
    A. Popescu, L.M. Woods, J. Martin, G.S. Nolas, Model of transport properties of thermoelectric nanocomposite materials. Phys. Rev. B 79(20), 205302 (2009)CrossRefGoogle Scholar
  56. 56.
    Y. Hishinuma, T.H. Geballe, B.Y. Moyzhes, T.W. Kenny, Refrigeration by combined tunneling and thermionic emission in vacuum: use of nanometer scale design. Appl. Phys. Lett. 78(17), 2572–2574 (2001)CrossRefGoogle Scholar
  57. 57.
    D.V. Seletskiy, S.D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, S.-B. Mansoor, Laser cooling of solids to cryogenic temperatures. Nat. Photonics 4(3), 161–164 (2010). doi: 10.1038/nphoton.2009.269 CrossRefGoogle Scholar
  58. 58.
    C.B. Vining, An inconvenient truth about thermoelectrics. Nat. Mater. 8(2), 83–85 (2009)CrossRefGoogle Scholar
  59. 59.
    V.I. Zverev, A.M. Tishin, M.D. Kuz’min, The maximum possible magnetocaloric Delta T effect. J. Appl. Phys. 107(4), 043907–043903 (2010)CrossRefGoogle Scholar
  60. 60.
    R.I. Epstein, K.J. Malloy, Electrocaloric devices based on thin-film heat switches. J. Appl. Phys. 106(6), 064509–064507 (2009)CrossRefGoogle Scholar
  61. 61.
    P.F. Liu, J.L. Wang, X.J. Meng, J. Yang, B. Dkhil, J.H. Chu, Huge electrocaloric effect in Langmuir-Blodgett ferroelectric polymer thin films. New J. Phys. 12, 023035 (2010). doi: 10.1088/1367-2630/12/2/023035 CrossRefGoogle Scholar
  62. 62.
    A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, N.D. Mathur, Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311(5765), 1270–1271 (2006). doi: 10.1126/science.1123811 CrossRefGoogle Scholar
  63. 63.
    B. Neese, B. Chu, S.-G. Lu, Y. Wang, E. Furman, Q.M. Zhang, Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321(5890), 821–823 (2008). doi: 10.1126/science.1159655 CrossRefGoogle Scholar
  64. 64.
    T. Kato, T. Nagahara, Y. Agari, M. Ochi, High thermal conductivity of polymerizable liquid-crystal acrylic film having a twisted molecular orientation. J. Polym. Sci. B Polym. Phys. 44(10), 1419–1425 (2006)CrossRefGoogle Scholar
  65. 65.
    M. Marinelli, F. Mercuri, U. Zammit, F. Scudieri, Thermal conductivity and thermal diffusivity of the cyanobiphenyl (nCB) homologous series. Phys. Rev. E 58(5), 5860 (1998)CrossRefGoogle Scholar
  66. 66.
    J.R.D. Pereira, A.J. Palangana, A.C. Bento, M.L. Baesso, A.M. Mansanares, E.C. da Silva, Thermal diffusivity anisotropy in calamitic-nematic lyotropic liquid crystal. Rev. Sci. Instrum. 74(1), 822–824 (2003). doi: 10.1063/1.1519677 CrossRefGoogle Scholar
  67. 67.
    F. Rondelez, W. Urbach, H. Hervet, Origin of thermal conductivity anisotropy in liquid crystalline phases. Phys. Rev. Lett. 41(15), 1058 (1978)CrossRefGoogle Scholar
  68. 68.
    W. Urbach, H. Hervet, F. Rondelez, Thermal diffusivity in mesophases: a systematic study in 4-4[prime]-di-(n-alkoxy) azoxy benzenes. J. Chem. Phys. 78(8), 5113–5124 (1983)CrossRefGoogle Scholar
  69. 69.
    I. Dierking, G. Scalia, P. Morales, Liquid crystal-carbon nanotube dispersions. J. Appl. Phys. 97(4), 044309–044305 (2005)CrossRefGoogle Scholar
  70. 70.
    J. Lagerwall, G. Scalia, M. Haluska, U. Dettlaff-Weglikowska, S. Roth, F. Giesselmann, Nanotube alignment using lyotropic liquid crystals. Adv. Mater. 19(3), 359–364 (2007). doi: 10.1002/adma.200600889 CrossRefGoogle Scholar
  71. 71.
    M.D. Lynch, D.L. Patrick, Organizing carbon nanotubes with liquid crystals. Nano Lett. 2(11), 1197–1201 (2002)CrossRefGoogle Scholar
  72. 72.
    W. Song, I.A. Kinloch, A.H. Windle, Nematic liquid crystallinity of multiwall carbon nanotubes. Science 302(5649), 1363 (2003). doi: 10.1126/science.1089764 CrossRefGoogle Scholar
  73. 73.
    G.D. Watkins, EPR Observation of close Frenkel pairs in irradiated ZnSe. Phys. Rev. Lett. 33(4), 223 (1974)CrossRefGoogle Scholar
  74. 74.
    B.D. Wirth, Materials science: how does radiation damage materials? Science 318(5852), 923–924 (2007). doi: 10.1126/science.1150394 CrossRefGoogle Scholar
  75. 75.
    T. Diaz de la Rubia, H.M. Zbib, T.A. Khraishi, B.D. Wirth, M. Victoria, M.J. Caturla, Multiscale modelling of plastic flow localization in irradiated materials. Nature 406(6798), 871–874 (2000)CrossRefGoogle Scholar
  76. 76.
    N. Nita, R. Schaeublin, M. Victoria, Impact of irradiation on the microstructure of nanocrystalline materials. J. Nucl. Mater. 329–333(Part 2), 953–957 (2004)CrossRefGoogle Scholar
  77. 77.
    Y. Chimi, A. Iwasea, N. Ishikawaa, M. Kobiyamab, T. Inamib, S. Okuda, Accumulation and recovery of defects in ion-irradiated nanocrystalline gold. J. Nucl. Mater. 297(3), 355–357 (2001). doi: 10.1016/S0022-3115(01)00629-8 CrossRefGoogle Scholar
  78. 78.
    M. Rose, A.G. Balogh, H. Hahn, Instability of irradiation induced defects in nanostructured materials. Nucl Instrum. Meth. B 127–128, 119–122 (1997)CrossRefGoogle Scholar
  79. 79.
    T.D. Shen, S. Feng, M. Tang, J.A. Valdez, Y. Wang, K.E. Sickafus, Enhanced radiation tolerance in nanocrystalline MgGa2O4. Appl. Phys. Lett. 90(26), 263115–263113 (2007). doi: 10.1063/1.2753098 CrossRefGoogle Scholar
  80. 80.
    X.-M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, B.P. Uberuaga, Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327, 1631–1634 (2010)CrossRefGoogle Scholar
  81. 81.
    S. Moghaddam, E. Pengwang, Y.-B. Jiang, A.R. Garcia, D.J. Burnett, C.J. Brinker, R.I. Masel, M.A. Shannon, An inorganic–organic proton exchange membrane for fuel cells with a controlled nanoscale pore structure. Nat. Nano 5(3), 230–236 (2010). doi: 10.1038/nnano.2010.13 CrossRefGoogle Scholar
  82. 82.
    Y.B. Jiang, N.G. Liu, H. Gerung, J.L. Cecchi, C.J. Brinker, Nanometer-thick conformal pore sealing of self-assembled mesoporous silica by plasma-assisted atomic layer deposition. J. Am. Chem. Soc. 128(34), 11018–11019 (2006)CrossRefGoogle Scholar
  83. 83.
    H. Zhou, Y. Wang, Development of a new-type lithium-air battery with large capacity. Advanced Industrial Science and Technology (AIST) Press Release (2009), Available online:

Copyright information

© Springer Science+Business B.V. 2011

Authors and Affiliations

  1. 1.Department of Chemical and Nuclear EngineeringUniversity of New MexicoAlbuquerqueUSA
  2. 2.Department 1002Sandia National Laboratories, Self-Assembled MaterialsAlbuquerqueUSA
  3. 3.Department of ChemistryUniversity of WashingtonSeattleUSA

Personalised recommendations